diff options
Diffstat (limited to 'Modules/_decimal/docstrings.h')
-rw-r--r-- | Modules/_decimal/docstrings.h | 860 |
1 files changed, 482 insertions, 378 deletions
diff --git a/Modules/_decimal/docstrings.h b/Modules/_decimal/docstrings.h index a6490b9..035ca9c 100644 --- a/Modules/_decimal/docstrings.h +++ b/Modules/_decimal/docstrings.h @@ -19,26 +19,30 @@ PyDoc_STRVAR(doc__decimal, "C decimal arithmetic module"); -PyDoc_STRVAR(doc_getcontext,"\n\ -getcontext() - Get the current default context.\n\ +PyDoc_STRVAR(doc_getcontext, +"getcontext($module, /)\n--\n\n\ +Get the current default context.\n\ \n"); -PyDoc_STRVAR(doc_setcontext,"\n\ -setcontext(c) - Set a new default context.\n\ +PyDoc_STRVAR(doc_setcontext, +"setcontext($module, context, /)\n--\n\n\ +Set a new default context.\n\ \n"); -PyDoc_STRVAR(doc_localcontext,"\n\ -localcontext(ctx=None) - Return a context manager that will set the default\n\ -context to a copy of ctx on entry to the with-statement and restore the\n\ -previous default context when exiting the with-statement. If no context is\n\ -specified, a copy of the current default context is used.\n\ +PyDoc_STRVAR(doc_localcontext, +"localcontext($module, /, ctx=None)\n--\n\n\ +Return a context manager that will set the default context to a copy of ctx\n\ +on entry to the with-statement and restore the previous default context when\n\ +exiting the with-statement. If no context is specified, a copy of the current\n\ +default context is used.\n\ \n"); #ifdef EXTRA_FUNCTIONALITY -PyDoc_STRVAR(doc_ieee_context,"\n\ -IEEEContext(bits) - Return a context object initialized to the proper values for\n\ -one of the IEEE interchange formats. The argument must be a multiple of 32 and\n\ -less than IEEE_CONTEXT_MAX_BITS. For the most common values, the constants\n\ +PyDoc_STRVAR(doc_ieee_context, +"IEEEContext($module, bits, /)\n--\n\n\ +Return a context object initialized to the proper values for one of the\n\ +IEEE interchange formats. The argument must be a multiple of 32 and less\n\ +than IEEE_CONTEXT_MAX_BITS. For the most common values, the constants\n\ DECIMAL32, DECIMAL64 and DECIMAL128 are provided.\n\ \n"); #endif @@ -48,32 +52,34 @@ DECIMAL32, DECIMAL64 and DECIMAL128 are provided.\n\ /* Decimal Object and Methods */ /******************************************************************************/ -PyDoc_STRVAR(doc_decimal,"\n\ -Decimal(value=\"0\", context=None): Construct a new Decimal object.\n\ -value can be an integer, string, tuple, or another Decimal object.\n\ -If no value is given, return Decimal('0'). The context does not affect\n\ -the conversion and is only passed to determine if the InvalidOperation\n\ -trap is active.\n\ +PyDoc_STRVAR(doc_decimal, +"Decimal(value=\"0\", context=None)\n--\n\n\ +Construct a new Decimal object. 'value' can be an integer, string, tuple,\n\ +or another Decimal object. If no value is given, return Decimal('0'). The\n\ +context does not affect the conversion and is only passed to determine if\n\ +the InvalidOperation trap is active.\n\ \n"); -PyDoc_STRVAR(doc_adjusted,"\n\ -adjusted() - Return the adjusted exponent of the number.\n\ -\n\ -Defined as exp + digits - 1.\n\ +PyDoc_STRVAR(doc_adjusted, +"adjusted($self, /)\n--\n\n\ +Return the adjusted exponent of the number. Defined as exp + digits - 1.\n\ \n"); -PyDoc_STRVAR(doc_as_tuple,"\n\ -as_tuple() - Return a tuple representation of the number.\n\ +PyDoc_STRVAR(doc_as_tuple, +"as_tuple($self, /)\n--\n\n\ +Return a tuple representation of the number.\n\ \n"); -PyDoc_STRVAR(doc_canonical,"\n\ -canonical() - Return the canonical encoding of the argument. Currently,\n\ -the encoding of a Decimal instance is always canonical, so this operation\n\ -returns its argument unchanged.\n\ +PyDoc_STRVAR(doc_canonical, +"canonical($self, /)\n--\n\n\ +Return the canonical encoding of the argument. Currently, the encoding\n\ +of a Decimal instance is always canonical, so this operation returns its\n\ +argument unchanged.\n\ \n"); -PyDoc_STRVAR(doc_compare,"\n\ -compare(other, context=None) - Compare self to other. Return a decimal value:\n\ +PyDoc_STRVAR(doc_compare, +"compare($self, /, other, context=None)\n--\n\n\ +Compare self to other. Return a decimal value:\n\ \n\ a or b is a NaN ==> Decimal('NaN')\n\ a < b ==> Decimal('-1')\n\ @@ -81,17 +87,18 @@ compare(other, context=None) - Compare self to other. Return a decimal value:\n\ a > b ==> Decimal('1')\n\ \n"); -PyDoc_STRVAR(doc_compare_signal,"\n\ -compare_signal(other, context=None) - Identical to compare, except that\n\ -all NaNs signal.\n\ +PyDoc_STRVAR(doc_compare_signal, +"compare_signal($self, /, other, context=None)\n--\n\n\ +Identical to compare, except that all NaNs signal.\n\ \n"); -PyDoc_STRVAR(doc_compare_total,"\n\ -compare_total(other, context=None) - Compare two operands using their\n\ -abstract representation rather than their numerical value. Similar to the\n\ -compare() method, but the result gives a total ordering on Decimal instances.\n\ -Two Decimal instances with the same numeric value but different representations\n\ -compare unequal in this ordering:\n\ +PyDoc_STRVAR(doc_compare_total, +"compare_total($self, /, other, context=None)\n--\n\n\ +Compare two operands using their abstract representation rather than\n\ +their numerical value. Similar to the compare() method, but the result\n\ +gives a total ordering on Decimal instances. Two Decimal instances with\n\ +the same numeric value but different representations compare unequal\n\ +in this ordering:\n\ \n\ >>> Decimal('12.0').compare_total(Decimal('12'))\n\ Decimal('-1')\n\ @@ -107,36 +114,39 @@ and no rounding is performed. As an exception, the C version may raise\n\ InvalidOperation if the second operand cannot be converted exactly.\n\ \n"); -PyDoc_STRVAR(doc_compare_total_mag,"\n\ -compare_total_mag(other, context=None) - Compare two operands using their\n\ -abstract representation rather than their value as in compare_total(), but\n\ -ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to\n\ -x.copy_abs().compare_total(y.copy_abs()).