diff options
Diffstat (limited to 'Lib')
-rw-r--r-- | Lib/heapq.py | 125 | ||||
-rw-r--r-- | Lib/test/test_heapq.py | 2 |
2 files changed, 38 insertions, 89 deletions
diff --git a/Lib/heapq.py b/Lib/heapq.py index 88c7019..fc73df9 100644 --- a/Lib/heapq.py +++ b/Lib/heapq.py @@ -192,81 +192,6 @@ def _heapify_max(x): for i in reversed(range(n//2)): _siftup_max(x, i) - -# Algorithm notes for nlargest() and nsmallest() -# ============================================== -# -# Makes just one pass over the data while keeping the n most extreme values -# in a heap. Memory consumption is limited to keeping n values in a list. -# -# Number of comparisons for n random inputs, keeping the k smallest values: -# ----------------------------------------------------------- -# Step Comparisons Action -# 1 1.66*k heapify the first k-inputs -# 2 n - k compare new input elements to top of heap -# 3 k*lg2(k)*(ln(n)-ln(k)) add new extreme values to the heap -# 4 k*lg2(k) final sort of the k most extreme values -# -# number of comparisons -# n-random inputs k-extreme values average of 5 trials % more than min() -# --------------- ---------------- ------------------- ----------------- -# 10,000 100 14,046 40.5% -# 100,000 100 105,749 5.7% -# 1,000,000 100 1,007,751 0.8% -# -# Computing the number of comparisons for step 3: -# ----------------------------------------------- -# * For the i-th new value from the iterable, the probability of being in the -# k most extreme values is k/i. For example, the probability of the 101st -# value seen being in the 100 most extreme values is 100/101. -# * If the value is a new extreme value, the cost of inserting it into the -# heap is log(k, 2). -# * The probabilty times the cost gives: -# (k/i) * log(k, 2) -# * Summing across the remaining n-k elements gives: -# sum((k/i) * log(k, 2) for xrange(k+1, n+1)) -# * This reduces to: -# (H(n) - H(k)) * k * log(k, 2) -# * Where H(n) is the n-th harmonic number estimated by: -# H(n) = log(n, e) + gamma + 1.0 / (2.0 * n) -# gamma = 0.5772156649 -# http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#Rate_of_divergence -# * Substituting the H(n) formula and ignoring the (1/2*n) fraction gives: -# comparisons = k * log(k, 2) * (log(n,e) - log(k, e)) -# -# Worst-case for step 3: -# ---------------------- -# In the worst case, the input data is reversed sorted so that every new element -# must be inserted in the heap: -# comparisons = log(k, 2) * (n - k) -# -# Alternative Algorithms -# ---------------------- -# Other algorithms were not used because they: -# 1) Took much more auxiliary memory, -# 2) Made multiple passes over the data. -# 3) Made more comparisons in common cases (small k, large n, semi-random input). -# See detailed comparisons at: -# http://code.activestate.com/recipes/577573-compare-algorithms-for-heapqsmallest - -def nlargest(n, iterable): - """Find the n largest elements in a dataset. - - Equivalent to: sorted(iterable, reverse=True)[:n] - """ - if n <= 0: - return [] - it = iter(iterable) - result = list(islice(it, n)) - if not result: - return result - heapify(result) - _heappushpop = heappushpop - for elem in it: - _heappushpop(result, elem) - result.sort(reverse=True) - return result - def nsmallest(n, iterable): """Find the n smallest elements in a dataset. @@ -480,7 +405,6 @@ def nsmallest(n, iterable, key=None): result = _nsmallest(n, it) return [r[2] for r in result] # undecorate -_nlargest = nlargest def nlargest(n, iterable, key=None): """Find the n largest elements in a dataset. @@ -490,12 +414,12 @@ def nlargest(n, iterable, key=None): # Short-cut for n==1 is to use max() when len(iterable)>0 if n == 1: it = iter(iterable) - head = list(islice(it, 1)) - if not head: - return [] + sentinel = object() if key is None: - return [max(chain(head, it))] - return [max(chain(head, it), key=key)] + result = max(it, default=sentinel) + else: + result = max(it, default=sentinel, key=key) + return [] if result is sentinel else [result] # When n>=size, it's faster to use sorted() try: @@ -508,15 +432,40 @@ def nlargest(n, iterable, key=None): # When key is none, use simpler decoration if key is None: - it = zip(iterable, count(0,-1)) # decorate - result = _nlargest(n, it) - return [r[0] for r in result] # undecorate + it = iter(iterable) + result = list(islice(zip(it, count(0, -1)), n)) + if not result: + return result + heapify(result) + order = -n + top = result[0][0] + _heapreplace = heapreplace + for elem in it: + if top < elem: + order -= 1 + _heapreplace(result, (elem, order)) + top = result[0][0] + result.sort(reverse=True) + return [r[0] for r in result] # General case, slowest method - in1, in2 = tee(iterable) - it = zip(map(key, in1), count(0,-1), in2) # decorate - result = _nlargest(n, it) - return [r[2] for r in result] # undecorate + it = iter(iterable) + result = [(key(elem), i, elem) for i, elem in zip(range(0, -n, -1), it)] + if not result: + return result + heapify(result) + order = -n + top = result[0][0] + _heapreplace = heapreplace + for elem in it: + k = key(elem) + if top < k: + order -= 1 + _heapreplace(result, (k, order, elem)) + top = result[0][0] + result.sort(reverse=True) + return [r[2] for r in result] + if __name__ == "__main__": # Simple sanity test diff --git a/Lib/test/test_heapq.py b/Lib/test/test_heapq.py index b5a2fd8..1735a19 100644 --- a/Lib/test/test_heapq.py +++ b/Lib/test/test_heapq.py @@ -13,7 +13,7 @@ c_heapq = support.import_fresh_module('heapq', fresh=['_heapq']) # _heapq.nlargest/nsmallest are saved in heapq._nlargest/_smallest when # _heapq is imported, so check them there func_names = ['heapify', 'heappop', 'heappush', 'heappushpop', - 'heapreplace', '_nlargest', '_nsmallest'] + 'heapreplace', '_nsmallest'] class TestModules(TestCase): def test_py_functions(self): |