summaryrefslogtreecommitdiffstats
path: root/Modules/_decimal/docstrings.h
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/_decimal/docstrings.h')
-rw-r--r--Modules/_decimal/docstrings.h860
1 files changed, 482 insertions, 378 deletions
diff --git a/Modules/_decimal/docstrings.h b/Modules/_decimal/docstrings.h
index a6490b9..035ca9c 100644
--- a/Modules/_decimal/docstrings.h
+++ b/Modules/_decimal/docstrings.h
@@ -19,26 +19,30 @@
PyDoc_STRVAR(doc__decimal,
"C decimal arithmetic module");
-PyDoc_STRVAR(doc_getcontext,"\n\
-getcontext() - Get the current default context.\n\
+PyDoc_STRVAR(doc_getcontext,
+"getcontext($module, /)\n--\n\n\
+Get the current default context.\n\
\n");
-PyDoc_STRVAR(doc_setcontext,"\n\
-setcontext(c) - Set a new default context.\n\
+PyDoc_STRVAR(doc_setcontext,
+"setcontext($module, context, /)\n--\n\n\
+Set a new default context.\n\
\n");
-PyDoc_STRVAR(doc_localcontext,"\n\
-localcontext(ctx=None) - Return a context manager that will set the default\n\
-context to a copy of ctx on entry to the with-statement and restore the\n\
-previous default context when exiting the with-statement. If no context is\n\
-specified, a copy of the current default context is used.\n\
+PyDoc_STRVAR(doc_localcontext,
+"localcontext($module, /, ctx=None)\n--\n\n\
+Return a context manager that will set the default context to a copy of ctx\n\
+on entry to the with-statement and restore the previous default context when\n\
+exiting the with-statement. If no context is specified, a copy of the current\n\
+default context is used.\n\
\n");
#ifdef EXTRA_FUNCTIONALITY
-PyDoc_STRVAR(doc_ieee_context,"\n\
-IEEEContext(bits) - Return a context object initialized to the proper values for\n\
-one of the IEEE interchange formats. The argument must be a multiple of 32 and\n\
-less than IEEE_CONTEXT_MAX_BITS. For the most common values, the constants\n\
+PyDoc_STRVAR(doc_ieee_context,
+"IEEEContext($module, bits, /)\n--\n\n\
+Return a context object initialized to the proper values for one of the\n\
+IEEE interchange formats. The argument must be a multiple of 32 and less\n\
+than IEEE_CONTEXT_MAX_BITS. For the most common values, the constants\n\
DECIMAL32, DECIMAL64 and DECIMAL128 are provided.\n\
\n");
#endif
@@ -48,32 +52,34 @@ DECIMAL32, DECIMAL64 and DECIMAL128 are provided.\n\
/* Decimal Object and Methods */
/******************************************************************************/
-PyDoc_STRVAR(doc_decimal,"\n\
-Decimal(value=\"0\", context=None): Construct a new Decimal object.\n\
-value can be an integer, string, tuple, or another Decimal object.\n\
-If no value is given, return Decimal('0'). The context does not affect\n\
-the conversion and is only passed to determine if the InvalidOperation\n\
-trap is active.\n\
+PyDoc_STRVAR(doc_decimal,
+"Decimal(value=\"0\", context=None)\n--\n\n\
+Construct a new Decimal object. 'value' can be an integer, string, tuple,\n\
+or another Decimal object. If no value is given, return Decimal('0'). The\n\
+context does not affect the conversion and is only passed to determine if\n\
+the InvalidOperation trap is active.\n\
\n");
-PyDoc_STRVAR(doc_adjusted,"\n\
-adjusted() - Return the adjusted exponent of the number.\n\
-\n\
-Defined as exp + digits - 1.\n\
+PyDoc_STRVAR(doc_adjusted,
+"adjusted($self, /)\n--\n\n\
+Return the adjusted exponent of the number. Defined as exp + digits - 1.\n\
\n");
-PyDoc_STRVAR(doc_as_tuple,"\n\
-as_tuple() - Return a tuple representation of the number.\n\
+PyDoc_STRVAR(doc_as_tuple,
+"as_tuple($self, /)\n--\n\n\
+Return a tuple representation of the number.\n\
\n");
-PyDoc_STRVAR(doc_canonical,"\n\
-canonical() - Return the canonical encoding of the argument. Currently,\n\
-the encoding of a Decimal instance is always canonical, so this operation\n\
-returns its argument unchanged.\n\
+PyDoc_STRVAR(doc_canonical,
+"canonical($self, /)\n--\n\n\
+Return the canonical encoding of the argument. Currently, the encoding\n\
+of a Decimal instance is always canonical, so this operation returns its\n\
+argument unchanged.\n\
\n");
-PyDoc_STRVAR(doc_compare,"\n\
-compare(other, context=None) - Compare self to other. Return a decimal value:\n\
+PyDoc_STRVAR(doc_compare,
+"compare($self, /, other, context=None)\n--\n\n\
+Compare self to other. Return a decimal value:\n\
\n\
a or b is a NaN ==> Decimal('NaN')\n\
a < b ==> Decimal('-1')\n\
@@ -81,17 +87,18 @@ compare(other, context=None) - Compare self to other. Return a decimal value:\n\
a > b ==> Decimal('1')\n\
\n");
-PyDoc_STRVAR(doc_compare_signal,"\n\
-compare_signal(other, context=None) - Identical to compare, except that\n\
-all NaNs signal.\n\
+PyDoc_STRVAR(doc_compare_signal,
+"compare_signal($self, /, other, context=None)\n--\n\n\
+Identical to compare, except that all NaNs signal.\n\
\n");
-PyDoc_STRVAR(doc_compare_total,"\n\
-compare_total(other, context=None) - Compare two operands using their\n\
-abstract representation rather than their numerical value. Similar to the\n\
-compare() method, but the result gives a total ordering on Decimal instances.\n\
-Two Decimal instances with the same numeric value but different representations\n\
-compare unequal in this ordering:\n\
+PyDoc_STRVAR(doc_compare_total,
+"compare_total($self, /, other, context=None)\n--\n\n\
+Compare two operands using their abstract representation rather than\n\
+their numerical value. Similar to the compare() method, but the result\n\
+gives a total ordering on Decimal instances. Two Decimal instances with\n\
+the same numeric value but different representations compare unequal\n\
+in this ordering:\n\
\n\
>>> Decimal('12.0').compare_total(Decimal('12'))\n\
Decimal('-1')\n\
@@ -107,36 +114,39 @@ and no rounding is performed. As an exception, the C version may raise\n\
InvalidOperation if the second operand cannot be converted exactly.\n\
\n");
-PyDoc_STRVAR(doc_compare_total_mag,"\n\
-compare_total_mag(other, context=None) - Compare two operands using their\n\
