summaryrefslogtreecommitdiffstats
path: root/Modules/_decimal/libmpdec/literature/umodarith.lisp
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/_decimal/libmpdec/literature/umodarith.lisp')
-rw-r--r--Modules/_decimal/libmpdec/literature/umodarith.lisp692
1 files changed, 692 insertions, 0 deletions
diff --git a/Modules/_decimal/libmpdec/literature/umodarith.lisp b/Modules/_decimal/libmpdec/literature/umodarith.lisp
new file mode 100644
index 0000000..60a14a4
--- /dev/null
+++ b/Modules/_decimal/libmpdec/literature/umodarith.lisp
@@ -0,0 +1,692 @@
+;
+; Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
+;
+; Redistribution and use in source and binary forms, with or without
+; modification, are permitted provided that the following conditions
+; are met:
+;
+; 1. Redistributions of source code must retain the above copyright
+; notice, this list of conditions and the following disclaimer.
+;
+; 2. Redistributions in binary form must reproduce the above copyright
+; notice, this list of conditions and the following disclaimer in the
+; documentation and/or other materials provided with the distribution.
+;
+; THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
+; ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+; ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+; OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+; HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+; LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+; OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+; SUCH DAMAGE.
+;
+
+
+(in-package "ACL2")
+
+(include-book "arithmetic/top-with-meta" :dir :system)
+(include-book "arithmetic-2/floor-mod/floor-mod" :dir :system)
+
+
+;; =====================================================================
+;; Proofs for several functions in umodarith.h
+;; =====================================================================
+
+
+
+;; =====================================================================
+;; Helper theorems
+;; =====================================================================
+
+(defthm elim-mod-m<x<2*m
+ (implies (and (<= m x)
+ (< x (* 2 m))
+ (rationalp x) (rationalp m))
+ (equal (mod x m)
+ (+ x (- m)))))
+
+(defthm modaux-1a
+ (implies (and (< x m) (< 0 x) (< 0 m)
+ (rationalp x) (rationalp m))
+ (equal (mod (- x) m)
+ (+ (- x) m))))
+
+(defthm modaux-1b
+ (implies (and (< (- x) m) (< x 0) (< 0 m)
+ (rationalp x) (rationalp m))
+ (equal (mod x m)
+ (+ x m)))
+ :hints (("Goal" :use ((:instance modaux-1a
+ (x (- x)))))))
+
+(defthm modaux-1c
+ (implies (and (< x m) (< 0 x) (< 0 m)
+ (rationalp x) (rationalp m))
+ (equal (mod x m)
+ x)))
+
+(defthm modaux-2a
+ (implies (and (< 0 b) (< b m)
+ (natp x) (natp b) (natp m)
+ (< (mod (+ b x) m) b))
+ (equal (mod (+ (- m) b x) m)
+ (+ (- m) b (mod x m)))))
+
+(defthm modaux-2b
+ (implies (and (< 0 b) (< b m)
+ (natp x) (natp b) (natp m)
+ (< (mod (+ b x) m) b))
+ (equal (mod (+ b x) m)
+ (+ (- m) b (mod x m))))
+ :hints (("Goal" :use (modaux-2a))))
+
+(defthm linear-mod-1
+ (implies (and (< x m) (< b m)
+ (natp x) (natp b)
+ (rationalp m))
+ (equal (< x (mod (+ (- b) x) m))
+ (< x b)))
+ :hints (("Goal" :use ((:instance modaux-1a
+ (x (+ b (- x))))))))
+
+(defthm linear-mod-2
+ (implies (and (< 0 b) (< b m)
+ (natp x) (natp b)
+ (natp m))
+ (equal (< (mod x m)
+ (mod (+ (- b) x) m))
+ (< (mod x m) b))))
+
+(defthm linear-mod-3
+ (implies (and (< x m) (< b m)
+ (natp x) (natp b)
+ (rationalp m))
+ (equal (<= b (mod (+ b x) m))
