summaryrefslogtreecommitdiffstats
path: root/Lib
diff options
context:
space:
mode:
Diffstat (limited to 'Lib')
-rw-r--r--Lib/random.py353
1 files changed, 176 insertions, 177 deletions
diff --git a/Lib/random.py b/Lib/random.py
index ae7b5cf..a6454f5 100644
--- a/Lib/random.py
+++ b/Lib/random.py
@@ -1,5 +1,9 @@
"""Random variable generators.
+ bytes
+ -----
+ uniform bytes (values between 0 and 255)
+
integers
--------
uniform within range
@@ -37,6 +41,10 @@ General notes on the underlying Mersenne Twister core generator:
"""
+# Translated by Guido van Rossum from C source provided by
+# Adrian Baddeley. Adapted by Raymond Hettinger for use with
+# the Mersenne Twister and os.urandom() core generators.
+
from warnings import warn as _warn
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
@@ -46,6 +54,7 @@ from _collections_abc import Set as _Set, Sequence as _Sequence
from itertools import accumulate as _accumulate, repeat as _repeat
from bisect import bisect as _bisect
import os as _os
+import _random
try:
# hashlib is pretty heavy to load, try lean internal module first
@@ -54,7 +63,6 @@ except ImportError:
# fallback to official implementation
from hashlib import sha512 as _sha512
-
__all__ = [
"Random",
"SystemRandom",
@@ -89,13 +97,6 @@ BPF = 53 # Number of bits in a float
RECIP_BPF = 2 ** -BPF
-# Translated by Guido van Rossum from C source provided by
-# Adrian Baddeley. Adapted by Raymond Hettinger for use with
-# the Mersenne Twister and os.urandom() core generators.
-
-import _random
-
-
class Random(_random.Random):
"""Random number generator base class used by bound module functions.
@@ -121,26 +122,6 @@ class Random(_random.Random):
self.seed(x)
self.gauss_next = None
- def __init_subclass__(cls, /, **kwargs):
- """Control how subclasses generate random integers.
-
- The algorithm a subclass can use depends on the random() and/or
- getrandbits() implementation available to it and determines
- whether it can generate random integers from arbitrarily large
- ranges.
- """
-
- for c in cls.__mro__:
- if '_randbelow' in c.__dict__:
- # just inherit it
- break
- if 'getrandbits' in c.__dict__:
- cls._randbelow = cls._randbelow_with_getrandbits
- break
- if 'random' in c.__dict__:
- cls._randbelow = cls._randbelow_without_getrandbits
- break
-
def seed(self, a=None, version=2):
"""Initialize internal state from a seed.
@@ -210,14 +191,11 @@ class Random(_random.Random):
"Random.setstate() of version %s" %
(version, self.VERSION))
- ## ---- Methods below this point do not need to be overridden when
- ## ---- subclassing for the purpose of using a different core generator.
- ## -------------------- bytes methods ---------------------
+ ## -------------------------------------------------------
+ ## ---- Methods below this point do not need to be overridden or extended
+ ## ---- when subclassing for the purpose of using a different core generator.
- def randbytes(self, n):
- """Generate n random bytes."""
- return self.getrandbits(n * 8).to_bytes(n, 'little')
## -------------------- pickle support -------------------
@@ -233,6 +211,80 @@ class Random(_random.Random):
def __reduce__(self):
return self.__class__, (), self.getstate()
+
+ ## ---- internal support method for evenly distributed integers ----
+
+ def __init_subclass__(cls, /, **kwargs):
+ """Control how subclasses generate random integers.
+
+ The algorithm a subclass can use depends on the random() and/or
+ getrandbits() implementation available to it and determines
+ whether it can generate random integers from arbitrarily large
+ ranges.
+ """
+
+ for c in cls.__mro__:
+ if '_randbelow' in c.__dict__:
+ # just inherit it
+ break
+ if 'getrandbits' in c.__dict__:
+ cls._randbelow = cls._randbelow_with_getrandbits
+ break
+ if 'random' in c.__dict__:
+ cls._randbelow = cls._randbelow_without_getrandbits
+ break
+
+ def _randbelow_with_getrandbits(self, n):
+ "Return a random int in the range [0,n). Returns 0 if n==0."