-abstract representation rather than their value as in compare_total(), but\n\
-ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to\n\
-x.copy_abs().compare_total(y.copy_abs()).\n\
+PyDoc_STRVAR(doc_compare_total_mag,
+"compare_total_mag($self, /, other, context=None)\n--\n\n\
+Compare two operands using their abstract representation rather than their\n\
+value as in compare_total(), but ignoring the sign of each operand.\n\
+\n\
+x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()).\n\
\n\
This operation is unaffected by context and is quiet: no flags are changed\n\
and no rounding is performed. As an exception, the C version may raise\n\
InvalidOperation if the second operand cannot be converted exactly.\n\
\n");
-PyDoc_STRVAR(doc_conjugate,"\n\
-conjugate() - Return self.\n\
+PyDoc_STRVAR(doc_conjugate,
+"conjugate($self, /)\n--\n\n\
+Return self.\n\
\n");
-PyDoc_STRVAR(doc_copy_abs,"\n\
-copy_abs() - Return the absolute value of the argument. This operation\n\
-is unaffected by context and is quiet: no flags are changed and no rounding\n\
-is performed.\n\
+PyDoc_STRVAR(doc_copy_abs,
+"copy_abs($self, /)\n--\n\n\
+Return the absolute value of the argument. This operation is unaffected by\n\
+context and is quiet: no flags are changed and no rounding is performed.\n\
\n");
-PyDoc_STRVAR(doc_copy_negate,"\n\
-copy_negate() - Return the negation of the argument. This operation is\n\
-unaffected by context and is quiet: no flags are changed and no rounding\n\
-is performed.\n\
+PyDoc_STRVAR(doc_copy_negate,
+"copy_negate($self, /)\n--\n\n\
+Return the negation of the argument. This operation is unaffected by context\n\
+and is quiet: no flags are changed and no rounding is performed.\n\
\n");
-PyDoc_STRVAR(doc_copy_sign,"\n\
-copy_sign(other, context=None) - Return a copy of the first operand with\n\
-the sign set to be the same as the sign of the second operand. For example:\n\
+PyDoc_STRVAR(doc_copy_sign,
+"copy_sign($self, /, other, context=None)\n--\n\n\
+Return a copy of the first operand with the sign set to be the same as the\n\
+sign of the second operand. For example:\n\
\n\
>>> Decimal('2.3').copy_sign(Decimal('-1.5'))\n\
Decimal('-2.3')\n\
@@ -146,14 +156,16 @@ and no rounding is performed. As an exception, the C version may raise\n\
InvalidOperation if the second operand cannot be converted exactly.\n\
\n");
-PyDoc_STRVAR(doc_exp,"\n\
-exp(context=None) - Return the value of the (natural) exponential function\n\
-e**x at the given number. The function always uses the ROUND_HALF_EVEN mode\n\
-and the result is correctly rounded.\n\
+PyDoc_STRVAR(doc_exp,
+"exp($self, /, context=None)\n--\n\n\
+Return the value of the (natural) exponential function e**x at the given\n\
+number. The function always uses the ROUND_HALF_EVEN mode and the result\n\
+is correctly rounded.\n\
\n");
-PyDoc_STRVAR(doc_from_float,"\n\
-from_float(f) - Class method that converts a float to a decimal number, exactly.\n\
+PyDoc_STRVAR(doc_from_float,
+"from_float($cls, f, /)\n--\n\n\
+Class method that converts a float to a decimal number, exactly.\n\
Since 0.1 is not exactly representable in binary floating point,\n\
Decimal.from_float(0.1) is not the same as Decimal('0.1').\n\
\n\
@@ -168,155 +180,176 @@ Decimal.from_float(0.1) is not the same as Decimal('0.1').\n\
\n\
\n");
-PyDoc_STRVAR(doc_fma,"\n\
-fma(other, third, context=None) - Fused multiply-add. Return self*other+third\n\
-with no rounding of the intermediate product self*other.\n\
+PyDoc_STRVAR(doc_fma,
+"fma($self, /, other, third, context=None)\n--\n\n\
+Fused multiply-add. Return self*other+third with no rounding of the\n\
+intermediate product self*other.\n\
\n\
>>> Decimal(2).fma(3, 5)\n\
Decimal('11')\n\
\n\
\n");
-PyDoc_STRVAR(doc_is_canonical,"\n\
-is_canonical() - Return True if the argument is canonical and False otherwise.\n\
-Currently, a Decimal instance is always canonical, so this operation always\n\
-returns True.\n\
+PyDoc_STRVAR(doc_is_canonical,
+"is_canonical($self, /)\n--\n\n\
+Return True if the argument is canonical and False otherwise. Currently,\n\
+a Decimal instance is always canonical, so this operation always returns\n\
+True.\n\
\n");
-PyDoc_STRVAR(doc_is_finite,"\n\
-is_finite() - Return True if the argument is a finite number, and False if the\n\
-argument is infinite or a NaN.\n\
+PyDoc_STRVAR(doc_is_finite,
+"is_finite($self, /)\n--\n\n\
+Return True if the argument is a finite number, and False if the argument\n\
+is infinite or a NaN.\n\
\n");
-PyDoc_STRVAR(doc_is_infinite,"\n\
-is_infinite() - Return True if the argument is either positive or negative\n\
-infinity and False otherwise.\n\
+PyDoc_STRVAR(doc_is_infinite,
+"is_infinite($self, /)\n--\n\n\
+Return True if the argument is either positive or negative infinity and\n\
+False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_is_nan,"\n\
-is_nan() - Return True if the argument is a (quiet or signaling) NaN and\n\
-False otherwise.\n\
+PyDoc_STRVAR(doc_is_nan,
+"is_nan($self, /)\n--\n\n\
+Return True if the argument is a (quiet or signaling) NaN and False\n\
+otherwise.\n\
\n");
-PyDoc_STRVAR(doc_is_normal,"\n\
-is_normal(context=None) - Return True if the argument is a normal finite\n\
-non-zero number with an adjusted exponent greater than or equal to Emin.\n\
-Return False if the argument is zero, subnormal, infinite or a NaN.\n\
+PyDoc_STRVAR(doc_is_normal,
+"is_normal($self, /, context=None)\n--\n\n\
+Return True if the argument is a normal finite non-zero number with an\n\
+adjusted exponent greater than or equal to Emin. Return False if the\n\
+argument is zero, subnormal, infinite or a NaN.\n\
\n");
-PyDoc_STRVAR(doc_is_qnan,"\n\
-is_qnan() - Return True if the argument is a quiet NaN, and False otherwise.\n\
+PyDoc_STRVAR(doc_is_qnan,
+"is_qnan($self, /)\n--\n\n\
+Return True if the argument is a quiet NaN, and False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_is_signed,"\n\
