diff options
Diffstat (limited to 'Modules/_decimal/libmpdec/basearith.c')
-rw-r--r-- | Modules/_decimal/libmpdec/basearith.c | 658 |
1 files changed, 658 insertions, 0 deletions
diff --git a/Modules/_decimal/libmpdec/basearith.c b/Modules/_decimal/libmpdec/basearith.c new file mode 100644 index 0000000..dd21a7a --- /dev/null +++ b/Modules/_decimal/libmpdec/basearith.c @@ -0,0 +1,658 @@ +/* + * Copyright (c) 2008-2012 Stefan Krah. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + + +#include "mpdecimal.h" +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <assert.h> +#include "constants.h" +#include "memory.h" +#include "typearith.h" +#include "basearith.h" + + +/*********************************************************************/ +/* Calculations in base MPD_RADIX */ +/*********************************************************************/ + + +/* + * Knuth, TAOCP, Volume 2, 4.3.1: + * w := sum of u (len m) and v (len n) + * n > 0 and m >= n + * The calling function has to handle a possible final carry. + */ +mpd_uint_t +_mpd_baseadd(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v, + mpd_size_t m, mpd_size_t n) +{ + mpd_uint_t s; + mpd_uint_t carry = 0; + mpd_size_t i; + + assert(n > 0 && m >= n); + + /* add n members of u and v */ + for (i = 0; i < n; i++) { + s = u[i] + (v[i] + carry); + carry = (s < u[i]) | (s >= MPD_RADIX); + w[i] = carry ? s-MPD_RADIX : s; + } + /* if there is a carry, propagate it */ + for (; carry && i < m; i++) { + s = u[i] + carry; + carry = (s == MPD_RADIX); + w[i] = carry ? 0 : s; + } + /* copy the rest of u */ + for (; i < m; i++) { + w[i] = u[i]; + } + + return carry; +} + +/* + * Add the contents of u to w. Carries are propagated further. The caller + * has to make sure that w is big enough. + */ +void +_mpd_baseaddto(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n) +{ + mpd_uint_t s; + mpd_uint_t carry = 0; + mpd_size_t i; + + if (n == 0) return; + + /* add n members of u to w */ + for (i = 0; i < n; i++) { + s = w[i] + (u[i] + carry); + carry = (s < w[i]) | (s >= MPD_RADIX); + w[i] = carry ? s-MPD_RADIX : s; + } + /* if there is a carry, propagate it */ + for (; carry; i++) { + s = w[i] + carry; + carry = (s == MPD_RADIX); + w[i] = carry ? 0 : s; + } +} + +/* + * Add v to w (len m). The calling function has to handle a possible + * final carry. Assumption: m > 0. + */ +mpd_uint_t +_mpd_shortadd(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v) +{ + mpd_uint_t s; + mpd_uint_t carry; + mpd_size_t i; + + assert(m > 0); + + /* add v to w */ + s = w[0] + v; + carry = (s < v) | (s >= MPD_RADIX); + w[0] = carry ? s-MPD_RADIX : s; + + /* if there is a carry, propagate it */ + for (i = 1; carry && i < m; i++) { + s = w[i] + carry; + carry = (s == MPD_RADIX); + w[i] = carry ? 0 : s; + } + + return carry; +} + +/* Increment u. The calling function has to handle a possible carry. */ +mpd_uint_t +_mpd_baseincr(mpd_uint_t *u, mpd_size_t n) +{ + mpd_uint_t s; + mpd_uint_t carry = 1; + mpd_size_t i; + + assert(n > 0); + + /* if there is a carry, propagate it */ + for (i = 0; carry && i < n; i++) { + s = u[i] + carry; + carry = (s == MPD_RADIX); + u[i] = carry ? 