+ (< (+ b x) m)))
+ :hints (("Goal" :use ((:instance elim-mod-m<x<2*m
+ (x (+ b x)))))))
+
+(defthm modaux-2c
+ (implies (and (< 0 b) (< b m)
+ (natp x) (natp b) (natp m)
+ (<= b (mod (+ b x) m)))
+ (equal (mod (+ b x) m)
+ (+ b (mod x m))))
+ :hints (("Subgoal *1/8''" :use (linear-mod-3))))
+
+(defthmd modaux-2d
+ (implies (and (< x m) (< 0 x) (< 0 m)
+ (< (- m) b) (< b 0) (rationalp m)
+ (<= x (mod (+ b x) m))
+ (rationalp x) (rationalp b))
+ (equal (+ (- m) (mod (+ b x) m))
+ (+ b x)))
+ :hints (("Goal" :cases ((<= 0 (+ b x))))
+ ("Subgoal 2'" :use ((:instance modaux-1b
+ (x (+ b x)))))))
+
+(defthm mod-m-b
+ (implies (and (< 0 x) (< 0 b) (< 0 m)
+ (< x b) (< b m)
+ (natp x) (natp b) (natp m))
+ (equal (mod (+ (mod (- x) m) b) m)
+ (mod (- x) b))))
+
+
+;; =====================================================================
+;; addmod, submod
+;; =====================================================================
+
+(defun addmod (a b m base)
+ (let* ((s (mod (+ a b) base))
+ (s (if (< s a) (mod (- s m) base) s))
+ (s (if (>= s m) (mod (- s m) base) s)))
+ s))
+
+(defthmd addmod-correct
+ (implies (and (< 0 m) (< m base)
+ (< a m) (<= b m)
+ (natp m) (natp base)
+ (natp a) (natp b))
+ (equal (addmod a b m base)
+ (mod (+ a b) m)))
+ :hints (("Goal" :cases ((<= base (+ a b))))
+ ("Subgoal 2.1'" :use ((:instance elim-mod-m<x<2*m
+ (x (+ a b)))))))
+
+(defun submod (a b m base)
+ (let* ((d (mod (- a b) base))
+ (d (if (< a d) (mod (+ d m) base) d)))
+ d))
+
+(defthmd submod-aux1
+ (implies (and (< a (mod (+ a (- b)) base))
+ (< 0 base) (< a base) (<= b base)
+ (natp base) (natp a) (natp b))
+ (< a b))
+ :rule-classes :forward-chaining)
+
+(defthmd submod-aux2
+ (implies (and (<= (mod (+ a (- b)) base) a)
+ (< 0 base) (< a base) (< b base)
+ (natp base) (natp a) (natp b))
+ (<= b a))
+ :rule-classes :forward-chaining)
+
+(defthmd submod-correct
+ (implies (and (< 0 m) (< m base)
+ (< a m) (<= b m)
+ (natp m) (natp base)
+ (natp a) (natp b))
+ (equal (submod a b m base)
+ (mod (- a b) m)))
+ :hints (("Goal" :cases ((<= base (+ a b))))
+ ("Subgoal 2.2" :use ((:instance submod-aux1)))
+ ("Subgoal 2.2'''" :cases ((and (< 0 (+ a (- b) m))
+ (< (+ a (- b) m) m))))
+ ("Subgoal 2.1" :use ((:instance submod-aux2)))
+ ("Subgoal 1.2" :use ((:instance submod-aux1)))
+ ("Subgoal 1.1" :use ((:instance submod-aux2)))))
+
+
+(defun submod-2 (a b m base)
+ (let* ((d (mod (- a b) base))
+ (d (if (< a b) (mod (+ d m) base) d)))
+ d))
+
+(defthm submod-2-correct
+ (implies (and (< 0 m) (< m base)
+ (< a m) (<= b m)
+ (natp m) (natp base)
+ (natp a) (natp b))
+ (equal (submod-2 a b m base)
+ (mod (- a b) m)))
+ :hints (("Subgoal 2'" :cases ((and (< 0 (+ a (- b) m))
+ (< (+ a (- b) m) m))))))
+
+
+;; =========================================================================
+;; ext-submod is correct
+;; =========================================================================
+
+; a < 2*m, b < 2*m
+(defun ext-submod (a b m base)
+ (let* ((a (if (>= a m) (- a m) a))
+ (b (if (>= b m) (- b m) b))
+ (d (mod (- a b) base))
+ (d (if (< a b) (mod (+ d m) base) d)))
+ d))
+
+; a < 2*m, b < 2*m
+(defun ext-submod-2 (a b m base)
+ (let* ((a (mod a m))
+ (b (mod b m))
+ (d (mod (- a b) base))
+ (d (if (< a b) (mod (+ d m) base) d)))
+ d))
+
+(defthmd ext-submod-ext-submod-2-equal
+ (implies (and (< 0 m) (< m base)
+ (< a (* 2 m)) (< b (* 2 m))
+ (natp m) (natp base)
+ (natp a) (natp b))
+ (equal (ext-submod a b m base)
+ (ext-submod-2 a b m base))))
+