-is_signed() - Return True if the argument has a negative sign and\n\
-False otherwise. Note that both zeros and NaNs can carry signs.\n\
+PyDoc_STRVAR(doc_is_signed,
+"is_signed($self, /)\n--\n\n\
+Return True if the argument has a negative sign and False otherwise.\n\
+Note that both zeros and NaNs can carry signs.\n\
\n");
-PyDoc_STRVAR(doc_is_snan,"\n\
-is_snan() - Return True if the argument is a signaling NaN and False otherwise.\n\
+PyDoc_STRVAR(doc_is_snan,
+"is_snan($self, /)\n--\n\n\
+Return True if the argument is a signaling NaN and False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_is_subnormal,"\n\
-is_subnormal(context=None) - Return True if the argument is subnormal, and\n\
-False otherwise. A number is subnormal if it is non-zero, finite, and has an\n\
-adjusted exponent less than Emin.\n\
+PyDoc_STRVAR(doc_is_subnormal,
+"is_subnormal($self, /, context=None)\n--\n\n\
+Return True if the argument is subnormal, and False otherwise. A number is\n\
+subnormal if it is non-zero, finite, and has an adjusted exponent less\n\
+than Emin.\n\
\n");
-PyDoc_STRVAR(doc_is_zero,"\n\
-is_zero() - Return True if the argument is a (positive or negative) zero and\n\
-False otherwise.\n\
+PyDoc_STRVAR(doc_is_zero,
+"is_zero($self, /)\n--\n\n\
+Return True if the argument is a (positive or negative) zero and False\n\
+otherwise.\n\
\n");
-PyDoc_STRVAR(doc_ln,"\n\
-ln(context=None) - Return the natural (base e) logarithm of the operand.\n\
-The function always uses the ROUND_HALF_EVEN mode and the result is\n\
-correctly rounded.\n\
+PyDoc_STRVAR(doc_ln,
+"ln($self, /, context=None)\n--\n\n\
+Return the natural (base e) logarithm of the operand. The function always\n\
+uses the ROUND_HALF_EVEN mode and the result is correctly rounded.\n\
\n");
-PyDoc_STRVAR(doc_log10,"\n\
-log10(context=None) - Return the base ten logarithm of the operand.\n\
-The function always uses the ROUND_HALF_EVEN mode and the result is\n\
-correctly rounded.\n\
+PyDoc_STRVAR(doc_log10,
+"log10($self, /, context=None)\n--\n\n\
+Return the base ten logarithm of the operand. The function always uses the\n\
+ROUND_HALF_EVEN mode and the result is correctly rounded.\n\
\n");
-PyDoc_STRVAR(doc_logb,"\n\
-logb(context=None) - For a non-zero number, return the adjusted exponent\n\
-of the operand as a Decimal instance. If the operand is a zero, then\n\
-Decimal('-Infinity') is returned and the DivisionByZero condition is\n\
-raised. If the operand is an infinity then Decimal('Infinity') is returned.\n\
+PyDoc_STRVAR(doc_logb,
+"logb($self, /, context=None)\n--\n\n\
+For a non-zero number, return the adjusted exponent of the operand as a\n\
+Decimal instance. If the operand is a zero, then Decimal('-Infinity') is\n\
+returned and the DivisionByZero condition is raised. If the operand is\n\
+an infinity then Decimal('Infinity') is returned.\n\
\n");
-PyDoc_STRVAR(doc_logical_and,"\n\
-logical_and(other, context=None) - Return the digit-wise and of the two\n\
-(logical) operands.\n\
+PyDoc_STRVAR(doc_logical_and,
+"logical_and($self, /, other, context=None)\n--\n\n\
+Return the digit-wise 'and' of the two (logical) operands.\n\
\n");
-PyDoc_STRVAR(doc_logical_invert,"\n\
-logical_invert(context=None) - Return the digit-wise inversion of the\n\
-(logical) operand.\n\
+PyDoc_STRVAR(doc_logical_invert,
+"logical_invert($self, /, context=None)\n--\n\n\
+Return the digit-wise inversion of the (logical) operand.\n\
\n");
-PyDoc_STRVAR(doc_logical_or,"\n\
-logical_or(other, context=None) - Return the digit-wise or of the two\n\
-(logical) operands.\n\
+PyDoc_STRVAR(doc_logical_or,
+"logical_or($self, /, other, context=None)\n--\n\n\
+Return the digit-wise 'or' of the two (logical) operands.\n\
\n");
-PyDoc_STRVAR(doc_logical_xor,"\n\
-logical_xor(other, context=None) - Return the digit-wise exclusive or of the\n\
-two (logical) operands.\n\
+PyDoc_STRVAR(doc_logical_xor,
+"logical_xor($self, /, other, context=None)\n--\n\n\
+Return the digit-wise 'exclusive or' of the two (logical) operands.\n\
\n");
-PyDoc_STRVAR(doc_max,"\n\
-max(other, context=None) - Maximum of self and other. If one operand is a\n\
-quiet NaN and the other is numeric, the numeric operand is returned.\n\
+PyDoc_STRVAR(doc_max,
+"max($self, /, other, context=None)\n--\n\n\
+Maximum of self and other. If one operand is a quiet NaN and the other is\n\
+numeric, the numeric operand is returned.\n\
\n");
-PyDoc_STRVAR(doc_max_mag,"\n\
-max_mag(other, context=None) - Similar to the max() method, but the\n\
-comparison is done using the absolute values of the operands.\n\
+PyDoc_STRVAR(doc_max_mag,
+"max_mag($self, /, other, context=None)\n--\n\n\
+Similar to the max() method, but the comparison is done using the absolute\n\
+values of the operands.\n\
\n");
-PyDoc_STRVAR(doc_min,"\n\
-min(other, context=None) - Minimum of self and other. If one operand is a\n\
-quiet NaN and the other is numeric, the numeric operand is returned.\n\
+PyDoc_STRVAR(doc_min,
+"min($self, /, other, context=None)\n--\n\n\
+Minimum of self and other. If one operand is a quiet NaN and the other is\n\
+numeric, the numeric operand is returned.\n\
\n");
-PyDoc_STRVAR(doc_min_mag,"\n\
-min_mag(other, context=None) - Similar to the min() method, but the\n\
-comparison is done using the absolute values of the operands.\n\
+PyDoc_STRVAR(doc_min_mag,
+"min_mag($self, /, other, context=None)\n--\n\n\
+Similar to the min() method, but the comparison is done using the absolute\n\
+values of the operands.\n\
\n");
-PyDoc_STRVAR(doc_next_minus,"\n\
-next_minus(context=None) - Return the largest number representable in the\n\
-given context (or in the current default context if no context is given) that\n\
-is smaller than the given operand.\n\
+PyDoc_STRVAR(doc_next_minus,
+"next_minus($self, /, context=None)\n--\n\n\
+Return the largest number representable in the given context (or in the\n\