\n\ +PyDoc_STRVAR(doc_compare_total_mag, +"compare_total_mag($self, /, other, context=None)\n--\n\n\ +Compare two operands using their abstract representation rather than their\n\ +value as in compare_total(), but ignoring the sign of each operand.\n\ +\n\ +x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()).\n\ \n\ This operation is unaffected by context and is quiet: no flags are changed\n\ and no rounding is performed. As an exception, the C version may raise\n\ InvalidOperation if the second operand cannot be converted exactly.\n\ \n"); -PyDoc_STRVAR(doc_conjugate,"\n\ -conjugate() - Return self.\n\ +PyDoc_STRVAR(doc_conjugate, +"conjugate($self, /)\n--\n\n\ +Return self.\n\ \n"); -PyDoc_STRVAR(doc_copy_abs,"\n\ -copy_abs() - Return the absolute value of the argument. This operation\n\ -is unaffected by context and is quiet: no flags are changed and no rounding\n\ -is performed.\n\ +PyDoc_STRVAR(doc_copy_abs, +"copy_abs($self, /)\n--\n\n\ +Return the absolute value of the argument. This operation is unaffected by\n\ +context and is quiet: no flags are changed and no rounding is performed.\n\ \n"); -PyDoc_STRVAR(doc_copy_negate,"\n\ -copy_negate() - Return the negation of the argument. This operation is\n\ -unaffected by context and is quiet: no flags are changed and no rounding\n\ -is performed.\n\ +PyDoc_STRVAR(doc_copy_negate, +"copy_negate($self, /)\n--\n\n\ +Return the negation of the argument. This operation is unaffected by context\n\ +and is quiet: no flags are changed and no rounding is performed.\n\ \n"); -PyDoc_STRVAR(doc_copy_sign,"\n\ -copy_sign(other, context=None) - Return a copy of the first operand with\n\ -the sign set to be the same as the sign of the second operand. For example:\n\ +PyDoc_STRVAR(doc_copy_sign, +"copy_sign($self, /, other, context=None)\n--\n\n\ +Return a copy of the first operand with the sign set to be the same as the\n\ +sign of the second operand. For example:\n\ \n\ >>> Decimal('2.3').copy_sign(Decimal('-1.5'))\n\ Decimal('-2.3')\n\ @@ -146,14 +156,16 @@ and no rounding is performed. As an exception, the C version may raise\n\ InvalidOperation if the second operand cannot be converted exactly.\n\ \n"); -PyDoc_STRVAR(doc_exp,"\n\ -exp(context=None) - Return the value of the (natural) exponential function\n\ -e**x at the given number. The function always uses the ROUND_HALF_EVEN mode\n\ -and the result is correctly rounded.\n\ +PyDoc_STRVAR(doc_exp, +"exp($self, /, context=None)\n--\n\n\ +Return the value of the (natural) exponential function e**x at the given\n\ +number. The function always uses the ROUND_HALF_EVEN mode and the result\n\ +is correctly rounded.\n\ \n"); -PyDoc_STRVAR(doc_from_float,"\n\ -from_float(f) - Class method that converts a float to a decimal number, exactly.\n\ +PyDoc_STRVAR(doc_from_float, +"from_float($cls, f, /)\n--\n\n\ +Class method that converts a float to a decimal number, exactly.\n\ Since 0.1 is not exactly representable in binary floating point,\n\ Decimal.from_float(0.1) is not the same as Decimal('0.1').\n\ \n\ @@ -168,155 +180,176 @@ Decimal.from_float(0.1) is not the same as Decimal('0.1').\n\ \n\ \n"); -PyDoc_STRVAR(doc_fma,"\n\ -fma(other, third, context=None) - Fused multiply-add. Return self*other+third\n\ -with no rounding of the intermediate product self*other.\n\ +PyDoc_STRVAR(doc_fma, +"fma($self, /, other, third, context=None)\n--\n\n\ +Fused multiply-add. Return self*other+third with no rounding of the\n\ +intermediate product self*other.\n\ \n\ >>> Decimal(2).fma(3, 5)\n\ Decimal('11')\n\ \n\ \n"); -PyDoc_STRVAR(doc_is_canonical,"\n\ -is_canonical() - Return True if the argument is canonical and False otherwise.\n\ -Currently, a Decimal instance is always canonical, so this operation always\n\ -returns True.\n\ +PyDoc_STRVAR(doc_is_canonical, +"is_canonical($self, /)\n--\n\n\ +Return True if the argument is canonical and False otherwise. Currently,\n\ +a Decimal instance is always canonical, so this operation always returns\n\ +True.\n\ \n"); -PyDoc_STRVAR(doc_is_finite,"\n\ -is_finite() - Return True if the argument is a finite number, and False if the\n\ -argument is infinite or a NaN.\n\ +PyDoc_STRVAR(doc_is_finite, +"is_finite($self, /)\n--\n\n\ +Return True if the argument is a finite number, and False if the argument\n\ +is infinite or a NaN.\n\ \n"); -PyDoc_STRVAR(doc_is_infinite,"\n\ -is_infinite() - Return True if the argument is either positive or negative\n\ -infinity and False otherwise.\n\ +PyDoc_STRVAR(doc_is_infinite, +"is_infinite($self, /)\n--\n\n\ +Return True if the argument is either positive or negative infinity and\n\ +False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_is_nan,"\n\ -is_nan() - Return True if the argument is a (quiet or signaling) NaN and\n\ -False otherwise.\n\ +PyDoc_STRVAR(doc_is_nan, +"is_nan($self, /)\n--\n\n\ +Return True if the argument is a (quiet or signaling) NaN and False\n\ +otherwise.\n\ \n"); -PyDoc_STRVAR(doc_is_normal,"\n\ -is_normal(context=None) - Return True if the argument is a normal finite\n\ -non-zero number with an adjusted exponent greater than or equal to Emin.\n\ -Return False if the argument is zero, subnormal, infinite or a NaN.\n\ +PyDoc_STRVAR(doc_is_normal, +"is_normal($self, /, context=None)\n--\n\n\ +Return True if the argument is a normal finite non-zero number with an\n\ +adjusted exponent greater than or equal to Emin. Return False if the\n\ +argument is zero, subnormal, infinite or a NaN.\n\ \n"); -PyDoc_STRVAR(doc_is_qnan,"\n\ -is_qnan() - Return True if the argument is a quiet NaN, and False otherwise.\n\ +PyDoc_STRVAR(doc_is_qnan, +"is_qnan($self, /)\n--\n\n\ +Return True if the argument is a quiet NaN, and False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_is_signed,"\n\ -is_signed() - Return True if the argument has a negative sign and\n\ -False otherwise. Note that both zeros and NaNs can carry signs.