+(defthmd ext-submod-2-correct
+ (implies (and (< 0 m) (< m base)
+ (< a (* 2 m)) (< b (* 2 m))
+ (natp m) (natp base)
+ (natp a) (natp b))
+ (equal (ext-submod-2 a b m base)
+ (mod (- a b) m))))
+
+
+;; =========================================================================
+;; dw-reduce is correct
+;; =========================================================================
+
+(defun dw-reduce (hi lo m base)
+ (let* ((r1 (mod hi m))
+ (r2 (mod (+ (* r1 base) lo) m)))
+ r2))
+
+(defthmd dw-reduce-correct
+ (implies (and (< 0 m) (< m base)
+ (< hi base) (< lo base)
+ (natp m) (natp base)
+ (natp hi) (natp lo))
+ (equal (dw-reduce hi lo m base)
+ (mod (+ (* hi base) lo) m))))
+
+(defthmd <=-multiply-both-sides-by-z
+ (implies (and (rationalp x) (rationalp y)
+ (< 0 z) (rationalp z))
+ (equal (<= x y)
+ (<= (* z x) (* z y)))))
+
+(defthmd dw-reduce-aux1
+ (implies (and (< 0 m) (< m base)
+ (natp m) (natp base)
+ (< lo base) (natp lo)
+ (< x m) (natp x))
+ (< (+ lo (* base x)) (* base m)))
+ :hints (("Goal" :cases ((<= (+ x 1) m)))
+ ("Subgoal 1''" :cases ((<= (* base (+ x 1)) (* base m))))
+ ("subgoal 1.2" :use ((:instance <=-multiply-both-sides-by-z
+ (x (+ 1 x))
+ (y m)
+ (z base))))))
+
+(defthm dw-reduce-aux2
+ (implies (and (< x (* base m))
+ (< 0 m) (< m base)
+ (natp m) (natp base) (natp x))
+ (< (floor x m) base)))
+
+;; This is the necessary condition for using _mpd_div_words().
+(defthmd dw-reduce-second-quotient-fits-in-single-word
+ (implies (and (< 0 m) (< m base)
+ (< hi base) (< lo base)
+ (natp m) (natp base)
+ (natp hi) (natp lo)
+ (equal r1 (mod hi m)))
+ (< (floor (+ (* r1 base) lo) m)
+ base))
+ :hints (("Goal" :cases ((< r1 m)))
+ ("Subgoal 1''" :cases ((< (+ lo (* base (mod hi m))) (* base m))))
+ ("Subgoal 1.2" :use ((:instance dw-reduce-aux1
+ (x (mod hi m)))))))
+
+
+;; =========================================================================
+;; dw-submod is correct
+;; =========================================================================
+
+(defun dw-submod (a hi lo m base)
+ (let* ((r (dw-reduce hi lo m base))
+ (d (mod (- a r) base))
+ (d (if (< a r) (mod (+ d m) base) d)))
+ d))
+
+(defthmd dw-submod-aux1
+ (implies (and (natp a) (< 0 m) (natp m)
+ (natp x) (equal r (mod x m)))
+ (equal (mod (- a x) m)
+ (mod (- a r) m))))
+
+(defthmd dw-submod-correct
+ (implies (and (< 0 m) (< m base)
+ (natp a) (< a m)
+ (< hi base) (< lo base)
+ (natp m) (natp base)
+ (natp hi) (natp lo))
+ (equal (dw-submod a hi lo m base)
+ (mod (- a (+ (* base hi) lo)) m)))
+ :hints (("Goal" :in-theory (disable dw-reduce)
+ :use ((:instance dw-submod-aux1
+ (x (+ lo (* base hi)))
+ (r (dw-reduce hi lo m base)))
+ (:instance dw-reduce-correct)))))
+
+
+;; =========================================================================
+;; ANSI C arithmetic for uint64_t
+;; =========================================================================
+
+(defun add (a b)
+ (mod (+ a b)
+ (expt 2 64)))
+
+(defun sub (a b)
+ (mod (- a b)
+ (expt 2 64)))
+
+(defun << (w n)
+ (mod (* w (expt 2 n))
+ (expt 2 64)))
+
+(defun >> (w n)
+ (floor w (expt 2 n)))
+
+;; join upper and lower half of a double word, yielding a 128 bit number
+(defun join (hi lo)
+ (+ (* (expt 2 64) hi) lo))
+
+
+;; =============================================================================
+;; Fast modular reduction
+;; =============================================================================
+
+;; These are the three primes used in the Number Theoretic Transform.