+current default context if no context is given) that is smaller than the\n\
+given operand.\n\
\n");
-PyDoc_STRVAR(doc_next_plus,"\n\
-next_plus(context=None) - Return the smallest number representable in the\n\
-given context (or in the current default context if no context is given) that\n\
-is larger than the given operand.\n\
+PyDoc_STRVAR(doc_next_plus,
+"next_plus($self, /, context=None)\n--\n\n\
+Return the smallest number representable in the given context (or in the\n\
+current default context if no context is given) that is larger than the\n\
+given operand.\n\
\n");
-PyDoc_STRVAR(doc_next_toward,"\n\
-next_toward(other, context=None) - If the two operands are unequal, return\n\
-the number closest to the first operand in the direction of the second operand.\n\
-If both operands are numerically equal, return a copy of the first operand\n\
-with the sign set to be the same as the sign of the second operand.\n\
+PyDoc_STRVAR(doc_next_toward,
+"next_toward($self, /, other, context=None)\n--\n\n\
+If the two operands are unequal, return the number closest to the first\n\
+operand in the direction of the second operand. If both operands are\n\
+numerically equal, return a copy of the first operand with the sign set\n\
+to be the same as the sign of the second operand.\n\
\n");
-PyDoc_STRVAR(doc_normalize,"\n\
-normalize(context=None) - Normalize the number by stripping the rightmost\n\
-trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0').\n\
-Used for producing canonical values for members of an equivalence class. For\n\
-example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the\n\
-equivalent value Decimal('32.1').\n\
+PyDoc_STRVAR(doc_normalize,
+"normalize($self, /, context=None)\n--\n\n\
+Normalize the number by stripping the rightmost trailing zeros and\n\
+converting any result equal to Decimal('0') to Decimal('0e0'). Used\n\
+for producing canonical values for members of an equivalence class.\n\
+For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize\n\
+to the equivalent value Decimal('32.1').\n\
\n");
-PyDoc_STRVAR(doc_number_class,"\n\
-number_class(context=None) - Return a string describing the class of the\n\
-operand. The returned value is one of the following ten strings:\n\
+PyDoc_STRVAR(doc_number_class,
+"number_class($self, /, context=None)\n--\n\n\
+Return a string describing the class of the operand. The returned value\n\
+is one of the following ten strings:\n\
\n\
* '-Infinity', indicating that the operand is negative infinity.\n\
* '-Normal', indicating that the operand is a negative normal number.\n\
@@ -331,9 +364,10 @@ operand. The returned value is one of the following ten strings:\n\
\n\
\n");
-PyDoc_STRVAR(doc_quantize,"\n\
-quantize(exp, rounding=None, context=None) - Return a value equal to the\n\
-first operand after rounding and having the exponent of the second operand.\n\
+PyDoc_STRVAR(doc_quantize,
+"quantize($self, /, exp, rounding=None, context=None)\n--\n\n\
+Return a value equal to the first operand after rounding and having the\n\
+exponent of the second operand.\n\
\n\
>>> Decimal('1.41421356').quantize(Decimal('1.000'))\n\
Decimal('1.414')\n\
@@ -352,93 +386,98 @@ rounding argument if given, else by the given context argument; if neither\n\
argument is given, the rounding mode of the current thread's context is used.\n\
\n");
-PyDoc_STRVAR(doc_radix,"\n\
-radix() - Return Decimal(10), the radix (base) in which the Decimal class does\n\
+PyDoc_STRVAR(doc_radix,
+"radix($self, /)\n--\n\n\
+Return Decimal(10), the radix (base) in which the Decimal class does\n\
all its arithmetic. Included for compatibility with the specification.\n\
\n");
-PyDoc_STRVAR(doc_remainder_near,"\n\
-remainder_near(other, context=None) - Return the remainder from dividing\n\
-self by other. This differs from self % other in that the sign of the\n\
-remainder is chosen so as to minimize its absolute value. More precisely, the\n\
-return value is self - n * other where n is the integer nearest to the exact\n\
-value of self / other, and if two integers are equally near then the even one\n\
-is chosen.\n\
+PyDoc_STRVAR(doc_remainder_near,
+"remainder_near($self, /, other, context=None)\n--\n\n\
+Return the remainder from dividing self by other. This differs from\n\
+self % other in that the sign of the remainder is chosen so as to minimize\n\
+its absolute value. More precisely, the return value is self - n * other\n\
+where n is the integer nearest to the exact value of self / other, and\n\
+if two integers are equally near then the even one is chosen.\n\
\n\
If the result is zero then its sign will be the sign of self.\n\
\n");
-PyDoc_STRVAR(doc_rotate,"\n\
-rotate(other, context=None) - Return the result of rotating the digits of the\n\
-first operand by an amount specified by the second operand. The second operand\n\
-must be an integer in the range -precision through precision. The absolute\n\
-value of the second operand gives the number of places to rotate. If the second\n\
-operand is positive then rotation is to the left; otherwise rotation is to the\n\
-right. The coefficient of the first operand is padded on the left with zeros to\n\
+PyDoc_STRVAR(doc_rotate,
+"rotate($self, /, other, context=None)\n--\n\n\
+Return the result of rotating the digits of the first operand by an amount\n\
+specified by the second operand. The second operand must be an integer in\n\
+the range -precision through precision. The absolute value of the second\n\
+operand gives the number of places to rotate. If the second operand is\n\
+positive then rotation is to the left; otherwise rotation is to the right.\n\
+The coefficient of the first operand is padded on the left with zeros to\n\
length precision if necessary. The sign and exponent of the first operand are\n\
unchanged.\n\
\n");
-PyDoc_STRVAR(doc_same_quantum,"\n\
-same_quantum(other, context=None) - Test whether self and other have the\n\
-same exponent or whether both are NaN.\n\