+
+ if not n:
+ return 0
+ getrandbits = self.getrandbits
+ k = n.bit_length() # don't use (n-1) here because n can be 1
+ r = getrandbits(k) # 0 <= r < 2**k
+ while r >= n:
+ r = getrandbits(k)
+ return r
+
+ def _randbelow_without_getrandbits(self, n, maxsize=1<<BPF):
+ """Return a random int in the range [0,n). Returns 0 if n==0.
+
+ The implementation does not use getrandbits, but only random.
+ """
+
+ random = self.random
+ if n >= maxsize:
+ _warn("Underlying random() generator does not supply \n"
+ "enough bits to choose from a population range this large.\n"
+ "To remove the range limitation, add a getrandbits() method.")
+ return _floor(random() * n)
+ if n == 0:
+ return 0
+ rem = maxsize % n
+ limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
+ r = random()
+ while r >= limit:
+ r = random()
+ return _floor(r * maxsize) % n
+
+ _randbelow = _randbelow_with_getrandbits
+
+
+ ## --------------------------------------------------------
+ ## ---- Methods below this point generate custom distributions
+ ## ---- based on the methods defined above. They do not
+ ## ---- directly touch the underlying generator and only
+ ## ---- access randomness through the methods: random(),
+ ## ---- getrandbits(), or _randbelow().
+
+
+ ## -------------------- bytes methods ---------------------
+
+ def randbytes(self, n):
+ """Generate n random bytes."""
+ return self.getrandbits(n * 8).to_bytes(n, 'little')
+
+
## -------------------- integer methods -------------------
def randrange(self, start, stop=None, step=1):
@@ -285,40 +337,6 @@ class Random(_random.Random):
return self.randrange(a, b+1)
- def _randbelow_with_getrandbits(self, n):
- "Return a random int in the range [0,n). Returns 0 if n==0."
-
- if not n:
- return 0
- getrandbits = self.getrandbits
- k = n.bit_length() # don't use (n-1) here because n can be 1
- r = getrandbits(k) # 0 <= r < 2**k
- while r >= n:
- r = getrandbits(k)
- return r
-
- def _randbelow_without_getrandbits(self, n, maxsize=1<<BPF):
- """Return a random int in the range [0,n). Returns 0 if n==0.
-
- The implementation does not use getrandbits, but only random.
- """
-
- random = self.random
- if n >= maxsize:
- _warn("Underlying random() generator does not supply \n"
- "enough bits to choose from a population range this large.\n"
- "To remove the range limitation, add a getrandbits() method.")
- return _floor(random() * n)
- if n == 0:
- return 0
- rem = maxsize % n
- limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
- r = random()
- while r >= limit:
- r = random()
- return _floor(r * maxsize) % n
-
- _randbelow = _randbelow_with_getrandbits
## -------------------- sequence methods -------------------
@@ -479,16 +497,13 @@ class Random(_random.Random):
return [population[bisect(cum_weights, random() * total, 0, hi)]
for i in _repeat(None, k)]
- ## -------------------- real-valued distributions -------------------
- ## -------------------- uniform distribution -------------------
+ ## -------------------- real-valued distributions -------------------
def uniform(self, a, b):
"Get a random number in the range [a, b) or [a, b] depending on rounding."
return a + (b - a) * self.random()
- ## -------------------- triangular --------------------
-
def triangular(self, low=0.0, high=1.0, mode=None):
"""Triangular distribution.
@@ -509,16 +524,12 @@ class Random(_random.Random):
low, high = high, low
return low + (high - low) * _sqrt(u * c)
- ## -------------------- normal distribution --------------------
-
def normalvariate(self, mu, sigma):
"""Normal distribution.
mu is the mean, and sigma is the standard deviation.
"""
- # mu = mean, sigma = standard deviation
-
# Uses Kinderman and Monahan method. Reference: Kinderman,
# A.J. and Monahan, J.F., "Computer generation of random
# variables using the ratio of uniform deviates", ACM Trans
@@ -534,7 +545,43 @@ class Random(_random.Random):
break
return mu + z * sigma
- ## -------------------- lognormal distribution --------------------
+ def gauss(self, mu, sigma):
+ """Gaussian distribution.
+
+ mu is the mean, and sigma is the standard deviation. This is
+ slightly faster than the normalvariate() function.
+
+ Not thread-safe without a lock around calls.
+
+ """
+ # When x and y are two variables from [0, 1), uniformly
+ # distributed, then
+ #
+ # cos(2*pi*x)*sqrt(-2*log(1-y))
+ # sin(2*pi*x)*sqrt(-2*log(1-y))
+ #
+ # are two *independent* variables with normal distribution
+ # (mu = 0, sigma = 1).