+;; A fast modular reduction scheme exists for all of them.
+(defmacro p1 ()
+ (+ (expt 2 64) (- (expt 2 32)) 1))
+
+(defmacro p2 ()
+ (+ (expt 2 64) (- (expt 2 34)) 1))
+
+(defmacro p3 ()
+ (+ (expt 2 64) (- (expt 2 40)) 1))
+
+
+;; reduce the double word number hi*2**64 + lo (mod p1)
+(defun simple-mod-reduce-p1 (hi lo)
+ (+ (* (expt 2 32) hi) (- hi) lo))
+
+;; reduce the double word number hi*2**64 + lo (mod p2)
+(defun simple-mod-reduce-p2 (hi lo)
+ (+ (* (expt 2 34) hi) (- hi) lo))
+
+;; reduce the double word number hi*2**64 + lo (mod p3)
+(defun simple-mod-reduce-p3 (hi lo)
+ (+ (* (expt 2 40) hi) (- hi) lo))
+
+
+; ----------------------------------------------------------
+; The modular reductions given above are correct
+; ----------------------------------------------------------
+
+(defthmd congruence-p1-aux
+ (equal (* (expt 2 64) hi)
+ (+ (* (p1) hi)
+ (* (expt 2 32) hi)
+ (- hi))))
+
+(defthmd congruence-p2-aux
+ (equal (* (expt 2 64) hi)
+ (+ (* (p2) hi)
+ (* (expt 2 34) hi)
+ (- hi))))
+
+(defthmd congruence-p3-aux
+ (equal (* (expt 2 64) hi)
+ (+ (* (p3) hi)
+ (* (expt 2 40) hi)
+ (- hi))))
+
+(defthmd mod-augment
+ (implies (and (rationalp x)
+ (rationalp y)
+ (rationalp m))
+ (equal (mod (+ x y) m)
+ (mod (+ x (mod y m)) m))))
+
+(defthmd simple-mod-reduce-p1-congruent
+ (implies (and (integerp hi)
+ (integerp lo))
+ (equal (mod (simple-mod-reduce-p1 hi lo) (p1))
+ (mod (join hi lo) (p1))))
+ :hints (("Goal''" :use ((:instance congruence-p1-aux)
+ (:instance mod-augment
+ (m (p1))
+ (x (+ (- hi) lo (* (expt 2 32) hi)))
+ (y (* (p1) hi)))))))
+
+(defthmd simple-mod-reduce-p2-congruent
+ (implies (and (integerp hi)
+ (integerp lo))
+ (equal (mod (simple-mod-reduce-p2 hi lo) (p2))
+ (mod (join hi lo) (p2))))
+ :hints (("Goal''" :use ((:instance congruence-p2-aux)
+ (:instance mod-augment
+ (m (p2))
+ (x (+ (- hi) lo (* (expt 2 34) hi)))
+ (y (* (p2) hi)))))))
+
+(defthmd simple-mod-reduce-p3-congruent
+ (implies (and (integerp hi)
+ (integerp lo))
+ (equal (mod (simple-mod-reduce-p3 hi lo) (p3))
+ (mod (join hi lo) (p3))))
+ :hints (("Goal''" :use ((:instance congruence-p3-aux)
+ (:instance mod-augment
+ (m (p3))
+ (x (+ (- hi) lo (* (expt 2 40) hi)))
+ (y (* (p3) hi)))))))
+
+
+; ---------------------------------------------------------------------
+; We need a number less than 2*p, so that we can use the trick from
+; elim-mod-m<x<2*m for the final reduction.
+; For p1, two modular reductions are sufficient, for p2 and p3 three.