\n\ +PyDoc_STRVAR(doc_is_signed, +"is_signed($self, /)\n--\n\n\ +Return True if the argument has a negative sign and False otherwise.\n\ +Note that both zeros and NaNs can carry signs.\n\ \n"); -PyDoc_STRVAR(doc_is_snan,"\n\ -is_snan() - Return True if the argument is a signaling NaN and False otherwise.\n\ +PyDoc_STRVAR(doc_is_snan, +"is_snan($self, /)\n--\n\n\ +Return True if the argument is a signaling NaN and False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_is_subnormal,"\n\ -is_subnormal(context=None) - Return True if the argument is subnormal, and\n\ -False otherwise. A number is subnormal if it is non-zero, finite, and has an\n\ -adjusted exponent less than Emin.\n\ +PyDoc_STRVAR(doc_is_subnormal, +"is_subnormal($self, /, context=None)\n--\n\n\ +Return True if the argument is subnormal, and False otherwise. A number is\n\ +subnormal if it is non-zero, finite, and has an adjusted exponent less\n\ +than Emin.\n\ \n"); -PyDoc_STRVAR(doc_is_zero,"\n\ -is_zero() - Return True if the argument is a (positive or negative) zero and\n\ -False otherwise.\n\ +PyDoc_STRVAR(doc_is_zero, +"is_zero($self, /)\n--\n\n\ +Return True if the argument is a (positive or negative) zero and False\n\ +otherwise.\n\ \n"); -PyDoc_STRVAR(doc_ln,"\n\ -ln(context=None) - Return the natural (base e) logarithm of the operand.\n\ -The function always uses the ROUND_HALF_EVEN mode and the result is\n\ -correctly rounded.\n\ +PyDoc_STRVAR(doc_ln, +"ln($self, /, context=None)\n--\n\n\ +Return the natural (base e) logarithm of the operand. The function always\n\ +uses the ROUND_HALF_EVEN mode and the result is correctly rounded.\n\ \n"); -PyDoc_STRVAR(doc_log10,"\n\ -log10(context=None) - Return the base ten logarithm of the operand.\n\ -The function always uses the ROUND_HALF_EVEN mode and the result is\n\ -correctly rounded.\n\ +PyDoc_STRVAR(doc_log10, +"log10($self, /, context=None)\n--\n\n\ +Return the base ten logarithm of the operand. The function always uses the\n\ +ROUND_HALF_EVEN mode and the result is correctly rounded.\n\ \n"); -PyDoc_STRVAR(doc_logb,"\n\ -logb(context=None) - For a non-zero number, return the adjusted exponent\n\ -of the operand as a Decimal instance. If the operand is a zero, then\n\ -Decimal('-Infinity') is returned and the DivisionByZero condition is\n\ -raised. If the operand is an infinity then Decimal('Infinity') is returned.\n\ +PyDoc_STRVAR(doc_logb, +"logb($self, /, context=None)\n--\n\n\ +For a non-zero number, return the adjusted exponent of the operand as a\n\ +Decimal instance. If the operand is a zero, then Decimal('-Infinity') is\n\ +returned and the DivisionByZero condition is raised. If the operand is\n\ +an infinity then Decimal('Infinity') is returned.\n\ \n"); -PyDoc_STRVAR(doc_logical_and,"\n\ -logical_and(other, context=None) - Return the digit-wise and of the two\n\ -(logical) operands.\n\ +PyDoc_STRVAR(doc_logical_and, +"logical_and($self, /, other, context=None)\n--\n\n\ +Return the digit-wise 'and' of the two (logical) operands.\n\ \n"); -PyDoc_STRVAR(doc_logical_invert,"\n\ -logical_invert(context=None) - Return the digit-wise inversion of the\n\ -(logical) operand.\n\ +PyDoc_STRVAR(doc_logical_invert, +"logical_invert($self, /, context=None)\n--\n\n\ +Return the digit-wise inversion of the (logical) operand.\n\ \n"); -PyDoc_STRVAR(doc_logical_or,"\n\ -logical_or(other, context=None) - Return the digit-wise or of the two\n\ -(logical) operands.\n\ +PyDoc_STRVAR(doc_logical_or, +"logical_or($self, /, other, context=None)\n--\n\n\ +Return the digit-wise 'or' of the two (logical) operands.\n\ \n"); -PyDoc_STRVAR(doc_logical_xor,"\n\ -logical_xor(other, context=None) - Return the digit-wise exclusive or of the\n\ -two (logical) operands.\n\ +PyDoc_STRVAR(doc_logical_xor, +"logical_xor($self, /, other, context=None)\n--\n\n\ +Return the digit-wise 'exclusive or' of the two (logical) operands.\n\ \n"); -PyDoc_STRVAR(doc_max,"\n\ -max(other, context=None) - Maximum of self and other. If one operand is a\n\ -quiet NaN and the other is numeric, the numeric operand is returned.\n\ +PyDoc_STRVAR(doc_max, +"max($self, /, other, context=None)\n--\n\n\ +Maximum of self and other. If one operand is a quiet NaN and the other is\n\ +numeric, the numeric operand is returned.\n\ \n"); -PyDoc_STRVAR(doc_max_mag,"\n\ -max_mag(other, context=None) - Similar to the max() method, but the\n\ -comparison is done using the absolute values of the operands.\n\ +PyDoc_STRVAR(doc_max_mag, +"max_mag($self, /, other, context=None)\n--\n\n\ +Similar to the max() method, but the comparison is done using the absolute\n\ +values of the operands.\n\ \n"); -PyDoc_STRVAR(doc_min,"\n\ -min(other, context=None) - Minimum of self and other. If one operand is a\n\ -quiet NaN and the other is numeric, the numeric operand is returned.\n\ +PyDoc_STRVAR(doc_min, +"min($self, /, other, context=None)\n--\n\n\ +Minimum of self and other. If one operand is a quiet NaN and the other is\n\ +numeric, the numeric operand is returned.\n\ \n"); -PyDoc_STRVAR(doc_min_mag,"\n\ -min_mag(other, context=None) - Similar to the min() method, but the\n\ -comparison is done using the absolute values of the operands.\n\ +PyDoc_STRVAR(doc_min_mag, +"min_mag($self, /, other, context=None)\n--\n\n\ +Similar to the min() method, but the comparison is done using the absolute\n\ +values of the operands.\n\ \n"); -PyDoc_STRVAR(doc_next_minus,"\n\ -next_minus(context=None) - Return the largest number representable in the\n\ -given context (or in the current default context if no context is given) that\n\ -is smaller than the given operand.\n\ +PyDoc_STRVAR(doc_next_minus, +"next_minus($self, /, context=None)\n--\n\n\ +Return the largest number representable in the given context (or in the\n\ +current default context if no context is given) that is smaller than the\n\ +given operand.