summaryrefslogtreecommitdiffstats
path: root/Modules/_decimal/libmpdec/basearith.c
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/_decimal/libmpdec/basearith.c')
-rw-r--r--Modules/_decimal/libmpdec/basearith.c658
1 files changed, 658 insertions, 0 deletions
diff --git a/Modules/_decimal/libmpdec/basearith.c b/Modules/_decimal/libmpdec/basearith.c
new file mode 100644
index 0000000..dd21a7a
--- /dev/null
+++ b/Modules/_decimal/libmpdec/basearith.c
@@ -0,0 +1,658 @@
+/*
+ * Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+
+#include "mpdecimal.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include "constants.h"
+#include "memory.h"
+#include "typearith.h"
+#include "basearith.h"
+
+
+/*********************************************************************/
+/* Calculations in base MPD_RADIX */
+/*********************************************************************/
+
+
+/*
+ * Knuth, TAOCP, Volume 2, 4.3.1:
+ * w := sum of u (len m) and v (len n)
+ * n > 0 and m >= n
+ * The calling function has to handle a possible final carry.
+ */
+mpd_uint_t
+_mpd_baseadd(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
+ mpd_size_t m, mpd_size_t n)
+{
+ mpd_uint_t s;
+ mpd_uint_t carry = 0;
+ mpd_size_t i;
+
+ assert(n > 0 && m >= n);
+
+ /* add n members of u and v */
+ for (i = 0; i < n; i++) {
+ s = u[i] + (v[i] + carry);
+ carry = (s < u[i]) | (s >= MPD_RADIX);
+ w[i] = carry ? s-MPD_RADIX : s;
+ }
+ /* if there is a carry, propagate it */
+ for (; carry && i < m; i++) {
+ s = u[i] + carry;
+ carry = (s == MPD_RADIX);
+ w[i] = carry ? 0 : s;
+ }
+ /* copy the rest of u */
+ for (; i < m; i++) {
+ w[i] = u[i];
+ }
+
+ return carry;
+}
+
+/*
+ * Add the contents of u to w. Carries are propagated further. The caller
+ * has to make sure that w is big enough.
+ */
+void
+_mpd_baseaddto(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
+{
+ mpd_uint_t s;
+ mpd_uint_t carry = 0;
+ mpd_size_t i;
+
+ if (n == 0) return;
+
+ /* add n members of u to w */
+ for (i = 0; i < n; i++) {
+ s = w[i] + (u[i] + carry);
+ carry = (s < w[i]) | (s >= MPD_RADIX);
+ w[i] = carry ? s-MPD_RADIX : s;
+ }
+ /* if there is a carry, propagate it */
+ for (; carry; i++) {
+ s = w[i] + carry;
+ carry = (s == MPD_RADIX);
+ w[i] = carry ? 0 : s;
+ }
+}
+
+/*
+ * Add v to w (len m). The calling function has to handle a possible
+ * final carry. Assumption: m > 0.
+ */
+mpd_uint_t
+_mpd_shortadd(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v)
+{
+ mpd_uint_t s;
+ mpd_uint_t carry;
+ mpd_size_t i;
+
+ assert(m > 0);
+
+ /* add v to w */
+ s = w[0] + v;
+ carry = (s < v) | (s >= MPD_RADIX);
+ w[0] = carry ? s-MPD_RADIX : s;
+
+ /* if there is a carry, propagate it */
+ for (i = 1; carry && i < m; i++) {
+ s = w[i] + carry;
+ carry = (s == MPD_RADIX);
+ w[i] = carry ? 0 : s;
+ }
+
+ return carry;
+}
+
+/* Increment u. The calling function has to handle a possible carry. */
+mpd_uint_t
+_mpd_baseincr(mpd_uint_t *u, mpd_size_t n)
+{
+ mpd_uint_t s;
+ mpd_uint_t carry = 1;
+ mpd_size_t i;
+
+ assert(n > 0);
+
+ /* if there is a carry, propagate it */
+ for (i = 0; carry && i < n; i++) {
+ s = u[i] + carry;
+ carry = (s == MPD_RADIX);
+ u[i] = carry ? 0 : s;
+ }
+
+ return carry;
+}
+
+/*
+ * Knuth, TAOCP, Volume 2, 4.3.1:
+ * w := difference of u (len m) and v (len n).