+; ---------------------------------------------------------------------
+
+;; p1: the first reduction is less than 2**96
+(defthmd simple-mod-reduce-p1-<-2**96
+ (implies (and (< hi (expt 2 64))
+ (< lo (expt 2 64))
+ (natp hi) (natp lo))
+ (< (simple-mod-reduce-p1 hi lo)
+ (expt 2 96))))
+
+;; p1: the second reduction is less than 2*p1
+(defthmd simple-mod-reduce-p1-<-2*p1
+ (implies (and (< hi (expt 2 64))
+ (< lo (expt 2 64))
+ (< (join hi lo) (expt 2 96))
+ (natp hi) (natp lo))
+ (< (simple-mod-reduce-p1 hi lo)
+ (* 2 (p1)))))
+
+
+;; p2: the first reduction is less than 2**98
+(defthmd simple-mod-reduce-p2-<-2**98
+ (implies (and (< hi (expt 2 64))
+ (< lo (expt 2 64))
+ (natp hi) (natp lo))
+ (< (simple-mod-reduce-p2 hi lo)
+ (expt 2 98))))
+
+;; p2: the second reduction is less than 2**69
+(defthmd simple-mod-reduce-p2-<-2*69
+ (implies (and (< hi (expt 2 64))
+ (< lo (expt 2 64))
+ (< (join hi lo) (expt 2 98))
+ (natp hi) (natp lo))
+ (< (simple-mod-reduce-p2 hi lo)
+ (expt 2 69))))
+
+;; p3: the third reduction is less than 2*p2
+(defthmd simple-mod-reduce-p2-<-2*p2
+ (implies (and (< hi (expt 2 64))
+ (< lo (expt 2 64))
+ (< (join hi lo) (expt 2 69))
+ (natp hi) (natp lo))
+ (< (simple-mod-reduce-p2 hi lo)
+ (* 2 (p2)))))
+
+
+;; p3: the first reduction is less than 2**104
+(defthmd simple-mod-reduce-p3-<-2**104
+ (implies (and (< hi (expt 2 64))
+ (< lo (expt 2 64))
+ (natp hi) (natp lo))
+ (< (simple-mod-reduce-p3 hi lo)
+ (expt 2 104))))
+
+;; p3: the second reduction is less than 2**81
+(defthmd simple-mod-reduce-p3-<-2**81
+ (implies (and (< hi (expt 2 64))
+ (< lo (expt 2 64))
+ (< (join hi lo) (expt 2 104))
+ (natp hi) (natp lo))
+ (< (simple-mod-reduce-p3 hi lo)
+ (expt 2 81))))
+
+;; p3: the third reduction is less than 2*p3
+(defthmd simple-mod-reduce-p3-<-2*p3
+ (implies (and (< hi (expt 2 64))
+ (< lo (expt 2 64))
+ (< (join hi lo) (expt 2 81))
+ (natp hi) (natp lo))
+ (< (simple-mod-reduce-p3 hi lo)
+ (* 2 (p3)))))
+
+
+; -------------------------------------------------------------------------
+; The simple modular reductions, adapted for compiler friendly C
+; -------------------------------------------------------------------------
+
+(defun mod-reduce-p1 (hi lo)
+ (let* ((y hi)
+ (x y)
+ (hi (>> hi 32))
+ (x (sub lo x))
+ (hi (if (> x lo) (+ hi -1) hi))
+ (y (<< y 32))
+ (lo (add y x))
+ (hi (if (< lo y) (+ hi 1) hi)))
+ (+ (* hi (expt 2 64)) lo)))
+
+(defun mod-reduce-p2 (hi lo)
+ (let* ((y hi)
+ (x y)
+ (hi (>> hi 30))
+ (x (sub lo x))
+ (hi (if (> x lo) (+ hi -1) hi))
+ (y (<< y 34))
+ (lo (add y x))
+ (hi (if (< lo y) (+ hi 1) hi)))
+ (+ (* hi (expt 2 64)) lo)))
+
+(defun mod-reduce-p3 (hi lo)
+ (let* ((y hi)
+ (x y)
+ (hi (>> hi 24))
+ (x (sub lo x))
+ (hi (if (> x lo) (+ hi -1) hi))
+ (y (<< y 40))
+ (lo (add y x))
+ (hi (if (< lo y) (+ hi 1) hi)))
+ (+ (* hi (expt 2 64)) lo)))
+
+
+; -------------------------------------------------------------------------
+; The compiler friendly versions are equal to the simple versions
+; -------------------------------------------------------------------------