\n\ \n"); -PyDoc_STRVAR(doc_next_plus,"\n\ -next_plus(context=None) - Return the smallest number representable in the\n\ -given context (or in the current default context if no context is given) that\n\ -is larger than the given operand.\n\ +PyDoc_STRVAR(doc_next_plus, +"next_plus($self, /, context=None)\n--\n\n\ +Return the smallest number representable in the given context (or in the\n\ +current default context if no context is given) that is larger than the\n\ +given operand.\n\ \n"); -PyDoc_STRVAR(doc_next_toward,"\n\ -next_toward(other, context=None) - If the two operands are unequal, return\n\ -the number closest to the first operand in the direction of the second operand.\n\ -If both operands are numerically equal, return a copy of the first operand\n\ -with the sign set to be the same as the sign of the second operand.\n\ +PyDoc_STRVAR(doc_next_toward, +"next_toward($self, /, other, context=None)\n--\n\n\ +If the two operands are unequal, return the number closest to the first\n\ +operand in the direction of the second operand. If both operands are\n\ +numerically equal, return a copy of the first operand with the sign set\n\ +to be the same as the sign of the second operand.\n\ \n"); -PyDoc_STRVAR(doc_normalize,"\n\ -normalize(context=None) - Normalize the number by stripping the rightmost\n\ -trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0').\n\ -Used for producing canonical values for members of an equivalence class. For\n\ -example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the\n\ -equivalent value Decimal('32.1').\n\ +PyDoc_STRVAR(doc_normalize, +"normalize($self, /, context=None)\n--\n\n\ +Normalize the number by stripping the rightmost trailing zeros and\n\ +converting any result equal to Decimal('0') to Decimal('0e0'). Used\n\ +for producing canonical values for members of an equivalence class.\n\ +For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize\n\ +to the equivalent value Decimal('32.1').\n\ \n"); -PyDoc_STRVAR(doc_number_class,"\n\ -number_class(context=None) - Return a string describing the class of the\n\ -operand. The returned value is one of the following ten strings:\n\ +PyDoc_STRVAR(doc_number_class, +"number_class($self, /, context=None)\n--\n\n\ +Return a string describing the class of the operand. The returned value\n\ +is one of the following ten strings:\n\ \n\ * '-Infinity', indicating that the operand is negative infinity.\n\ * '-Normal', indicating that the operand is a negative normal number.\n\ @@ -331,9 +364,10 @@ operand. The returned value is one of the following ten strings:\n\ \n\ \n"); -PyDoc_STRVAR(doc_quantize,"\n\ -quantize(exp, rounding=None, context=None) - Return a value equal to the\n\ -first operand after rounding and having the exponent of the second operand.\n\ +PyDoc_STRVAR(doc_quantize, +"quantize($self, /, exp, rounding=None, context=None)\n--\n\n\ +Return a value equal to the first operand after rounding and having the\n\ +exponent of the second operand.\n\ \n\ >>> Decimal('1.41421356').quantize(Decimal('1.000'))\n\ Decimal('1.414')\n\ @@ -352,93 +386,98 @@ rounding argument if given, else by the given context argument; if neither\n\ argument is given, the rounding mode of the current thread's context is used.\n\ \n"); -PyDoc_STRVAR(doc_radix,"\n\ -radix() - Return Decimal(10), the radix (base) in which the Decimal class does\n\ +PyDoc_STRVAR(doc_radix, +"radix($self, /)\n--\n\n\ +Return Decimal(10), the radix (base) in which the Decimal class does\n\ all its arithmetic. Included for compatibility with the specification.\n\ \n"); -PyDoc_STRVAR(doc_remainder_near,"\n\ -remainder_near(other, context=None) - Return the remainder from dividing\n\ -self by other. This differs from self % other in that the sign of the\n\ -remainder is chosen so as to minimize its absolute value. More precisely, the\n\ -return value is self - n * other where n is the integer nearest to the exact\n\ -value of self / other, and if two integers are equally near then the even one\n\ -is chosen.\n\ +PyDoc_STRVAR(doc_remainder_near, +"remainder_near($self, /, other, context=None)\n--\n\n\ +Return the remainder from dividing self by other. This differs from\n\ +self % other in that the sign of the remainder is chosen so as to minimize\n\ +its absolute value. More precisely, the return value is self - n * other\n\ +where n is the integer nearest to the exact value of self / other, and\n\ +if two integers are equally near then the even one is chosen.\n\ \n\ If the result is zero then its sign will be the sign of self.\n\ \n"); -PyDoc_STRVAR(doc_rotate,"\n\ -rotate(other, context=None) - Return the result of rotating the digits of the\n\ -first operand by an amount specified by the second operand. The second operand\n\ -must be an integer in the range -precision through precision. The absolute\n\ -value of the second operand gives the number of places to rotate. If the second\n\ -operand is positive then rotation is to the left; otherwise rotation is to the\n\ -right. The coefficient of the first operand is padded on the left with zeros to\n\ +PyDoc_STRVAR(doc_rotate, +"rotate($self, /, other, context=None)\n--\n\n\ +Return the result of rotating the digits of the first operand by an amount\n\ +specified by the second operand. The second operand must be an integer in\n\ +the range -precision through precision. The absolute value of the second\n\ +operand gives the number of places to rotate. If the second operand is\n\ +positive then rotation is to the left; otherwise rotation is to the right.\n\ +The coefficient of the first operand is padded on the left with zeros to\n\ length precision if necessary. The sign and exponent of the first operand are\n\ unchanged.\n\ \n"); -PyDoc_STRVAR(doc_same_quantum,"\n\ -same_quantum(other, context=None) - Test whether self and other have the\n\ -same exponent or whether both are NaN.