+ # (Lambert Meertens)
+ # (corrected version; bug discovered by Mike Miller, fixed by LM)
+
+ # Multithreading note: When two threads call this function
+ # simultaneously, it is possible that they will receive the
+ # same return value. The window is very small though. To
+ # avoid this, you have to use a lock around all calls. (I
+ # didn't want to slow this down in the serial case by using a
+ # lock here.)
+
+ random = self.random
+ z = self.gauss_next
+ self.gauss_next = None
+ if z is None:
+ x2pi = random() * TWOPI
+ g2rad = _sqrt(-2.0 * _log(1.0 - random()))
+ z = _cos(x2pi) * g2rad
+ self.gauss_next = _sin(x2pi) * g2rad
+
+ return mu + z * sigma
def lognormvariate(self, mu, sigma):
"""Log normal distribution.
@@ -546,8 +593,6 @@ class Random(_random.Random):
"""
return _exp(self.normalvariate(mu, sigma))
- ## -------------------- exponential distribution --------------------
-
def expovariate(self, lambd):
"""Exponential distribution.
@@ -565,8 +610,6 @@ class Random(_random.Random):
# possibility of taking the log of zero.
return -_log(1.0 - self.random()) / lambd
- ## -------------------- von Mises distribution --------------------
-
def vonmisesvariate(self, mu, kappa):
"""Circular data distribution.
@@ -576,10 +619,6 @@ class Random(_random.Random):
to a uniform random angle over the range 0 to 2*pi.
"""
- # mu: mean angle (in radians between 0 and 2*pi)
- # kappa: concentration parameter kappa (>= 0)
- # if kappa = 0 generate uniform random angle
-
# Based upon an algorithm published in: Fisher, N.I.,
# "Statistical Analysis of Circular Data", Cambridge
# University Press, 1993.
@@ -613,8 +652,6 @@ class Random(_random.Random):
return theta
- ## -------------------- gamma distribution --------------------
-
def gammavariate(self, alpha, beta):
"""Gamma distribution. Not the gamma function!
@@ -627,7 +664,6 @@ class Random(_random.Random):
math.gamma(alpha) * beta ** alpha
"""
-
# alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
# Warning: a few older sources define the gamma distribution in terms
@@ -681,61 +717,6 @@ class Random(_random.Random):
break
return x * beta
- ## -------------------- Gauss (faster alternative) --------------------
-
- def gauss(self, mu, sigma):
- """Gaussian distribution.
-
- mu is the mean, and sigma is the standard deviation. This is
- slightly faster than the normalvariate() function.
-
- Not thread-safe without a lock around calls.
-
- """
-
- # When x and y are two variables from [0, 1), uniformly
- # distributed, then
- #
- # cos(2*pi*x)*sqrt(-2*log(1-y))
- # sin(2*pi*x)*sqrt(-2*log(1-y))
- #
- # are two *independent* variables with normal distribution
- # (mu = 0, sigma = 1).
- # (Lambert Meertens)
- # (corrected version; bug discovered by Mike Miller, fixed by LM)
-
- # Multithreading note: When two threads call this function
- # simultaneously, it is possible that they will receive the
- # same return value. The window is very small though. To
- # avoid this, you have to use a lock around all calls. (I
- # didn't want to slow this down in the serial case by using a
- # lock here.)
-
- random = self.random
- z = self.gauss_next
- self.gauss_next = None
- if z is None:
- x2pi = random() * TWOPI
- g2rad = _sqrt(-2.0 * _log(1.0 - random()))
- z = _cos(x2pi) * g2rad
- self.gauss_next = _sin(x2pi) * g2rad
-
- return mu + z * sigma
-
- ## -------------------- beta --------------------
- ## See
- ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
- ## for Ivan Frohne's insightful analysis of why the original implementation:
- ##
- ## def betavariate(self, alpha, beta):
- ## # Discrete Event Simulation in C, pp 87-88.
- ##
- ## y = self.expovariate(alpha)
- ## z = self.expovariate(1.0/beta)
- ## return z/(y+z)
- ##
- ## was dead wrong, and how it probably got that way.
-
def betavariate(self, alpha, beta):
"""Beta distribution.
@@ -743,6 +724,18 @@ class Random(_random.Random):
Returned values range between 0 and 1.