+
+(defthm mod-reduce-aux1
+ (implies (and (<= 0 a) (natp a) (natp m)
+ (< (- m) b) (<= b 0)
+ (integerp b)
+ (< (mod (+ b a) m)
+ (mod a m)))
+ (equal (mod (+ b a) m)
+ (+ b (mod a m))))
+ :hints (("Subgoal 2" :use ((:instance modaux-1b
+ (x (+ a b)))))))
+
+(defthm mod-reduce-aux2
+ (implies (and (<= 0 a) (natp a) (natp m)
+ (< b m) (natp b)
+ (< (mod (+ b a) m)
+ (mod a m)))
+ (equal (+ m (mod (+ b a) m))
+ (+ b (mod a m)))))
+
+
+(defthm mod-reduce-aux3
+ (implies (and (< 0 a) (natp a) (natp m)
+ (< (- m) b) (< b 0)
+ (integerp b)
+ (<= (mod a m)
+ (mod (+ b a) m)))
+ (equal (+ (- m) (mod (+ b a) m))
+ (+ b (mod a m))))
+ :hints (("Subgoal 1.2'" :use ((:instance modaux-1b
+ (x b))))
+ ("Subgoal 1''" :use ((:instance modaux-2d
+ (x I))))))
+
+
+(defthm mod-reduce-aux4
+ (implies (and (< 0 a) (natp a) (natp m)
+ (< b m) (natp b)
+ (<= (mod a m)
+ (mod (+ b a) m)))
+ (equal (mod (+ b a) m)
+ (+ b (mod a m)))))
+
+
+(defthm mod-reduce-p1==simple-mod-reduce-p1
+ (implies (and (< hi (expt 2 64))
+ (< lo (expt 2 64))
+ (natp hi) (natp lo))
+ (equal (mod-reduce-p1 hi lo)
+ (simple-mod-reduce-p1 hi lo)))
+ :hints (("Goal" :in-theory (disable expt)
+ :cases ((< 0 hi)))
+ ("Subgoal 1.2.2'" :use ((:instance mod-reduce-aux1
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 32) hi)))))
+ ("Subgoal 1.2.1'" :use ((:instance mod-reduce-aux3
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 32) hi)))))
+ ("Subgoal 1.1.2'" :use ((:instance mod-reduce-aux2
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 32) hi)))))
+ ("Subgoal 1.1.1'" :use ((:instance mod-reduce-aux4
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 32) hi)))))))
+
+
+(defthm mod-reduce-p2==simple-mod-reduce-p2
+ (implies (and (< hi (expt 2 64))
+ (< lo (expt 2 64))
+ (natp hi) (natp lo))
+ (equal (mod-reduce-p2 hi lo)
+ (simple-mod-reduce-p2 hi lo)))
+ :hints (("Goal" :cases ((< 0 hi)))
+ ("Subgoal 1.2.2'" :use ((:instance mod-reduce-aux1
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 34) hi)))))
+ ("Subgoal 1.2.1'" :use ((:instance mod-reduce-aux3
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 34) hi)))))
+ ("Subgoal 1.1.2'" :use ((:instance mod-reduce-aux2
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 34) hi)))))
+ ("Subgoal 1.1.1'" :use ((:instance mod-reduce-aux4
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 34) hi)))))))
+
+
+(defthm mod-reduce-p3==simple-mod-reduce-p3
+ (implies (and (< hi (expt 2 64))
+ (< lo (expt 2 64))
+ (natp hi) (natp lo))
+ (equal (mod-reduce-p3 hi lo)
+ (simple-mod-reduce-p3 hi lo)))
+ :hints (("Goal" :cases ((< 0 hi)))
+ ("Subgoal 1.2.2'" :use ((:instance mod-reduce-aux1
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 40) hi)))))
+ ("Subgoal 1.2.1'" :use ((:instance mod-reduce-aux3
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 40) hi)))))
+ ("Subgoal 1.1.2'" :use ((:instance mod-reduce-aux2
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 40) hi)))))
+ ("Subgoal 1.1.1'" :use ((:instance mod-reduce-aux4
+ (m (expt 2 64))
+ (b (+ (- HI) LO))
+ (a (* (expt 2 40) hi)))))))
+
+
+