\n\ +PyDoc_STRVAR(doc_same_quantum, +"same_quantum($self, /, other, context=None)\n--\n\n\ +Test whether self and other have the same exponent or whether both are NaN.\n\ \n\ This operation is unaffected by context and is quiet: no flags are changed\n\ and no rounding is performed. As an exception, the C version may raise\n\ InvalidOperation if the second operand cannot be converted exactly.\n\ \n"); -PyDoc_STRVAR(doc_scaleb,"\n\ -scaleb(other, context=None) - Return the first operand with the exponent\n\ -adjusted the second. Equivalently, return the first operand multiplied by\n\ -10**other. The second operand must be an integer.\n\ +PyDoc_STRVAR(doc_scaleb, +"scaleb($self, /, other, context=None)\n--\n\n\ +Return the first operand with the exponent adjusted the second. Equivalently,\n\ +return the first operand multiplied by 10**other. The second operand must be\n\ +an integer.\n\ \n"); -PyDoc_STRVAR(doc_shift,"\n\ -shift(other, context=None) - Return the result of shifting the digits of\n\ -the first operand by an amount specified by the second operand. The second\n\ -operand must be an integer in the range -precision through precision. The\n\ -absolute value of the second operand gives the number of places to shift.\n\ -If the second operand is positive, then the shift is to the left; otherwise\n\ -the shift is to the right. Digits shifted into the coefficient are zeros.\n\ -The sign and exponent of the first operand are unchanged.\n\ +PyDoc_STRVAR(doc_shift, +"shift($self, /, other, context=None)\n--\n\n\ +Return the result of shifting the digits of the first operand by an amount\n\ +specified by the second operand. The second operand must be an integer in\n\ +the range -precision through precision. The absolute value of the second\n\ +operand gives the number of places to shift. If the second operand is\n\ +positive, then the shift is to the left; otherwise the shift is to the\n\ +right. Digits shifted into the coefficient are zeros. The sign and exponent\n\ +of the first operand are unchanged.\n\ \n"); -PyDoc_STRVAR(doc_sqrt,"\n\ -sqrt(context=None) - Return the square root of the argument to full precision.\n\ -The result is correctly rounded using the ROUND_HALF_EVEN rounding mode.\n\ +PyDoc_STRVAR(doc_sqrt, +"sqrt($self, /, context=None)\n--\n\n\ +Return the square root of the argument to full precision. The result is\n\ +correctly rounded using the ROUND_HALF_EVEN rounding mode.\n\ \n"); -PyDoc_STRVAR(doc_to_eng_string,"\n\ -to_eng_string(context=None) - Convert to an engineering-type string.\n\ -Engineering notation has an exponent which is a multiple of 3, so there\n\ -are up to 3 digits left of the decimal place. For example, Decimal('123E+1')\n\ -is converted to Decimal('1.23E+3').\n\ +PyDoc_STRVAR(doc_to_eng_string, +"to_eng_string($self, /, context=None)\n--\n\n\ +Convert to an engineering-type string. Engineering notation has an exponent\n\ +which is a multiple of 3, so there are up to 3 digits left of the decimal\n\ +place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3').\n\ \n\ The value of context.capitals determines whether the exponent sign is lower\n\ or upper case. Otherwise, the context does not affect the operation.\n\ \n"); -PyDoc_STRVAR(doc_to_integral,"\n\ -to_integral(rounding=None, context=None) - Identical to the\n\ -to_integral_value() method. The to_integral() name has been kept\n\ -for compatibility with older versions.\n\ +PyDoc_STRVAR(doc_to_integral, +"to_integral($self, /, rounding=None, context=None)\n--\n\n\ +Identical to the to_integral_value() method. The to_integral() name has been\n\ +kept for compatibility with older versions.\n\ \n"); -PyDoc_STRVAR(doc_to_integral_exact,"\n\ -to_integral_exact(rounding=None, context=None) - Round to the nearest\n\ -integer, signaling Inexact or Rounded as appropriate if rounding occurs.\n\ -The rounding mode is determined by the rounding parameter if given, else\n\ -by the given context. If neither parameter is given, then the rounding mode\n\ -of the current default context is used.\n\ +PyDoc_STRVAR(doc_to_integral_exact, +"to_integral_exact($self, /, rounding=None, context=None)\n--\n\n\ +Round to the nearest integer, signaling Inexact or Rounded as appropriate if\n\ +rounding occurs. The rounding mode is determined by the rounding parameter\n\ +if given, else by the given context. If neither parameter is given, then the\n\ +rounding mode of the current default context is used.\n\ \n"); -PyDoc_STRVAR(doc_to_integral_value,"\n\ -to_integral_value(rounding=None, context=None) - Round to the nearest\n\ -integer without signaling Inexact or Rounded. The rounding mode is determined\n\ -by the rounding parameter if given, else by the given context. If neither\n\ -parameter is given, then the rounding mode of the current default context is\n\ -used.\n\ +PyDoc_STRVAR(doc_to_integral_value, +"to_integral_value($self, /, rounding=None, context=None)\n--\n\n\ +Round to the nearest integer without signaling Inexact or Rounded. The\n\ +rounding mode is determined by the rounding parameter if given, else by\n\ +the given context. If neither parameter is given, then the rounding mode\n\ +of the current default context is used.\n\ \n"); @@ -446,9 +485,10 @@ used.\n\ /* Context Object and Methods */ /******************************************************************************/ -PyDoc_STRVAR(doc_context,"\n\ +PyDoc_STRVAR(doc_context, +"Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)\n--\n\n\ The context affects almost all operations and controls rounding,\n\ -Over/Underflow, raising of exceptions and much more. A new context\n\ +Over/Underflow, raising of exceptions and much more. A new context\n\ can be constructed as follows:\n\ \n\ >>> c = Context(prec=28, Emin=-425000000, Emax=425000000,\n\ @@ -460,308 +500,372 @@ can be constructed as follows:\n\ \n"); #ifdef EXTRA_FUNCTIONALITY -PyDoc_STRVAR(doc_ctx_apply,"\n\ -apply(x) - Apply self to Decimal x.