+ * number in u >= number in v;
+ */
+void
+_mpd_basesub(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
+ mpd_size_t m, mpd_size_t n)
+{
+ mpd_uint_t d;
+ mpd_uint_t borrow = 0;
+ mpd_size_t i;
+
+ assert(m > 0 && n > 0);
+
+ /* subtract n members of v from u */
+ for (i = 0; i < n; i++) {
+ d = u[i] - (v[i] + borrow);
+ borrow = (u[i] < d);
+ w[i] = borrow ? d + MPD_RADIX : d;
+ }
+ /* if there is a borrow, propagate it */
+ for (; borrow && i < m; i++) {
+ d = u[i] - borrow;
+ borrow = (u[i] == 0);
+ w[i] = borrow ? MPD_RADIX-1 : d;
+ }
+ /* copy the rest of u */
+ for (; i < m; i++) {
+ w[i] = u[i];
+ }
+}
+
+/*
+ * Subtract the contents of u from w. w is larger than u. Borrows are
+ * propagated further, but eventually w can absorb the final borrow.
+ */
+void
+_mpd_basesubfrom(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
+{
+ mpd_uint_t d;
+ mpd_uint_t borrow = 0;
+ mpd_size_t i;
+
+ if (n == 0) return;
+
+ /* subtract n members of u from w */
+ for (i = 0; i < n; i++) {
+ d = w[i] - (u[i] + borrow);
+ borrow = (w[i] < d);
+ w[i] = borrow ? d + MPD_RADIX : d;
+ }
+ /* if there is a borrow, propagate it */
+ for (; borrow; i++) {
+ d = w[i] - borrow;
+ borrow = (w[i] == 0);
+ w[i] = borrow ? MPD_RADIX-1 : d;
+ }
+}
+
+/* w := product of u (len n) and v (single word) */
+void
+_mpd_shortmul(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
+{
+ mpd_uint_t hi, lo;
+ mpd_uint_t carry = 0;
+ mpd_size_t i;
+
+ assert(n > 0);
+
+ for (i=0; i < n; i++) {
+
+ _mpd_mul_words(&hi, &lo, u[i], v);
+ lo = carry + lo;
+ if (lo < carry) hi++;
+
+ _mpd_div_words_r(&carry, &w[i], hi, lo);
+ }
+ w[i] = carry;
+}
+
+/*
+ * Knuth, TAOCP, Volume 2, 4.3.1:
+ * w := product of u (len m) and v (len n)
+ * w must be initialized to zero
+ */
+void
+_mpd_basemul(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
+ mpd_size_t m, mpd_size_t n)
+{
+ mpd_uint_t hi, lo;
+ mpd_uint_t carry;
+ mpd_size_t i, j;
+
+ assert(m > 0 && n > 0);
+
+ for (j=0; j < n; j++) {
+ carry = 0;
+ for (i=0; i < m; i++) {
+
+ _mpd_mul_words(&hi, &lo, u[i], v[j]);
+ lo = w[i+j] + lo;
+ if (lo < w[i+j]) hi++;
+ lo = carry + lo;
+ if (lo < carry) hi++;
+
+ _mpd_div_words_r(&carry, &w[i+j], hi, lo);
+ }
+ w[j+m] = carry;
+ }
+}
+
+/*
+ * Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
+ * w := quotient of u (len n) divided by a single word v
+ */
+mpd_uint_t
+_mpd_shortdiv(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
+{
+ mpd_uint_t hi, lo;
+ mpd_uint_t rem = 0;
+ mpd_size_t i;
+
+ assert(n > 0);
+
+ for (i=n-1; i != MPD_SIZE_MAX; i--) {
+
+ _mpd_mul_words(&hi, &lo, rem, MPD_RADIX);
+ lo = u[i] + lo;
+ if (lo < u[i]) hi++;
+
+ _mpd_div_words(&w[i], &rem, hi, lo, v);
+ }
+
+ return rem;
+}
+
+/*
+ * Knuth, TAOCP Volume 2, 4.3.1:
+ * q, r := quotient and remainder of uconst (len nplusm)
+ * divided by vconst (len n)
+ * nplusm >= n
+ *
+ * If r is not NULL, r will contain the remainder. If r is NULL, the
+ * return value indicates if there is a remainder: 1 for true, 0 for
+ * false. A return value of -1 indicates an error.