+PyDoc_STRVAR(doc_same_quantum,
+"same_quantum($self, /, other, context=None)\n--\n\n\
+Test whether self and other have the same exponent or whether both are NaN.\n\
\n\
This operation is unaffected by context and is quiet: no flags are changed\n\
and no rounding is performed. As an exception, the C version may raise\n\
InvalidOperation if the second operand cannot be converted exactly.\n\
\n");
-PyDoc_STRVAR(doc_scaleb,"\n\
-scaleb(other, context=None) - Return the first operand with the exponent\n\
-adjusted the second. Equivalently, return the first operand multiplied by\n\
-10**other. The second operand must be an integer.\n\
+PyDoc_STRVAR(doc_scaleb,
+"scaleb($self, /, other, context=None)\n--\n\n\
+Return the first operand with the exponent adjusted the second. Equivalently,\n\
+return the first operand multiplied by 10**other. The second operand must be\n\
+an integer.\n\
\n");
-PyDoc_STRVAR(doc_shift,"\n\
-shift(other, context=None) - Return the result of shifting the digits of\n\
-the first operand by an amount specified by the second operand. The second\n\
-operand must be an integer in the range -precision through precision. The\n\
-absolute value of the second operand gives the number of places to shift.\n\
-If the second operand is positive, then the shift is to the left; otherwise\n\
-the shift is to the right. Digits shifted into the coefficient are zeros.\n\
-The sign and exponent of the first operand are unchanged.\n\
+PyDoc_STRVAR(doc_shift,
+"shift($self, /, other, context=None)\n--\n\n\
+Return the result of shifting the digits of the first operand by an amount\n\
+specified by the second operand. The second operand must be an integer in\n\
+the range -precision through precision. The absolute value of the second\n\
+operand gives the number of places to shift. If the second operand is\n\
+positive, then the shift is to the left; otherwise the shift is to the\n\
+right. Digits shifted into the coefficient are zeros. The sign and exponent\n\
+of the first operand are unchanged.\n\
\n");
-PyDoc_STRVAR(doc_sqrt,"\n\
-sqrt(context=None) - Return the square root of the argument to full precision.\n\
-The result is correctly rounded using the ROUND_HALF_EVEN rounding mode.\n\
+PyDoc_STRVAR(doc_sqrt,
+"sqrt($self, /, context=None)\n--\n\n\
+Return the square root of the argument to full precision. The result is\n\
+correctly rounded using the ROUND_HALF_EVEN rounding mode.\n\
\n");
-PyDoc_STRVAR(doc_to_eng_string,"\n\
-to_eng_string(context=None) - Convert to an engineering-type string.\n\
-Engineering notation has an exponent which is a multiple of 3, so there\n\
-are up to 3 digits left of the decimal place. For example, Decimal('123E+1')\n\
-is converted to Decimal('1.23E+3').\n\
+PyDoc_STRVAR(doc_to_eng_string,
+"to_eng_string($self, /, context=None)\n--\n\n\
+Convert to an engineering-type string. Engineering notation has an exponent\n\
+which is a multiple of 3, so there are up to 3 digits left of the decimal\n\
+place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3').\n\
\n\
The value of context.capitals determines whether the exponent sign is lower\n\
or upper case. Otherwise, the context does not affect the operation.\n\
\n");
-PyDoc_STRVAR(doc_to_integral,"\n\
-to_integral(rounding=None, context=None) - Identical to the\n\
-to_integral_value() method. The to_integral() name has been kept\n\
-for compatibility with older versions.\n\
+PyDoc_STRVAR(doc_to_integral,
+"to_integral($self, /, rounding=None, context=None)\n--\n\n\
+Identical to the to_integral_value() method. The to_integral() name has been\n\
+kept for compatibility with older versions.\n\
\n");
-PyDoc_STRVAR(doc_to_integral_exact,"\n\
-to_integral_exact(rounding=None, context=None) - Round to the nearest\n\
-integer, signaling Inexact or Rounded as appropriate if rounding occurs.\n\
-The rounding mode is determined by the rounding parameter if given, else\n\
-by the given context. If neither parameter is given, then the rounding mode\n\
-of the current default context is used.\n\
+PyDoc_STRVAR(doc_to_integral_exact,
+"to_integral_exact($self, /, rounding=None, context=None)\n--\n\n\
+Round to the nearest integer, signaling Inexact or Rounded as appropriate if\n\
+rounding occurs. The rounding mode is determined by the rounding parameter\n\
+if given, else by the given context. If neither parameter is given, then the\n\
+rounding mode of the current default context is used.\n\
\n");
-PyDoc_STRVAR(doc_to_integral_value,"\n\
-to_integral_value(rounding=None, context=None) - Round to the nearest\n\
-integer without signaling Inexact or Rounded. The rounding mode is determined\n\
-by the rounding parameter if given, else by the given context. If neither\n\
-parameter is given, then the rounding mode of the current default context is\n\
-used.\n\
+PyDoc_STRVAR(doc_to_integral_value,
+"to_integral_value($self, /, rounding=None, context=None)\n--\n\n\
+Round to the nearest integer without signaling Inexact or Rounded. The\n\
+rounding mode is determined by the rounding parameter if given, else by\n\
+the given context. If neither parameter is given, then the rounding mode\n\
+of the current default context is used.\n\
\n");
@@ -446,9 +485,10 @@ used.\n\
/* Context Object and Methods */
/******************************************************************************/
-PyDoc_STRVAR(doc_context,"\n\
+PyDoc_STRVAR(doc_context,
+"Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)\n--\n\n\
The context affects almost all operations and controls rounding,\n\
-Over/Underflow, raising of exceptions and much more. A new context\n\
+Over/Underflow, raising of exceptions and much more. A new context\n\
can be constructed as follows:\n\
\n\
>>> c = Context(prec=28, Emin=-425000000, Emax=425000000,\n\
@@ -460,308 +500,372 @@ can be constructed as follows:\n\
\n");
#ifdef EXTRA_FUNCTIONALITY
-PyDoc_STRVAR(doc_ctx_apply,"\n\
-apply(x) - Apply self to Decimal x.\n\
