summaryrefslogtreecommitdiffstats
path: root/Lib
diff options
context:
space:
mode:
Diffstat (limited to 'Lib')
-rw-r--r--Lib/statistics.py72
-rw-r--r--Lib/test/test_statistics.py27
2 files changed, 59 insertions, 40 deletions
diff --git a/Lib/statistics.py b/Lib/statistics.py
index e85aaa9..97f1543 100644
--- a/Lib/statistics.py
+++ b/Lib/statistics.py
@@ -17,6 +17,7 @@ median_low Low median of data.
median_high High median of data.
median_grouped Median, or 50th percentile, of grouped data.
mode Mode (most common value) of data.
+multimode List of modes (most common values of data)
================== =============================================
Calculate the arithmetic mean ("the average") of data:
@@ -79,10 +80,9 @@ A single exception is defined: StatisticsError is a subclass of ValueError.
__all__ = [ 'StatisticsError', 'NormalDist',
'pstdev', 'pvariance', 'stdev', 'variance',
'median', 'median_low', 'median_high', 'median_grouped',
- 'mean', 'mode', 'harmonic_mean', 'fmean',
+ 'mean', 'mode', 'multimode', 'harmonic_mean', 'fmean',
]
-import collections
import math
import numbers
import random
@@ -92,8 +92,8 @@ from decimal import Decimal
from itertools import groupby
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
-
-
+from operator import itemgetter
+from collections import Counter
# === Exceptions ===
@@ -249,20 +249,6 @@ def _convert(value, T):
raise
-def _counts(data):
- # Generate a table of sorted (value, frequency) pairs.
- table = collections.Counter(iter(data)).most_common()
- if not table:
- return table
- # Extract the values with the highest frequency.
- maxfreq = table[0][1]
- for i in range(1, len(table)):
- if table[i][1] != maxfreq:
- table = table[:i]
- break
- return table
-
-
def _find_lteq(a, x):
'Locate the leftmost value exactly equal to x'
i = bisect_left(a, x)
@@ -334,9 +320,9 @@ def fmean(data):
nonlocal n
n += 1
return x
- total = math.fsum(map(count, data))
+ total = fsum(map(count, data))
else:
- total = math.fsum(data)
+ total = fsum(data)
try:
return total / n
except ZeroDivisionError:
@@ -523,19 +509,38 @@ def mode(data):
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'
- If there is not exactly one most common value, ``mode`` will raise
- StatisticsError.
+ If there are multiple modes, return the first one encountered.
+
+ >>> mode(['red', 'red', 'green', 'blue', 'blue'])
+ 'red'
+
+ If *data* is empty, ``mode``, raises StatisticsError.
+
"""
- # Generate a table of sorted (value, frequency) pairs.
- table = _counts(data)
- if len(table) == 1:
- return table[0][0]
- elif table:
- raise StatisticsError(
- 'no unique mode; found %d equally common values' % len(table)
- )
- else:
- raise StatisticsError('no mode for empty data')
+ data = iter(data)
+ try:
+ return Counter(data).most_common(1)[0][0]
+ except IndexError:
+ raise StatisticsError('no mode for empty data') from None
+
+
+def multimode(data):
+ """ Return a list of the most frequently occurring values.
+
+ Will return more than one result if there are multiple modes
+ or an empty list if *data* is empty.
+
+ >>> multimode('aabbbbbbbbcc')
+ ['b']
+ >>> multimode('aabbbbccddddeeffffgg')
+ ['b', 'd', 'f']
+ >>> multimode('')
+ []
+
+ """
+ counts = Counter(iter(data)).most_common()
+ maxcount, mode_items = next(groupby(counts, key=itemgetter(1)), (0, []))
+ return list(map(itemgetter(0), mode_items))
# === Measures of spread ===
@@ -836,6 +841,7 @@ if __name__ == '__main__':
from math import isclose
from operator import add, sub, mul, truediv
from itertools import repeat
+ import doctest
g1 = NormalDist(10, 20)
g2 = NormalDist(-5, 25)
@@ -893,3 +899,5 @@ if __name__ == '__main__':
S = NormalDist.from_samples([x - y for x, y in zip(X.samples(n),
Y.samples(n))])
assert_close(X - Y, S)
+
+ print(doctest.testmod())
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py
index a63e4bf..26b22a1 100644
--- a/Lib/test/test_statistics.py
+++ b/Lib/test/test_statistics.py
@@ -1769,7 +1769,7 @@ class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
def test_range_data(self):
# Override test from UnivariateCommonMixin.
data = range(20, 50, 3)
- self.assertRaises(statistics.StatisticsError, self.func, data)
+ self.assertEqual(self.func(data), 20)
def test_nominal_data(self):
# Test mode with nominal data.
@@ -1790,13 +1790,14 @@ class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
# Test mode with bimodal data.
data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9]
assert data.count(2) == data.count(6) == 4
- # Check for an exception.
- self.assertRaises(statistics.StatisticsError, self.func, data)
+ # mode() should return 2, the first encounted mode
+ self.assertEqual(self.func(data), 2)
- def test_unique_data_failure(self):
- # Test mode exception when data points are all unique.
+ def test_unique_data(self):
+ # Test mode when data points are all unique.
data = list(range(10))
- self.assertRaises(statistics.StatisticsError, self.func, data)
+ # mode() should return 0, the first encounted mode
+ self.assertEqual(self.func(data), 0)
def test_none_data(self):
# Test that mode raises TypeError if given None as data.
@@ -1809,8 +1810,18 @@ class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
# Test that a Counter is treated like any other iterable.
data = collections.Counter([1, 1, 1, 2])
# Since the keys of the counter are treated as data points, not the
- # counts, this should raise.
- self.assertRaises(statistics.StatisticsError, self.func, data)
+ # counts, this should return the first mode encountered, 1
+ self.assertEqual(self.func(data), 1)
+
+
+class TestMultiMode(unittest.TestCase):
+
+ def test_basics(self):
+ multimode = statistics.multimode
+ self.assertEqual(multimode('aabbbbbbbbcc'), ['b'])
+ self.assertEqual(multimode('aabbbbccddddeeffffgg'), ['b', 'd', 'f'])
+ self.assertEqual(multimode(''), [])
+
class TestFMean(unittest.TestCase):