+ */
+int
+_mpd_basedivmod(mpd_uint_t *q, mpd_uint_t *r,
+ const mpd_uint_t *uconst, const mpd_uint_t *vconst,
+ mpd_size_t nplusm, mpd_size_t n)
+{
+ mpd_uint_t ustatic[MPD_MINALLOC_MAX];
+ mpd_uint_t vstatic[MPD_MINALLOC_MAX];
+ mpd_uint_t *u = ustatic;
+ mpd_uint_t *v = vstatic;
+ mpd_uint_t d, qhat, rhat, w2[2];
+ mpd_uint_t hi, lo, x;
+ mpd_uint_t carry;
+ mpd_size_t i, j, m;
+ int retval = 0;
+
+ assert(n > 1 && nplusm >= n);
+ m = sub_size_t(nplusm, n);
+
+ /* D1: normalize */
+ d = MPD_RADIX / (vconst[n-1] + 1);
+
+ if (nplusm >= MPD_MINALLOC_MAX) {
+ if ((u = mpd_alloc(nplusm+1, sizeof *u)) == NULL) {
+ return -1;
+ }
+ }
+ if (n >= MPD_MINALLOC_MAX) {
+ if ((v = mpd_alloc(n+1, sizeof *v)) == NULL) {
+ mpd_free(u);
+ return -1;
+ }
+ }
+
+ _mpd_shortmul(u, uconst, nplusm, d);
+ _mpd_shortmul(v, vconst, n, d);
+
+ /* D2: loop */
+ for (j=m; j != MPD_SIZE_MAX; j--) {
+
+ /* D3: calculate qhat and rhat */
+ rhat = _mpd_shortdiv(w2, u+j+n-1, 2, v[n-1]);
+ qhat = w2[1] * MPD_RADIX + w2[0];
+
+ while (1) {
+ if (qhat < MPD_RADIX) {
+ _mpd_singlemul(w2, qhat, v[n-2]);
+ if (w2[1] <= rhat) {
+ if (w2[1] != rhat || w2[0] <= u[j+n-2]) {
+ break;
+ }
+ }
+ }
+ qhat -= 1;
+ rhat += v[n-1];
+ if (rhat < v[n-1] || rhat >= MPD_RADIX) {
+ break;
+ }
+ }
+ /* D4: multiply and subtract */
+ carry = 0;
+ for (i=0; i <= n; i++) {
+
+ _mpd_mul_words(&hi, &lo, qhat, v[i]);
+
+ lo = carry + lo;
+ if (lo < carry) hi++;
+
+ _mpd_div_words_r(&hi, &lo, hi, lo);
+
+ x = u[i+j] - lo;
+ carry = (u[i+j] < x);
+ u[i+j] = carry ? x+MPD_RADIX : x;
+ carry += hi;
+ }
+ q[j] = qhat;
+ /* D5: test remainder */
+ if (carry) {
+ q[j] -= 1;
+ /* D6: add back */
+ (void)_mpd_baseadd(u+j, u+j, v, n+1, n);
+ }
+ }
+
+ /* D8: unnormalize */
+ if (r != NULL) {
+ _mpd_shortdiv(r, u, n, d);
+ /* we are not interested in the return value here */
+ retval = 0;
+ }
+ else {
+ retval = !_mpd_isallzero(u, n);
+ }
+
+
+if (u != ustatic) mpd_free(u);
+if (v != vstatic) mpd_free(v);
+return retval;
+}
+
+/*
+ * Left shift of src by 'shift' digits; src may equal dest.
+ *
+ * dest := area of n mpd_uint_t with space for srcdigits+shift digits.