\n\ +PyDoc_STRVAR(doc_ctx_apply, +"apply($self, x, /)\n--\n\n\ +Apply self to Decimal x.\n\ \n"); #endif -PyDoc_STRVAR(doc_ctx_clear_flags,"\n\ -clear_flags() - Reset all flags to False.\n\ +PyDoc_STRVAR(doc_ctx_clear_flags, +"clear_flags($self, /)\n--\n\n\ +Reset all flags to False.\n\ \n"); -PyDoc_STRVAR(doc_ctx_clear_traps,"\n\ -clear_traps() - Set all traps to False.\n\ +PyDoc_STRVAR(doc_ctx_clear_traps, +"clear_traps($self, /)\n--\n\n\ +Set all traps to False.\n\ \n"); -PyDoc_STRVAR(doc_ctx_copy,"\n\ -copy() - Return a duplicate of the context with all flags cleared.\n\ +PyDoc_STRVAR(doc_ctx_copy, +"copy($self, /)\n--\n\n\ +Return a duplicate of the context with all flags cleared.\n\ \n"); -PyDoc_STRVAR(doc_ctx_copy_decimal,"\n\ -copy_decimal(x) - Return a copy of Decimal x.\n\ +PyDoc_STRVAR(doc_ctx_copy_decimal, +"copy_decimal($self, x, /)\n--\n\n\ +Return a copy of Decimal x.\n\ \n"); -PyDoc_STRVAR(doc_ctx_create_decimal,"\n\ -create_decimal(x) - Create a new Decimal instance from x, using self as the\n\ -context. Unlike the Decimal constructor, this function observes the context\n\ -limits.\n\ +PyDoc_STRVAR(doc_ctx_create_decimal, +"create_decimal($self, num=\"0\", /)\n--\n\n\ +Create a new Decimal instance from num, using self as the context. Unlike the\n\ +Decimal constructor, this function observes the context limits.\n\ \n"); -PyDoc_STRVAR(doc_ctx_create_decimal_from_float,"\n\ -create_decimal_from_float(f) - Create a new Decimal instance from float f.\n\ -Unlike the Decimal.from_float() class method, this function observes the\n\ -context limits.\n\ +PyDoc_STRVAR(doc_ctx_create_decimal_from_float, +"create_decimal_from_float($self, f, /)\n--\n\n\ +Create a new Decimal instance from float f. Unlike the Decimal.from_float()\n\ +class method, this function observes the context limits.\n\ \n"); -PyDoc_STRVAR(doc_ctx_Etiny,"\n\ -Etiny() - Return a value equal to Emin - prec + 1, which is the minimum\n\ -exponent value for subnormal results. When underflow occurs, the exponent\n\ -is set to Etiny.\n\ +PyDoc_STRVAR(doc_ctx_Etiny, +"Etiny($self, /)\n--\n\n\ +Return a value equal to Emin - prec + 1, which is the minimum exponent value\n\ +for subnormal results. When underflow occurs, the exponent is set to Etiny.\n\ \n"); -PyDoc_STRVAR(doc_ctx_Etop,"\n\ -Etop() - Return a value equal to Emax - prec + 1. This is the maximum exponent\n\ -if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must\n\ -not be negative.\n\ +PyDoc_STRVAR(doc_ctx_Etop, +"Etop($self, /)\n--\n\n\ +Return a value equal to Emax - prec + 1. This is the maximum exponent\n\ +if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop()\n\ +must not be negative.\n\ \n"); -PyDoc_STRVAR(doc_ctx_abs,"\n\ -abs(x) - Return the absolute value of x.\n\ +PyDoc_STRVAR(doc_ctx_abs, +"abs($self, x, /)\n--\n\n\ +Return the absolute value of x.\n\ \n"); -PyDoc_STRVAR(doc_ctx_add,"\n\ -add(x, y) - Return the sum of x and y.\n\ +PyDoc_STRVAR(doc_ctx_add, +"add($self, x, y, /)\n--\n\n\ +Return the sum of x and y.\n\ \n"); -PyDoc_STRVAR(doc_ctx_canonical,"\n\ -canonical(x) - Return a new instance of x.\n\ +PyDoc_STRVAR(doc_ctx_canonical, +"canonical($self, x, /)\n--\n\n\ +Return a new instance of x.\n\ \n"); -PyDoc_STRVAR(doc_ctx_compare,"\n\ -compare(x, y) - Compare x and y numerically.\n\ +PyDoc_STRVAR(doc_ctx_compare, +"compare($self, x, y, /)\n--\n\n\ +Compare x and y numerically.\n\ \n"); -PyDoc_STRVAR(doc_ctx_compare_signal,"\n\ -compare_signal(x, y) - Compare x and y numerically. All NaNs signal.\n\ +PyDoc_STRVAR(doc_ctx_compare_signal, +"compare_signal($self, x, y, /)\n--\n\n\ +Compare x and y numerically. All NaNs signal.\n\ \n"); -PyDoc_STRVAR(doc_ctx_compare_total,"\n\ -compare_total(x, y) - Compare x and y using their abstract representation.\n\ +PyDoc_STRVAR(doc_ctx_compare_total, +"compare_total($self, x, y, /)\n--\n\n\ +Compare x and y using their abstract representation.\n\ \n"); -PyDoc_STRVAR(doc_ctx_compare_total_mag,"\n\ -compare_total_mag(x, y) - Compare x and y using their abstract representation,\n\ -ignoring sign.\n\ +PyDoc_STRVAR(doc_ctx_compare_total_mag, +"compare_total_mag($self, x, y, /)\n--\n\n\ +Compare x and y using their abstract representation, ignoring sign.\n\ \n"); -PyDoc_STRVAR(doc_ctx_copy_abs,"\n\ -copy_abs(x) - Return a copy of x with the sign set to 0.\n\ +PyDoc_STRVAR(doc_ctx_copy_abs, +"copy_abs($self, x, /)\n--\n\n\ +Return a copy of x with the sign set to 0.\n\ \n"); -PyDoc_STRVAR(doc_ctx_copy_negate,"\n\ -copy_negate(x) - Return a copy of x with the sign inverted.\n\ +PyDoc_STRVAR(doc_ctx_copy_negate, +"copy_negate($self, x, /)\n--\n\n\ +Return a copy of x with the sign inverted.\n\ \n"); -PyDoc_STRVAR(doc_ctx_copy_sign,"\n\ -copy_sign(x, y) - Copy the sign from y to x.\n\ +PyDoc_STRVAR(doc_ctx_copy_sign, +"copy_sign($self, x, y, /)\n--\n\n\ +Copy the sign from y to x.\n\ \n"); -PyDoc_STRVAR(doc_ctx_divide,"\n\ -divide(x, y) - Return x divided by y.\n\ +PyDoc_STRVAR(doc_ctx_divide, +"divide($self, x, y, /)\n--\n\n\ +Return x divided by y.\n\ \n"); -PyDoc_STRVAR(doc_ctx_divide_int,"\n\ -divide_int(x, y) - Return x divided by y, truncated to an integer.\n\ +PyDoc_STRVAR(doc_ctx_divide_int, +"divide_int($self, x, y, /)\n--\n\n\ +Return x divided by y, truncated to an integer.\n\ \n"); -PyDoc_STRVAR(doc_ctx_divmod,"\n\ -divmod(x, y) - Return quotient and remainder of the division x / y.\n\ +PyDoc_STRVAR(doc_ctx_divmod, +"divmod($self, x, y, /)\n--\n\n\ +Return quotient and remainder of the division x / y.\n\ \n"); -PyDoc_STRVAR(doc_ctx_exp,"\n\ -exp(x) - Return e ** x.\n\ +PyDoc_STRVAR(doc_ctx_exp, +"exp($self, x, /)\n--\n\n\ +Return e ** x.\n\ \n"); -PyDoc_STRVAR(doc_ctx_fma,"\n\ -fma(x, y, z) - Return x multiplied by y, plus z.\n\ +PyDoc_STRVAR(doc_ctx_fma, +"fma($self, x, y, z, /)\n--\n\n\ +Return x multiplied by y, plus z.\n\ \n"); -PyDoc_STRVAR(doc_ctx_is_canonical,"\n\ -is_canonical(x) - Return True if x is canonical, False otherwise.