+PyDoc_STRVAR(doc_ctx_apply,
+"apply($self, x, /)\n--\n\n\
+Apply self to Decimal x.\n\
\n");
#endif
-PyDoc_STRVAR(doc_ctx_clear_flags,"\n\
-clear_flags() - Reset all flags to False.\n\
+PyDoc_STRVAR(doc_ctx_clear_flags,
+"clear_flags($self, /)\n--\n\n\
+Reset all flags to False.\n\
\n");
-PyDoc_STRVAR(doc_ctx_clear_traps,"\n\
-clear_traps() - Set all traps to False.\n\
+PyDoc_STRVAR(doc_ctx_clear_traps,
+"clear_traps($self, /)\n--\n\n\
+Set all traps to False.\n\
\n");
-PyDoc_STRVAR(doc_ctx_copy,"\n\
-copy() - Return a duplicate of the context with all flags cleared.\n\
+PyDoc_STRVAR(doc_ctx_copy,
+"copy($self, /)\n--\n\n\
+Return a duplicate of the context with all flags cleared.\n\
\n");
-PyDoc_STRVAR(doc_ctx_copy_decimal,"\n\
-copy_decimal(x) - Return a copy of Decimal x.\n\
+PyDoc_STRVAR(doc_ctx_copy_decimal,
+"copy_decimal($self, x, /)\n--\n\n\
+Return a copy of Decimal x.\n\
\n");
-PyDoc_STRVAR(doc_ctx_create_decimal,"\n\
-create_decimal(x) - Create a new Decimal instance from x, using self as the\n\
-context. Unlike the Decimal constructor, this function observes the context\n\
-limits.\n\
+PyDoc_STRVAR(doc_ctx_create_decimal,
+"create_decimal($self, num=\"0\", /)\n--\n\n\
+Create a new Decimal instance from num, using self as the context. Unlike the\n\
+Decimal constructor, this function observes the context limits.\n\
\n");
-PyDoc_STRVAR(doc_ctx_create_decimal_from_float,"\n\
-create_decimal_from_float(f) - Create a new Decimal instance from float f.\n\
-Unlike the Decimal.from_float() class method, this function observes the\n\
-context limits.\n\
+PyDoc_STRVAR(doc_ctx_create_decimal_from_float,
+"create_decimal_from_float($self, f, /)\n--\n\n\
+Create a new Decimal instance from float f. Unlike the Decimal.from_float()\n\
+class method, this function observes the context limits.\n\
\n");
-PyDoc_STRVAR(doc_ctx_Etiny,"\n\
-Etiny() - Return a value equal to Emin - prec + 1, which is the minimum\n\
-exponent value for subnormal results. When underflow occurs, the exponent\n\
-is set to Etiny.\n\
+PyDoc_STRVAR(doc_ctx_Etiny,
+"Etiny($self, /)\n--\n\n\
+Return a value equal to Emin - prec + 1, which is the minimum exponent value\n\
+for subnormal results. When underflow occurs, the exponent is set to Etiny.\n\
\n");
-PyDoc_STRVAR(doc_ctx_Etop,"\n\
-Etop() - Return a value equal to Emax - prec + 1. This is the maximum exponent\n\
-if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must\n\
-not be negative.\n\
+PyDoc_STRVAR(doc_ctx_Etop,
+"Etop($self, /)\n--\n\n\
+Return a value equal to Emax - prec + 1. This is the maximum exponent\n\
+if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop()\n\
+must not be negative.\n\
\n");
-PyDoc_STRVAR(doc_ctx_abs,"\n\
-abs(x) - Return the absolute value of x.\n\
+PyDoc_STRVAR(doc_ctx_abs,
+"abs($self, x, /)\n--\n\n\
+Return the absolute value of x.\n\
\n");
-PyDoc_STRVAR(doc_ctx_add,"\n\
-add(x, y) - Return the sum of x and y.\n\
+PyDoc_STRVAR(doc_ctx_add,
+"add($self, x, y, /)\n--\n\n\
+Return the sum of x and y.\n\
\n");
-PyDoc_STRVAR(doc_ctx_canonical,"\n\
-canonical(x) - Return a new instance of x.\n\
+PyDoc_STRVAR(doc_ctx_canonical,
+"canonical($self, x, /)\n--\n\n\
+Return a new instance of x.\n\
\n");
-PyDoc_STRVAR(doc_ctx_compare,"\n\
-compare(x, y) - Compare x and y numerically.\n\
+PyDoc_STRVAR(doc_ctx_compare,
+"compare($self, x, y, /)\n--\n\n\
+Compare x and y numerically.\n\
\n");
-PyDoc_STRVAR(doc_ctx_compare_signal,"\n\
-compare_signal(x, y) - Compare x and y numerically. All NaNs signal.\n\
+PyDoc_STRVAR(doc_ctx_compare_signal,
+"compare_signal($self, x, y, /)\n--\n\n\
+Compare x and y numerically. All NaNs signal.\n\
\n");
-PyDoc_STRVAR(doc_ctx_compare_total,"\n\
-compare_total(x, y) - Compare x and y using their abstract representation.\n\
+PyDoc_STRVAR(doc_ctx_compare_total,
+"compare_total($self, x, y, /)\n--\n\n\
+Compare x and y using their abstract representation.\n\
\n");
-PyDoc_STRVAR(doc_ctx_compare_total_mag,"\n\
-compare_total_mag(x, y) - Compare x and y using their abstract representation,\n\
-ignoring sign.\n\
+PyDoc_STRVAR(doc_ctx_compare_total_mag,
+"compare_total_mag($self, x, y, /)\n--\n\n\
+Compare x and y using their abstract representation, ignoring sign.\n\
\n");
-PyDoc_STRVAR(doc_ctx_copy_abs,"\n\
-copy_abs(x) - Return a copy of x with the sign set to 0.\n\
+PyDoc_STRVAR(doc_ctx_copy_abs,
+"copy_abs($self, x, /)\n--\n\n\
+Return a copy of x with the sign set to 0.\n\
\n");
-PyDoc_STRVAR(doc_ctx_copy_negate,"\n\
-copy_negate(x) - Return a copy of x with the sign inverted.\n\
+PyDoc_STRVAR(doc_ctx_copy_negate,
+"copy_negate($self, x, /)\n--\n\n\
+Return a copy of x with the sign inverted.\n\
\n");
-PyDoc_STRVAR(doc_ctx_copy_sign,"\n\
-copy_sign(x, y) - Copy the sign from y to x.\n\
+PyDoc_STRVAR(doc_ctx_copy_sign,
+"copy_sign($self, x, y, /)\n--\n\n\
+Copy the sign from y to x.\n\
\n");
-PyDoc_STRVAR(doc_ctx_divide,"\n\
-divide(x, y) - Return x divided by y.\n\
+PyDoc_STRVAR(doc_ctx_divide,
+"divide($self, x, y, /)\n--\n\n\
+Return x divided by y.\n\
\n");
-PyDoc_STRVAR(doc_ctx_divide_int,"\n\
-divide_int(x, y) - Return x divided by y, truncated to an integer.\n\
+PyDoc_STRVAR(doc_ctx_divide_int,
+"divide_int($self, x, y, /)\n--\n\n\
+Return x divided by y, truncated to an integer.\n\
\n");
-PyDoc_STRVAR(doc_ctx_divmod,"\n\
-divmod(x, y) - Return quotient and remainder of the division x / y.\n\
+PyDoc_STRVAR(doc_ctx_divmod,
+"divmod($self, x, y, /)\n--\n\n\
+Return quotient and remainder of the division x / y.\n\
\n");
-PyDoc_STRVAR(doc_ctx_exp,"\n\
-exp(x) - Return e ** x.\n\
+PyDoc_STRVAR(doc_ctx_exp,
+"exp($self, x, /)\n--\n\n\
+Return e ** x.\n\
\n");
-PyDoc_STRVAR(doc_ctx_fma,"\n\
-fma(x, y, z) - Return x multiplied by y, plus z.\n\
+PyDoc_STRVAR(doc_ctx_fma,
+"fma($self, x, y, z, /)\n--\n\n\
+Return x multiplied by y, plus z.\n\
\n");
-PyDoc_STRVAR(doc_ctx_is_canonical,"\n\
-is_canonical(x) - Return True if x is canonical, False otherwise.\n\