0 : s; + } + + return carry; +} + +/* + * Knuth, TAOCP, Volume 2, 4.3.1: + * w := difference of u (len m) and v (len n). + * number in u >= number in v; + */ +void +_mpd_basesub(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v, + mpd_size_t m, mpd_size_t n) +{ + mpd_uint_t d; + mpd_uint_t borrow = 0; + mpd_size_t i; + + assert(m > 0 && n > 0); + + /* subtract n members of v from u */ + for (i = 0; i < n; i++) { + d = u[i] - (v[i] + borrow); + borrow = (u[i] < d); + w[i] = borrow ? d + MPD_RADIX : d; + } + /* if there is a borrow, propagate it */ + for (; borrow && i < m; i++) { + d = u[i] - borrow; + borrow = (u[i] == 0); + w[i] = borrow ? MPD_RADIX-1 : d; + } + /* copy the rest of u */ + for (; i < m; i++) { + w[i] = u[i]; + } +} + +/* + * Subtract the contents of u from w. w is larger than u. Borrows are + * propagated further, but eventually w can absorb the final borrow. + */ +void +_mpd_basesubfrom(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n) +{ + mpd_uint_t d; + mpd_uint_t borrow = 0; + mpd_size_t i; + + if (n == 0) return; + + /* subtract n members of u from w */ + for (i = 0; i < n; i++) { + d = w[i] - (u[i] + borrow); + borrow = (w[i] < d); + w[i] = borrow ? d + MPD_RADIX : d; + } + /* if there is a borrow, propagate it */ + for (; borrow; i++) { + d = w[i] - borrow; + borrow = (w[i] == 0); + w[i] = borrow ? MPD_RADIX-1 : d; + } +} + +/* w := product of u (len n) and v (single word) */ +void +_mpd_shortmul(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v) +{ + mpd_uint_t hi, lo; + mpd_uint_t carry = 0; + mpd_size_t i; + + assert(n > 0); + + for (i=0; i < n; i++) { + + _mpd_mul_words(&hi, &lo, u[i], v); + lo = carry + lo; + if (lo < carry) hi++; + + _mpd_div_words_r(&carry, &w[i], hi, lo); + } + w[i] = carry; +} + +/* + * Knuth, TAOCP, Volume 2, 4.3.1: + * w := product of u (len m) and v (len n) + * w must be initialized to zero + */ +void +_mpd_basemul(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v, + mpd_size_t m, mpd_size_t n) +{ + mpd_uint_t hi, lo; + mpd_uint_t carry; + mpd_size_t i, j; + + assert(m > 0 && n > 0); + + for (j=0; j < n; j++) { + carry = 0; + for (i=0; i < m; i++) { + + _mpd_mul_words(&hi, &lo, u[i], v[j]); + lo = w[i+j] + lo; + if (lo < w[i+j]) hi++; + lo = carry + lo; + if (lo < carry) hi++; + + _mpd_div_words_r(&carry, &w[i+j], hi, lo); + } + w[j+m] = carry; + } +} + +/* + * Knuth, TAOCP Volume 2, 4.3.1, exercise 16: + * w := quotient of u (len n) divided by a single word v + */ +mpd_uint_t +_mpd_shortdiv(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v) +{ + mpd_uint_t hi, lo; + mpd_uint_t rem = 0; + mpd_size_t i; + + assert(n > 0); + + for (i=n-1; i != MPD_SIZE_MAX; i--) { + + _mpd_mul_words(&hi, &lo, rem, MPD_RADIX); + lo = u[i] + lo; + if (lo < u[i]) hi++; + + _mpd_div_words(&w[i], &rem, hi, lo, v); + } + + return rem; +} + +/* + * Knuth, TAOCP Volume 2, 4.3.1: + * q, r := quotient and remainder of uconst (len nplusm) + * divided by vconst (len n) + * nplusm >= n + * + * If r is not NULL, r will contain the remainder. If r is NULL, the + * return value indicates if there is a remainder: 1 for true, 0 for + * false. A return value of -1 indicates an error. + */ +int +_mpd_basedivmod(mpd_uint_t *q, mpd_uint_t *r, + const mpd_uint_t *uconst, const mpd_uint_t *vconst, + mpd_size_t nplusm, mpd_size_t n) +{ + mpd_uint_t ustatic[MPD_MINALLOC_MAX]; + mpd_uint_t vstatic[MPD_MINALLOC_MAX]; + mpd_uint_t *u = ustatic; + mpd_uint_t *v = vstatic; + mpd_uint_t d, qhat, rhat, w2[2]; + mpd_uint_t hi, lo, x; + mpd_uint_t carry; + mpd_size_t i, j, m; + int retval = 0; + + assert(n > 1 && nplusm >= n); + m = sub_size_t(nplusm, n); + + /* D1: normalize */ + d = MPD_RADIX / (vconst[n-1] + 1); + + if (nplusm >= MPD_MINALLOC_MAX) { + if ((u = mpd_alloc(nplusm+1, sizeof *u)) == NULL) { + return -1; + } + } + if (n >= MPD_MINALLOC_MAX) { + if ((v = mpd_alloc(n+1, sizeof *v)) == NULL) { + mpd_free(u); + return -1; + } + } + + _mpd_shortmul(u, uconst, nplusm, d); + _mpd_shortmul(v, vconst, n, d); + + /* D2: loop */ + for (j=m; j != MPD_SIZE_MAX; j--) { + + /* D3: calculate qhat and rhat */ + rhat = _mpd_shortdiv(w2, u+j+n-1, 2, v[n-1]); + qhat = w2[1] * MPD_RADIX + w2[0]; + + while (1) { + if (qhat < MPD_RADIX) { + _mpd_singlemul(w2, qhat, v[n-2]); + if (w2[1] <= rhat) { + if (w2[1] != rhat || w2[0] <= u[j+n-2]) { + break; + } + } + } + qhat -= 1; + rhat += v[n-1]; + if (rhat < v[n-1] || rhat >= MPD_RADIX) { + break; + } + } + /* D4: multiply and subtract */ + carry = 0; + for (i=0; i <= n; i++) { + + _mpd_mul_words(&hi, &lo, qhat, v[i]); + + lo = carry + lo; + if (lo < carry) hi++; + + _mpd_div_words_r(&hi, &lo, hi, lo); + + x = u[i+j] - lo; + carry = (u[i+j] < x); + u[i+j] = carry ? x+MPD_RADIX : x; + carry += hi; + } + q[j] = qhat; + /* D5: test remainder */ + if (carry) { + q[j] -= 1; + /* D6: add back */ + (void)_mpd_baseadd(u+j, u+j, v, n+1, n); + } + } + + /* D8: unnormalize */ + if (r != NULL) { + _mpd_shortdiv(r, u, n, d); + /* we are not interested in the return value here */ + retval = 0; + } + else { + retval = !_mpd_isallzero(u, n); + } + + +if (u != ustatic) mpd_free(u); +if (v != vstatic) mpd_free(v); +return retval; +} + +/* + * Left shift of src by 'shift' digits; src may equal dest. + * + * dest := area of n mpd_uint_t with space for srcdigits+shift digits. + * src := coefficient with length m. + * + * The case splits in the function are non-obvious. The following + * equations might help: + * + * Let msdigits denote the number of digits in the most significant + * word of src. Then 1 <= msdigits <= rdigits. + * + * 1) shift = q * rdigits + r + * 2) srcdigits = qsrc * rdigits + msdigits + * 3) destdigits = shift + srcdigits + * = q * rdigits + r + qsrc * rdigits + msdigits + * = q * rdigits + (qsrc * rdigits + (r + msdigits)) + * + * The result has q zero words, followed by the coefficient that + * is left-shifted by r. The case r == 0 is trivial. For r > 0, it + * is important to keep in mind that we always read m source words, + * but write m+1 destination words if r + msdigits > rdigits, m words + * otherwise. + */ +void +_mpd_baseshiftl(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t n, mpd_size_t m, + mpd_size_t shift) +{ +#if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__) + /* spurious uninitialized warnings */ + mpd_uint_t l=l, lprev=lprev, h=h; +#else + mpd_uint_t l, lprev, h; +#endif + mpd_uint_t q, r; + mpd_uint_t ph; + + assert(m > 0 && n >= m); + + _mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS); + + if (r != 0) { + + ph = mpd_pow10[r]; + + --m; --n; + _mpd_divmod_pow10(&h, &lprev, src[m--], MPD_RDIGITS-r); + if (h != 0) { /* r + msdigits > rdigits <==> h != 0 */ + dest[n--] = h; + } + /* write m-1 shifted words */ + for (; m != MPD_SIZE_MAX; m--,n--) { + _mpd_divmod_pow10(&h, &l, src[m], MPD_RDIGITS-r); + dest[n] = ph * lprev + h; + lprev = l; + } + /* write least significant word */ + dest[q] = ph * lprev; + } + else { + while (--m != MPD_SIZE_MAX) { + dest[m+q] = src[m]; + } + } + + mpd_uint_zero(dest, q); +} + +/* + * Right shift of src by 'shift' digits; src may equal dest. + * Assumption: srcdigits-shift > 0. + * + * dest := area with space for srcdigits-shift digits. + * src := coefficient with length 'slen'. + * + * The case splits in the function rely on the following equations: + * + * Let msdigits denote the number of digits in the most significant + * word of src. Then 1 <= msdigits <= rdigits. + * + * 1) shift = q * rdigits + r + * 2) srcdigits = qsrc * rdigits + msdigits + * 3) destdigits = srcdigits - shift + * = qsrc * rdigits + msdigits - (q * rdigits + r) + * = (qsrc - q) * rdigits + msdigits - r + * + * Since destdigits > 0 and 1 <= msdigits <= rdigits: + * + * 4) qsrc >= q + * 5) qsrc == q ==> msdigits > r + * + * The result has slen-q words if msdigits > r, slen-q-1 words otherwise. + */ +mpd_uint_t +_mpd_baseshiftr(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t slen, + mpd_size_t shift) +{ +#if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__) + /* spurious uninitialized warnings */ + mpd_uint_t l=l, h=h, hprev=hprev; /* low, high, previous high */ +#else + mpd_uint_t l, h, hprev; /* low, high, previous high */ +#endif + mpd_uint_t rnd, rest; /* rounding digit, rest */ + mpd_uint_t q, r; + mpd_size_t i, j; + mpd_uint_t ph; + + assert(slen > 0); + + _mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS); + + rnd = rest = 0; + if (r != 0) { + + ph = mpd_pow10[MPD_RDIGITS-r]; + + _mpd_divmod_pow10(&hprev, &rest, src[q], r); + _mpd_divmod_pow10(&rnd, &rest, rest, r-1); + + if (rest == 0 && q > 0) { + rest = !_mpd_isallzero(src, q); + } + /* write slen-q-1 words */ + for (j=0,i=q+1; i<slen; i++,j++) { + _mpd_divmod_pow10(&h, &l, src[i], r); + dest[j] = ph * l + hprev; + hprev = h; + } + /* write most significant word */ + if (hprev != 0) { /* always the case if slen==q-1 */ + dest[j] = hprev; + } + } + else { + if (q > 0) { + _mpd_divmod_pow10(&rnd, &rest, src[q-1], MPD_RDIGITS-1); + /* is there any non-zero digit below rnd? */ + if (rest == 0) rest = !_mpd_isallzero(src, q-1); + } + for (j = 0; j < slen-q; j++) { + dest[j] = src[q+j]; + } + } + + /* 0-4 ==> rnd+rest < 0.5 */ + /* 5 ==> rnd+rest == 0.5 */ + /* 6-9 ==> rnd+rest > 0.5 */ + return (rnd == 0 || rnd == 5) ? rnd + !!rest : rnd; +} + + +/*********************************************************************/ +/* Calculations in base b */ +/*********************************************************************/ + +/* + * Add v to w (len m). The calling function has to handle a possible + * final carry. Assumption: m > 0. + */ +mpd_uint_t +_mpd_shortadd_b(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v, mpd_uint_t b) +{ + mpd_uint_t s; + mpd_uint_t carry; + mpd_size_t i; + + assert(m > 0); + + /* add v to w */ + s = w[0] + v; + carry = (s < v) | (s >= b); + w[0] = carry ? s-b : s; + + /* if there is a carry, propagate it */ + for (i = 1; carry && i < m; i++) { + s = w[i] + carry; + carry = (s == b); + w[i] = carry ? 0 : s; + } + + return carry; +} + +/* w := product of u (len n) and v (single word). Return carry. */ +mpd_uint_t +_mpd_shortmul_c(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v) +{ + mpd_uint_t hi, lo; + mpd_uint_t carry = 0; + mpd_size_t i; + + assert(n > 0); + + for (i=0; i < n; i++) { + + _mpd_mul_words(&hi, &lo, u[i], v); + lo = carry + lo; + if (lo < carry) hi++; + + _mpd_div_words_r(&carry, &w[i], hi, lo); + } + + return carry; +} + +/* w := product of u (len n) and v (single word) */ +mpd_uint_t +_mpd_shortmul_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, + mpd_uint_t v, mpd_uint_t b) +{ + mpd_uint_t hi, lo; + mpd_uint_t carry = 0; + mpd_size_t i; + + assert(n > 0); + + for (i=0; i < n; i++) { + + _mpd_mul_words(&hi, &lo, u[i], v); + lo = carry + lo; + if (lo < carry) hi++; + + _mpd_div_words(&carry, &w[i], hi, lo, b); + } + + return carry; +} + +/* + * Knuth, TAOCP Volume 2, 4.3.1, exercise 16: + * w := quotient of u (len n) divided by a single word v + */ +mpd_uint_t +_mpd_shortdiv_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, + mpd_uint_t v, mpd_uint_t b) +{ + mpd_uint_t hi, lo; + mpd_uint_t rem = 0; + mpd_size_t i; + + assert(n > 0); + + for (i=n-1; i != MPD_SIZE_MAX; i--) { + + _mpd_mul_words(&hi, &lo, rem, b); + lo = u[i] + lo; + if (lo < u[i]) hi++; + + _mpd_div_words(&w[i], &rem, hi, lo, v); + } + + return rem; +} + + + |