\n\ +PyDoc_STRVAR(doc_ctx_is_canonical, +"is_canonical($self, x, /)\n--\n\n\ +Return True if x is canonical, False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_ctx_is_finite,"\n\ -is_finite(x) - Return True if x is finite, False otherwise.\n\ +PyDoc_STRVAR(doc_ctx_is_finite, +"is_finite($self, x, /)\n--\n\n\ +Return True if x is finite, False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_ctx_is_infinite,"\n\ -is_infinite(x) - Return True if x is infinite, False otherwise.\n\ +PyDoc_STRVAR(doc_ctx_is_infinite, +"is_infinite($self, x, /)\n--\n\n\ +Return True if x is infinite, False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_ctx_is_nan,"\n\ -is_nan(x) - Return True if x is a qNaN or sNaN, False otherwise.\n\ +PyDoc_STRVAR(doc_ctx_is_nan, +"is_nan($self, x, /)\n--\n\n\ +Return True if x is a qNaN or sNaN, False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_ctx_is_normal,"\n\ -is_normal(x) - Return True if x is a normal number, False otherwise.\n\ +PyDoc_STRVAR(doc_ctx_is_normal, +"is_normal($self, x, /)\n--\n\n\ +Return True if x is a normal number, False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_ctx_is_qnan,"\n\ -is_qnan(x) - Return True if x is a quiet NaN, False otherwise.\n\ +PyDoc_STRVAR(doc_ctx_is_qnan, +"is_qnan($self, x, /)\n--\n\n\ +Return True if x is a quiet NaN, False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_ctx_is_signed,"\n\ -is_signed(x) - Return True if x is negative, False otherwise.\n\ +PyDoc_STRVAR(doc_ctx_is_signed, +"is_signed($self, x, /)\n--\n\n\ +Return True if x is negative, False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_ctx_is_snan,"\n\ -is_snan() - Return True if x is a signaling NaN, False otherwise.\n\ +PyDoc_STRVAR(doc_ctx_is_snan, +"is_snan($self, x, /)\n--\n\n\ +Return True if x is a signaling NaN, False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_ctx_is_subnormal,"\n\ -is_subnormal(x) - Return True if x is subnormal, False otherwise.\n\ +PyDoc_STRVAR(doc_ctx_is_subnormal, +"is_subnormal($self, x, /)\n--\n\n\ +Return True if x is subnormal, False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_ctx_is_zero,"\n\ -is_zero(x) - Return True if x is a zero, False otherwise.\n\ +PyDoc_STRVAR(doc_ctx_is_zero, +"is_zero($self, x, /)\n--\n\n\ +Return True if x is a zero, False otherwise.\n\ \n"); -PyDoc_STRVAR(doc_ctx_ln,"\n\ -ln(x) - Return the natural (base e) logarithm of x.\n\ +PyDoc_STRVAR(doc_ctx_ln, +"ln($self, x, /)\n--\n\n\ +Return the natural (base e) logarithm of x.\n\ \n"); -PyDoc_STRVAR(doc_ctx_log10,"\n\ -log10(x) - Return the base 10 logarithm of x.\n\ +PyDoc_STRVAR(doc_ctx_log10, +"log10($self, x, /)\n--\n\n\ +Return the base 10 logarithm of x.\n\ \n"); -PyDoc_STRVAR(doc_ctx_logb,"\n\ -logb(x) - Return the exponent of the magnitude of the operand's MSD.\n\ +PyDoc_STRVAR(doc_ctx_logb, +"logb($self, x, /)\n--\n\n\ +Return the exponent of the magnitude of the operand's MSD.\n\ \n"); -PyDoc_STRVAR(doc_ctx_logical_and,"\n\ -logical_and(x, y) - Digit-wise and of x and y.\n\ +PyDoc_STRVAR(doc_ctx_logical_and, +"logical_and($self, x, y, /)\n--\n\n\ +Digit-wise and of x and y.\n\ \n"); -PyDoc_STRVAR(doc_ctx_logical_invert,"\n\ -logical_invert(x) - Invert all digits of x.\n\ +PyDoc_STRVAR(doc_ctx_logical_invert, +"logical_invert($self, x, /)\n--\n\n\ +Invert all digits of x.\n\ \n"); -PyDoc_STRVAR(doc_ctx_logical_or,"\n\ -logical_or(x, y) - Digit-wise or of x and y.\n\ +PyDoc_STRVAR(doc_ctx_logical_or, +"logical_or($self, x, y, /)\n--\n\n\ +Digit-wise or of x and y.\n\ \n"); -PyDoc_STRVAR(doc_ctx_logical_xor,"\n\ -logical_xor(x, y) - Digit-wise xor of x and y.\n\ +PyDoc_STRVAR(doc_ctx_logical_xor, +"logical_xor($self, x, y, /)\n--\n\n\ +Digit-wise xor of x and y.\n\ \n"); -PyDoc_STRVAR(doc_ctx_max,"\n\ -max(x, y) - Compare the values numerically and return the maximum.\n\ +PyDoc_STRVAR(doc_ctx_max, +"max($self, x, y, /)\n--\n\n\ +Compare the values numerically and return the maximum.\n\ \n"); -PyDoc_STRVAR(doc_ctx_max_mag,"\n\ -max_mag(x, y) - Compare the values numerically with their sign ignored.\n\ +PyDoc_STRVAR(doc_ctx_max_mag, +"max_mag($self, x, y, /)\n--\n\n\ +Compare the values numerically with their sign ignored.\n\ \n"); -PyDoc_STRVAR(doc_ctx_min,"\n\ -min(x, y) - Compare the values numerically and return the minimum.\n\ +PyDoc_STRVAR(doc_ctx_min, +"min($self, x, y, /)\n--\n\n\ +Compare the values numerically and return the minimum.\n\ \n"); -PyDoc_STRVAR(doc_ctx_min_mag,"\n\ -min_mag(x, y) - Compare the values numerically with their sign ignored.\n\ +PyDoc_STRVAR(doc_ctx_min_mag, +"min_mag($self, x, y, /)\n--\n\n\ +Compare the values numerically with their sign ignored.\n\ \n"); -PyDoc_STRVAR(doc_ctx_minus,"\n\ -minus(x) - Minus corresponds to the unary prefix minus operator in Python,\n\ -but applies the context to the result.\n\ +PyDoc_STRVAR(doc_ctx_minus, +"minus($self, x, /)\n--\n\n\ +Minus corresponds to the unary prefix minus operator in Python, but applies\n\ +the context to the result.\n\ \n"); -PyDoc_STRVAR(doc_ctx_multiply,"\n\ -multiply(x, y) - Return the product of x and y.\n\ +PyDoc_STRVAR(doc_ctx_multiply, +"multiply($self, x, y, /)\n--\n\n\ +Return the product of x and y.\n\ \n"); -PyDoc_STRVAR(doc_ctx_next_minus,"\n\ -next_minus(x) - Return the largest representable number smaller than x.\n\ +PyDoc_STRVAR(doc_ctx_next_minus, +"next_minus($self, x, /)\n--\n\n\ +Return the largest representable number smaller than x.\n\ \n"); -PyDoc_STRVAR(doc_ctx_next_plus,"\n\ -next_plus(x) - Return the smallest representable number larger than x.\n\ +PyDoc_STRVAR(doc_ctx_next_plus, +"next_plus($self, x, /)\n--\n\n\ +Return the smallest representable number larger than x.\n\ \n"); -PyDoc_STRVAR(doc_ctx_next_toward,"\n\ -next_toward(x) - Return the number closest to x, in the direction towards y.\n\ +PyDoc_STRVAR(doc_ctx_next_toward, +"next_toward($self, x, y, /)\n--\n\n\ +Return the number closest to x, in the direction towards y.