+PyDoc_STRVAR(doc_ctx_is_canonical,
+"is_canonical($self, x, /)\n--\n\n\
+Return True if x is canonical, False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_ctx_is_finite,"\n\
-is_finite(x) - Return True if x is finite, False otherwise.\n\
+PyDoc_STRVAR(doc_ctx_is_finite,
+"is_finite($self, x, /)\n--\n\n\
+Return True if x is finite, False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_ctx_is_infinite,"\n\
-is_infinite(x) - Return True if x is infinite, False otherwise.\n\
+PyDoc_STRVAR(doc_ctx_is_infinite,
+"is_infinite($self, x, /)\n--\n\n\
+Return True if x is infinite, False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_ctx_is_nan,"\n\
-is_nan(x) - Return True if x is a qNaN or sNaN, False otherwise.\n\
+PyDoc_STRVAR(doc_ctx_is_nan,
+"is_nan($self, x, /)\n--\n\n\
+Return True if x is a qNaN or sNaN, False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_ctx_is_normal,"\n\
-is_normal(x) - Return True if x is a normal number, False otherwise.\n\
+PyDoc_STRVAR(doc_ctx_is_normal,
+"is_normal($self, x, /)\n--\n\n\
+Return True if x is a normal number, False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_ctx_is_qnan,"\n\
-is_qnan(x) - Return True if x is a quiet NaN, False otherwise.\n\
+PyDoc_STRVAR(doc_ctx_is_qnan,
+"is_qnan($self, x, /)\n--\n\n\
+Return True if x is a quiet NaN, False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_ctx_is_signed,"\n\
-is_signed(x) - Return True if x is negative, False otherwise.\n\
+PyDoc_STRVAR(doc_ctx_is_signed,
+"is_signed($self, x, /)\n--\n\n\
+Return True if x is negative, False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_ctx_is_snan,"\n\
-is_snan() - Return True if x is a signaling NaN, False otherwise.\n\
+PyDoc_STRVAR(doc_ctx_is_snan,
+"is_snan($self, x, /)\n--\n\n\
+Return True if x is a signaling NaN, False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_ctx_is_subnormal,"\n\
-is_subnormal(x) - Return True if x is subnormal, False otherwise.\n\
+PyDoc_STRVAR(doc_ctx_is_subnormal,
+"is_subnormal($self, x, /)\n--\n\n\
+Return True if x is subnormal, False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_ctx_is_zero,"\n\
-is_zero(x) - Return True if x is a zero, False otherwise.\n\
+PyDoc_STRVAR(doc_ctx_is_zero,
+"is_zero($self, x, /)\n--\n\n\
+Return True if x is a zero, False otherwise.\n\
\n");
-PyDoc_STRVAR(doc_ctx_ln,"\n\
-ln(x) - Return the natural (base e) logarithm of x.\n\
+PyDoc_STRVAR(doc_ctx_ln,
+"ln($self, x, /)\n--\n\n\
+Return the natural (base e) logarithm of x.\n\
\n");
-PyDoc_STRVAR(doc_ctx_log10,"\n\
-log10(x) - Return the base 10 logarithm of x.\n\
+PyDoc_STRVAR(doc_ctx_log10,
+"log10($self, x, /)\n--\n\n\
+Return the base 10 logarithm of x.\n\
\n");
-PyDoc_STRVAR(doc_ctx_logb,"\n\
-logb(x) - Return the exponent of the magnitude of the operand's MSD.\n\
+PyDoc_STRVAR(doc_ctx_logb,
+"logb($self, x, /)\n--\n\n\
+Return the exponent of the magnitude of the operand's MSD.\n\
\n");
-PyDoc_STRVAR(doc_ctx_logical_and,"\n\
-logical_and(x, y) - Digit-wise and of x and y.\n\
+PyDoc_STRVAR(doc_ctx_logical_and,
+"logical_and($self, x, y, /)\n--\n\n\
+Digit-wise and of x and y.\n\
\n");
-PyDoc_STRVAR(doc_ctx_logical_invert,"\n\
-logical_invert(x) - Invert all digits of x.\n\
+PyDoc_STRVAR(doc_ctx_logical_invert,
+"logical_invert($self, x, /)\n--\n\n\
+Invert all digits of x.\n\
\n");
-PyDoc_STRVAR(doc_ctx_logical_or,"\n\
-logical_or(x, y) - Digit-wise or of x and y.\n\
+PyDoc_STRVAR(doc_ctx_logical_or,
+"logical_or($self, x, y, /)\n--\n\n\
+Digit-wise or of x and y.\n\
\n");
-PyDoc_STRVAR(doc_ctx_logical_xor,"\n\
-logical_xor(x, y) - Digit-wise xor of x and y.\n\
+PyDoc_STRVAR(doc_ctx_logical_xor,
+"logical_xor($self, x, y, /)\n--\n\n\
+Digit-wise xor of x and y.\n\
\n");
-PyDoc_STRVAR(doc_ctx_max,"\n\
-max(x, y) - Compare the values numerically and return the maximum.\n\
+PyDoc_STRVAR(doc_ctx_max,
+"max($self, x, y, /)\n--\n\n\
+Compare the values numerically and return the maximum.\n\
\n");
-PyDoc_STRVAR(doc_ctx_max_mag,"\n\
-max_mag(x, y) - Compare the values numerically with their sign ignored.\n\
+PyDoc_STRVAR(doc_ctx_max_mag,
+"max_mag($self, x, y, /)\n--\n\n\
+Compare the values numerically with their sign ignored.\n\
\n");
-PyDoc_STRVAR(doc_ctx_min,"\n\
-min(x, y) - Compare the values numerically and return the minimum.\n\
+PyDoc_STRVAR(doc_ctx_min,
+"min($self, x, y, /)\n--\n\n\
+Compare the values numerically and return the minimum.\n\
\n");
-PyDoc_STRVAR(doc_ctx_min_mag,"\n\
-min_mag(x, y) - Compare the values numerically with their sign ignored.\n\
+PyDoc_STRVAR(doc_ctx_min_mag,
+"min_mag($self, x, y, /)\n--\n\n\
+Compare the values numerically with their sign ignored.\n\
\n");
-PyDoc_STRVAR(doc_ctx_minus,"\n\
-minus(x) - Minus corresponds to the unary prefix minus operator in Python,\n\
-but applies the context to the result.\n\
+PyDoc_STRVAR(doc_ctx_minus,
+"minus($self, x, /)\n--\n\n\
+Minus corresponds to the unary prefix minus operator in Python, but applies\n\
+the context to the result.\n\
\n");
-PyDoc_STRVAR(doc_ctx_multiply,"\n\
-multiply(x, y) - Return the product of x and y.\n\
+PyDoc_STRVAR(doc_ctx_multiply,
+"multiply($self, x, y, /)\n--\n\n\
+Return the product of x and y.\n\
\n");
-PyDoc_STRVAR(doc_ctx_next_minus,"\n\
-next_minus(x) - Return the largest representable number smaller than x.\n\
+PyDoc_STRVAR(doc_ctx_next_minus,
+"next_minus($self, x, /)\n--\n\n\
+Return the largest representable number smaller than x.\n\
\n");
-PyDoc_STRVAR(doc_ctx_next_plus,"\n\
-next_plus(x) - Return the smallest representable number larger than x.\n\
+PyDoc_STRVAR(doc_ctx_next_plus,
+"next_plus($self, x, /)\n--\n\n\
+Return the smallest representable number larger than x.\n\
\n");
-PyDoc_STRVAR(doc_ctx_next_toward,"\n\
-next_toward(x) - Return the number closest to x, in the direction towards y.\n\
+PyDoc_STRVAR(doc_ctx_next_toward,
+"next_toward($self, x, y, /)\n--\n\n\
+Return the number closest to x, in the direction towards y.\n\