+ * src := coefficient with length m.
+ *
+ * The case splits in the function are non-obvious. The following
+ * equations might help:
+ *
+ * Let msdigits denote the number of digits in the most significant
+ * word of src. Then 1 <= msdigits <= rdigits.
+ *
+ * 1) shift = q * rdigits + r
+ * 2) srcdigits = qsrc * rdigits + msdigits
+ * 3) destdigits = shift + srcdigits
+ * = q * rdigits + r + qsrc * rdigits + msdigits
+ * = q * rdigits + (qsrc * rdigits + (r + msdigits))
+ *
+ * The result has q zero words, followed by the coefficient that
+ * is left-shifted by r. The case r == 0 is trivial. For r > 0, it
+ * is important to keep in mind that we always read m source words,
+ * but write m+1 destination words if r + msdigits > rdigits, m words
+ * otherwise.
+ */
+void
+_mpd_baseshiftl(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t n, mpd_size_t m,
+ mpd_size_t shift)
+{
+#if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
+ /* spurious uninitialized warnings */
+ mpd_uint_t l=l, lprev=lprev, h=h;
+#else
+ mpd_uint_t l, lprev, h;
+#endif
+ mpd_uint_t q, r;
+ mpd_uint_t ph;
+
+ assert(m > 0 && n >= m);
+
+ _mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
+
+ if (r != 0) {
+
+ ph = mpd_pow10[r];
+
+ --m; --n;
+ _mpd_divmod_pow10(&h, &lprev, src[m--], MPD_RDIGITS-r);
+ if (h != 0) { /* r + msdigits > rdigits <==> h != 0 */
+ dest[n--] = h;
+ }
+ /* write m-1 shifted words */
+ for (; m != MPD_SIZE_MAX; m--,n--) {
+ _mpd_divmod_pow10(&h, &l, src[m], MPD_RDIGITS-r);
+ dest[n] = ph * lprev + h;
+ lprev = l;
+ }
+ /* write least significant word */
+ dest[q] = ph * lprev;
+ }
+ else {
+ while (--m != MPD_SIZE_MAX) {
+ dest[m+q] = src[m];
+ }
+ }
+
+ mpd_uint_zero(dest, q);
+}
+
+/*
+ * Right shift of src by 'shift' digits; src may equal dest.
+ * Assumption: srcdigits-shift > 0.
+ *
+ * dest := area with space for srcdigits-shift digits.
+ * src := coefficient with length 'slen'.
+ *
+ * The case splits in the function rely on the following equations:
+ *
+ * Let msdigits denote the number of digits in the most significant
+ * word of src. Then 1 <= msdigits <= rdigits.
+ *
+ * 1) shift = q * rdigits + r
+ * 2) srcdigits = qsrc * rdigits + msdigits
+ * 3) destdigits = srcdigits - shift
+ * = qsrc * rdigits + msdigits - (q * rdigits + r)
+ * = (qsrc - q) * rdigits + msdigits - r
+ *
+ * Since destdigits > 0 and 1 <= msdigits <= rdigits:
+ *
+ * 4) qsrc >= q
+ * 5) qsrc == q ==> msdigits > r
+ *
+ * The result has slen-q words if msdigits > r, slen-q-1 words otherwise.