"""
+ ## See
+ ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
+ ## for Ivan Frohne's insightful analysis of why the original implementation:
+ ##
+ ## def betavariate(self, alpha, beta):
+ ## # Discrete Event Simulation in C, pp 87-88.
+ ##
+ ## y = self.expovariate(alpha)
+ ## z = self.expovariate(1.0/beta)
+ ## return z/(y+z)
+ ##
+ ## was dead wrong, and how it probably got that way.
# This version due to Janne Sinkkonen, and matches all the std
# texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
@@ -751,8 +744,6 @@ class Random(_random.Random):
return y / (y + self.gammavariate(beta, 1.0))
return 0.0
- ## -------------------- Pareto --------------------
-
def paretovariate(self, alpha):
"""Pareto distribution. alpha is the shape parameter."""
# Jain, pg. 495
@@ -760,8 +751,6 @@ class Random(_random.Random):
u = 1.0 - self.random()
return 1.0 / u ** (1.0 / alpha)
- ## -------------------- Weibull --------------------
-
def weibullvariate(self, alpha, beta):
"""Weibull distribution.
@@ -774,14 +763,17 @@ class Random(_random.Random):
return alpha * (-_log(u)) ** (1.0 / beta)
+## ------------------------------------------------------------------
## --------------- Operating System Random Source ------------------
+
class SystemRandom(Random):
"""Alternate random number generator using sources provided
by the operating system (such as /dev/urandom on Unix or
CryptGenRandom on Windows).
Not available on all systems (see os.urandom() for details).
+
"""
def random(self):
@@ -812,7 +804,41 @@ class SystemRandom(Random):
getstate = setstate = _notimplemented
-## -------------------- test program --------------------
+# ----------------------------------------------------------------------
+# Create one instance, seeded from current time, and export its methods
+# as module-level functions. The functions share state across all uses
+# (both in the user's code and in the Python libraries), but that's fine
+# for most programs and is easier for the casual user than making them
+# instantiate their own Random() instance.
+
+_inst = Random()
+seed = _inst.seed
+random = _inst.random
+uniform = _inst.uniform
+triangular = _inst.triangular
+randint = _inst.randint
+choice = _inst.choice
+randrange = _inst.randrange
+sample = _inst.sample
+shuffle = _inst.shuffle
+choices = _inst.choices
+normalvariate = _inst.normalvariate
+lognormvariate = _inst.lognormvariate
+expovariate = _inst.expovariate
+vonmisesvariate = _inst.vonmisesvariate
+gammavariate = _inst.gammavariate
+gauss = _inst.gauss
+betavariate = _inst.betavariate
+paretovariate = _inst.paretovariate
+weibullvariate = _inst.weibullvariate
+getstate = _inst.getstate
+setstate = _inst.setstate
+getrandbits = _inst.getrandbits
+randbytes = _inst.randbytes
+
+
+## ------------------------------------------------------
+## ----------------- test program -----------------------
def _test_generator(n, func, args):
from statistics import stdev, fmean as mean
@@ -849,36 +875,9 @@ def _test(N=2000):
_test_generator(N, betavariate, (3.0, 3.0))
_test_generator(N, triangular, (0.0, 1.0, 1.0 / 3.0))
-# Create one instance, seeded from current time, and export its methods
-# as module-level functions. The functions share state across all uses
-# (both in the user's code and in the Python libraries), but that's fine
-# for most programs and is easier for the casual user than making them
-# instantiate their own Random() instance.
-_inst = Random()
-seed = _inst.seed
-random = _inst.random
-uniform = _inst.uniform
-triangular = _inst.triangular
-randint = _inst.randint
-choice = _inst.choice
-randrange = _inst.randrange
-sample = _inst.sample
-shuffle = _inst.shuffle
-choices = _inst.choices
-normalvariate = _inst.normalvariate
-lognormvariate = _inst.lognormvariate
-expovariate = _inst.expovariate
-vonmisesvariate = _inst.vonmisesvariate
-gammavariate = _inst.gammavariate
-gauss = _inst.gauss
-betavariate = _inst.betavariate
-paretovariate = _inst.paretovariate
-weibullvariate = _inst.weibullvariate
-getstate = _inst.getstate
-setstate = _inst.setstate
-getrandbits = _inst.getrandbits
-randbytes = _inst.randbytes
+## ------------------------------------------------------
+## ------------------ fork support ---------------------
if hasattr(_os, "fork"):
_os.register_at_fork(after_in_child=_inst.seed)