\n");
-PyDoc_STRVAR(doc_ctx_normalize,"\n\
-normalize(x) - Reduce x to its simplest form. Alias for reduce(x).\n\
+PyDoc_STRVAR(doc_ctx_normalize,
+"normalize($self, x, /)\n--\n\n\
+Reduce x to its simplest form. Alias for reduce(x).\n\
\n");
-PyDoc_STRVAR(doc_ctx_number_class,"\n\
-number_class(x) - Return an indication of the class of x.\n\
+PyDoc_STRVAR(doc_ctx_number_class,
+"number_class($self, x, /)\n--\n\n\
+Return an indication of the class of x.\n\
\n");
-PyDoc_STRVAR(doc_ctx_plus,"\n\
-plus(x) - Plus corresponds to the unary prefix plus operator in Python,\n\
-but applies the context to the result.\n\
+PyDoc_STRVAR(doc_ctx_plus,
+"plus($self, x, /)\n--\n\n\
+Plus corresponds to the unary prefix plus operator in Python, but applies\n\
+the context to the result.\n\
\n");
-PyDoc_STRVAR(doc_ctx_power,"\n\
-power(x, y) - Compute x**y. If x is negative, then y must be integral.\n\
-The result will be inexact unless y is integral and the result is finite\n\
-and can be expressed exactly in 'precision' digits. In the Python version\n\
-the result is always correctly rounded, in the C version the result is\n\
-almost always correctly rounded.\n\
+PyDoc_STRVAR(doc_ctx_power,
+"power($self, /, a, b, modulo=None)\n--\n\n\
+Compute a**b. If 'a' is negative, then 'b' must be integral. The result\n\
+will be inexact unless 'a' is integral and the result is finite and can\n\
+be expressed exactly in 'precision' digits. In the Python version the\n\
+result is always correctly rounded, in the C version the result is almost\n\
+always correctly rounded.\n\
\n\
-power(x, y, m) - Compute (x**y) % m. The following restrictions hold:\n\
+If modulo is given, compute (a**b) % modulo. The following restrictions\n\
+hold:\n\
\n\
* all three arguments must be integral\n\
- * y must be nonnegative\n\
- * at least one of x or y must be nonzero\n\
- * m must be nonzero and less than 10**prec in absolute value\n\
+ * 'b' must be nonnegative\n\
+ * at least one of 'a' or 'b' must be nonzero\n\
+ * modulo must be nonzero and less than 10**prec in absolute value\n\
\n\
\n");
-PyDoc_STRVAR(doc_ctx_quantize,"\n\
-quantize(x, y) - Return a value equal to x (rounded), having the exponent of y.\n\
+PyDoc_STRVAR(doc_ctx_quantize,
+"quantize($self, x, y, /)\n--\n\n\
+Return a value equal to x (rounded), having the exponent of y.\n\
\n");
-PyDoc_STRVAR(doc_ctx_radix,"\n\
-radix() - Return 10.\n\
+PyDoc_STRVAR(doc_ctx_radix,
+"radix($self, /)\n--\n\n\
+Return 10.\n\
\n");
-PyDoc_STRVAR(doc_ctx_remainder,"\n\
-remainder(x, y) - Return the remainder from integer division. The sign of\n\
-the result, if non-zero, is the same as that of the original dividend.\n\
+PyDoc_STRVAR(doc_ctx_remainder,
+"remainder($self, x, y, /)\n--\n\n\
+Return the remainder from integer division. The sign of the result,\n\
+if non-zero, is the same as that of the original dividend.\n\
\n");
-PyDoc_STRVAR(doc_ctx_remainder_near,"\n\
-remainder_near(x, y) - Return x - y * n, where n is the integer nearest the\n\
-exact value of x / y (if the result is 0 then its sign will be the sign of x).\n\
+PyDoc_STRVAR(doc_ctx_remainder_near,
+"remainder_near($self, x, y, /)\n--\n\n\
+Return x - y * n, where n is the integer nearest the exact value of x / y\n\
+(if the result is 0 then its sign will be the sign of x).\n\
\n");
-PyDoc_STRVAR(doc_ctx_rotate,"\n\
-rotate(x, y) - Return a copy of x, rotated by y places.\n\
+PyDoc_STRVAR(doc_ctx_rotate,
+"rotate($self, x, y, /)\n--\n\n\
+Return a copy of x, rotated by y places.\n\
\n");
-PyDoc_STRVAR(doc_ctx_same_quantum,"\n\
-same_quantum(x, y) - Return True if the two operands have the same exponent.\n\
+PyDoc_STRVAR(doc_ctx_same_quantum,
+"same_quantum($self, x, y, /)\n--\n\n\
+Return True if the two operands have the same exponent.\n\
\n");
-PyDoc_STRVAR(doc_ctx_scaleb,"\n\
-scaleb(x, y) - Return the first operand after adding the second value\n\
-to its exp.\n\
+PyDoc_STRVAR(doc_ctx_scaleb,
+"scaleb($self, x, y, /)\n--\n\n\
+Return the first operand after adding the second value to its exp.\n\
\n");
-PyDoc_STRVAR(doc_ctx_shift,"\n\
-shift(x, y) - Return a copy of x, shifted by y places.\n\
+PyDoc_STRVAR(doc_ctx_shift,
+"shift($self, x, y, /)\n--\n\n\
+Return a copy of x, shifted by y places.\n\
\n");
-PyDoc_STRVAR(doc_ctx_sqrt,"\n\
-sqrt(x) - Square root of a non-negative number to context precision.\n\
+PyDoc_STRVAR(doc_ctx_sqrt,
+"sqrt($self, x, /)\n--\n\n\
+Square root of a non-negative number to context precision.\n\
\n");
-PyDoc_STRVAR(doc_ctx_subtract,"\n\
-subtract(x, y) - Return the difference between x and y.\n\
+PyDoc_STRVAR(doc_ctx_subtract,
+"subtract($self, x, y, /)\n--\n\n\
+Return the difference between x and y.\n\
\n");
-PyDoc_STRVAR(doc_ctx_to_eng_string,"\n\
-to_eng_string(x) - Convert a number to a string, using engineering notation.\n\
+PyDoc_STRVAR(doc_ctx_to_eng_string,
+"to_eng_string($self, x, /)\n--\n\n\
+Convert a number to a string, using engineering notation.\n\
\n");
-PyDoc_STRVAR(doc_ctx_to_integral,"\n\
-to_integral(x) - Identical to to_integral_value(x).\n\
+PyDoc_STRVAR(doc_ctx_to_integral,
+"to_integral($self, x, /)\n--\n\n\
+Identical to to_integral_value(x).\n\
\n");
-PyDoc_STRVAR(doc_ctx_to_integral_exact,"\n\
-to_integral_exact(x) - Round to an integer. Signal if the result is\n\
-rounded or inexact.\n\
+PyDoc_STRVAR(doc_ctx_to_integral_exact,
+"to_integral_exact($self, x, /)\n--\n\n\
+Round to an integer. Signal if the result is rounded or inexact.\n\
\n");
-PyDoc_STRVAR(doc_ctx_to_integral_value,"\n\
-to_integral_value(x) - Round to an integer.\n\
+PyDoc_STRVAR(doc_ctx_to_integral_value,
+"to_integral_value($self, x, /)\n--\n\n\
+Round to an integer.\n\
\n");
-PyDoc_STRVAR(doc_ctx_to_sci_string,"\n\
-to_sci_string(x) - Convert a number to a string using scientific notation.\n\
+PyDoc_STRVAR(doc_ctx_to_sci_string,
+"to_sci_string($self, x, /)\n--\n\n\
+Convert a number to a string using scientific notation.\n\
\n");