\n\ \n"); -PyDoc_STRVAR(doc_ctx_normalize,"\n\ -normalize(x) - Reduce x to its simplest form. Alias for reduce(x).\n\ +PyDoc_STRVAR(doc_ctx_normalize, +"normalize($self, x, /)\n--\n\n\ +Reduce x to its simplest form. Alias for reduce(x).\n\ \n"); -PyDoc_STRVAR(doc_ctx_number_class,"\n\ -number_class(x) - Return an indication of the class of x.\n\ +PyDoc_STRVAR(doc_ctx_number_class, +"number_class($self, x, /)\n--\n\n\ +Return an indication of the class of x.\n\ \n"); -PyDoc_STRVAR(doc_ctx_plus,"\n\ -plus(x) - Plus corresponds to the unary prefix plus operator in Python,\n\ -but applies the context to the result.\n\ +PyDoc_STRVAR(doc_ctx_plus, +"plus($self, x, /)\n--\n\n\ +Plus corresponds to the unary prefix plus operator in Python, but applies\n\ +the context to the result.\n\ \n"); -PyDoc_STRVAR(doc_ctx_power,"\n\ -power(x, y) - Compute x**y. If x is negative, then y must be integral.\n\ -The result will be inexact unless y is integral and the result is finite\n\ -and can be expressed exactly in 'precision' digits. In the Python version\n\ -the result is always correctly rounded, in the C version the result is\n\ -almost always correctly rounded.\n\ +PyDoc_STRVAR(doc_ctx_power, +"power($self, /, a, b, modulo=None)\n--\n\n\ +Compute a**b. If 'a' is negative, then 'b' must be integral. The result\n\ +will be inexact unless 'a' is integral and the result is finite and can\n\ +be expressed exactly in 'precision' digits. In the Python version the\n\ +result is always correctly rounded, in the C version the result is almost\n\ +always correctly rounded.\n\ \n\ -power(x, y, m) - Compute (x**y) % m. The following restrictions hold:\n\ +If modulo is given, compute (a**b) % modulo. The following restrictions\n\ +hold:\n\ \n\ * all three arguments must be integral\n\ - * y must be nonnegative\n\ - * at least one of x or y must be nonzero\n\ - * m must be nonzero and less than 10**prec in absolute value\n\ + * 'b' must be nonnegative\n\ + * at least one of 'a' or 'b' must be nonzero\n\ + * modulo must be nonzero and less than 10**prec in absolute value\n\ \n\ \n"); -PyDoc_STRVAR(doc_ctx_quantize,"\n\ -quantize(x, y) - Return a value equal to x (rounded), having the exponent of y.\n\ +PyDoc_STRVAR(doc_ctx_quantize, +"quantize($self, x, y, /)\n--\n\n\ +Return a value equal to x (rounded), having the exponent of y.\n\ \n"); -PyDoc_STRVAR(doc_ctx_radix,"\n\ -radix() - Return 10.\n\ +PyDoc_STRVAR(doc_ctx_radix, +"radix($self, /)\n--\n\n\ +Return 10.\n\ \n"); -PyDoc_STRVAR(doc_ctx_remainder,"\n\ -remainder(x, y) - Return the remainder from integer division. The sign of\n\ -the result, if non-zero, is the same as that of the original dividend.\n\ +PyDoc_STRVAR(doc_ctx_remainder, +"remainder($self, x, y, /)\n--\n\n\ +Return the remainder from integer division. The sign of the result,\n\ +if non-zero, is the same as that of the original dividend.\n\ \n"); -PyDoc_STRVAR(doc_ctx_remainder_near,"\n\ -remainder_near(x, y) - Return x - y * n, where n is the integer nearest the\n\ -exact value of x / y (if the result is 0 then its sign will be the sign of x).\n\ +PyDoc_STRVAR(doc_ctx_remainder_near, +"remainder_near($self, x, y, /)\n--\n\n\ +Return x - y * n, where n is the integer nearest the exact value of x / y\n\ +(if the result is 0 then its sign will be the sign of x).\n\ \n"); -PyDoc_STRVAR(doc_ctx_rotate,"\n\ -rotate(x, y) - Return a copy of x, rotated by y places.\n\ +PyDoc_STRVAR(doc_ctx_rotate, +"rotate($self, x, y, /)\n--\n\n\ +Return a copy of x, rotated by y places.\n\ \n"); -PyDoc_STRVAR(doc_ctx_same_quantum,"\n\ -same_quantum(x, y) - Return True if the two operands have the same exponent.\n\ +PyDoc_STRVAR(doc_ctx_same_quantum, +"same_quantum($self, x, y, /)\n--\n\n\ +Return True if the two operands have the same exponent.\n\ \n"); -PyDoc_STRVAR(doc_ctx_scaleb,"\n\ -scaleb(x, y) - Return the first operand after adding the second value\n\ -to its exp.\n\ +PyDoc_STRVAR(doc_ctx_scaleb, +"scaleb($self, x, y, /)\n--\n\n\ +Return the first operand after adding the second value to its exp.\n\ \n"); -PyDoc_STRVAR(doc_ctx_shift,"\n\ -shift(x, y) - Return a copy of x, shifted by y places.\n\ +PyDoc_STRVAR(doc_ctx_shift, +"shift($self, x, y, /)\n--\n\n\ +Return a copy of x, shifted by y places.\n\ \n"); -PyDoc_STRVAR(doc_ctx_sqrt,"\n\ -sqrt(x) - Square root of a non-negative number to context precision.\n\ +PyDoc_STRVAR(doc_ctx_sqrt, +"sqrt($self, x, /)\n--\n\n\ +Square root of a non-negative number to context precision.\n\ \n"); -PyDoc_STRVAR(doc_ctx_subtract,"\n\ -subtract(x, y) - Return the difference between x and y.\n\ +PyDoc_STRVAR(doc_ctx_subtract, +"subtract($self, x, y, /)\n--\n\n\ +Return the difference between x and y.\n\ \n"); -PyDoc_STRVAR(doc_ctx_to_eng_string,"\n\ -to_eng_string(x) - Convert a number to a string, using engineering notation.\n\ +PyDoc_STRVAR(doc_ctx_to_eng_string, +"to_eng_string($self, x, /)\n--\n\n\ +Convert a number to a string, using engineering notation.\n\ \n"); -PyDoc_STRVAR(doc_ctx_to_integral,"\n\ -to_integral(x) - Identical to to_integral_value(x).\n\ +PyDoc_STRVAR(doc_ctx_to_integral, +"to_integral($self, x, /)\n--\n\n\ +Identical to to_integral_value(x).\n\ \n"); -PyDoc_STRVAR(doc_ctx_to_integral_exact,"\n\ -to_integral_exact(x) - Round to an integer. Signal if the result is\n\ -rounded or inexact.\n\ +PyDoc_STRVAR(doc_ctx_to_integral_exact, +"to_integral_exact($self, x, /)\n--\n\n\ +Round to an integer. Signal if the result is rounded or inexact.\n\ \n"); -PyDoc_STRVAR(doc_ctx_to_integral_value,"\n\ -to_integral_value(x) - Round to an integer.\n\ +PyDoc_STRVAR(doc_ctx_to_integral_value, +"to_integral_value($self, x, /)\n--\n\n\ +Round to an integer.\n\ \n"); -PyDoc_STRVAR(doc_ctx_to_sci_string,"\n\ -to_sci_string(x) - Convert a number to a string using scientific notation.\n\ +PyDoc_STRVAR(doc_ctx_to_sci_string, +"to_sci_string($self, x, /)\n--\n\n\ +Convert a number to a string using scientific notation.\n\ \n"); |