+ */
+mpd_uint_t
+_mpd_baseshiftr(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t slen,
+ mpd_size_t shift)
+{
+#if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
+ /* spurious uninitialized warnings */
+ mpd_uint_t l=l, h=h, hprev=hprev; /* low, high, previous high */
+#else
+ mpd_uint_t l, h, hprev; /* low, high, previous high */
+#endif
+ mpd_uint_t rnd, rest; /* rounding digit, rest */
+ mpd_uint_t q, r;
+ mpd_size_t i, j;
+ mpd_uint_t ph;
+
+ assert(slen > 0);
+
+ _mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
+
+ rnd = rest = 0;
+ if (r != 0) {
+
+ ph = mpd_pow10[MPD_RDIGITS-r];
+
+ _mpd_divmod_pow10(&hprev, &rest, src[q], r);
+ _mpd_divmod_pow10(&rnd, &rest, rest, r-1);
+
+ if (rest == 0 && q > 0) {
+ rest = !_mpd_isallzero(src, q);
+ }
+ /* write slen-q-1 words */
+ for (j=0,i=q+1; i<slen; i++,j++) {
+ _mpd_divmod_pow10(&h, &l, src[i], r);
+ dest[j] = ph * l + hprev;
+ hprev = h;
+ }
+ /* write most significant word */
+ if (hprev != 0) { /* always the case if slen==q-1 */
+ dest[j] = hprev;
+ }
+ }
+ else {
+ if (q > 0) {
+ _mpd_divmod_pow10(&rnd, &rest, src[q-1], MPD_RDIGITS-1);
+ /* is there any non-zero digit below rnd? */
+ if (rest == 0) rest = !_mpd_isallzero(src, q-1);
+ }
+ for (j = 0; j < slen-q; j++) {
+ dest[j] = src[q+j];
+ }
+ }
+
+ /* 0-4 ==> rnd+rest < 0.5 */
+ /* 5 ==> rnd+rest == 0.5 */
+ /* 6-9 ==> rnd+rest > 0.5 */
+ return (rnd == 0 || rnd == 5) ? rnd + !!rest : rnd;
+}
+
+
+/*********************************************************************/
+/* Calculations in base b */
+/*********************************************************************/
+
+/*
+ * Add v to w (len m). The calling function has to handle a possible
+ * final carry. Assumption: m > 0.
+ */
+mpd_uint_t
+_mpd_shortadd_b(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v, mpd_uint_t b)
+{
+ mpd_uint_t s;
+ mpd_uint_t carry;
+ mpd_size_t i;
+
+ assert(m > 0);
+
+ /* add v to w */
+ s = w[0] + v;
+ carry = (s < v) | (s >= b);
+ w[0] = carry ? s-b : s;
+
+ /* if there is a carry, propagate it */
+ for (i = 1; carry && i < m; i++) {
+ s = w[i] + carry;
+ carry = (s == b);
+ w[i] = carry ? 0 : s;
+ }
+
+ return carry;
+}
+
+/* w := product of u (len n) and v (single word). Return carry. */
+mpd_uint_t
+_mpd_shortmul_c(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
+{
+ mpd_uint_t hi, lo;
+ mpd_uint_t carry = 0;
+ mpd_size_t i;
+
+ assert(n > 0);
+
+ for (i=0; i < n; i++) {
+
+ _mpd_mul_words(&hi, &lo, u[i], v);
+ lo = carry + lo;
+ if (lo < carry) hi++;
+
+ _mpd_div_words_r(&carry, &w[i], hi, lo);
+ }
+
+ return carry;
+}
+
+/* w := product of u (len n) and v (single word) */
+mpd_uint_t
+_mpd_shortmul_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
+ mpd_uint_t v, mpd_uint_t b)
+{
+ mpd_uint_t hi, lo;
+ mpd_uint_t carry = 0;
+ mpd_size_t i;
+
+ assert(n > 0);
+
+ for (i=0; i < n; i++) {
+
+ _mpd_mul_words(&hi, &lo, u[i], v);
+ lo = carry + lo;
+ if (lo < carry) hi++;
+
+ _mpd_div_words(&carry, &w[i], hi, lo, b);
+ }
+
+ return carry;
+}
+
+/*
+ * Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
+ * w := quotient of u (len n) divided by a single word v
+ */
+mpd_uint_t
+_mpd_shortdiv_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
+ mpd_uint_t v, mpd_uint_t b)
+{
+ mpd_uint_t hi, lo;
+ mpd_uint_t rem = 0;
+ mpd_size_t i;
+
+ assert(n > 0);
+
+ for (i=n-1; i != MPD_SIZE_MAX; i--) {
+
+ _mpd_mul_words(&hi, &lo, rem, b);
+ lo = u[i] + lo;
+ if (lo < u[i]) hi++;
+
+ _mpd_div_words(&w[i], &rem, hi, lo, v);
+ }
+
+ return rem;
+}
+
+
+