diff options
Diffstat (limited to 'Modules/_decimal/libmpdec/sixstep.c')
-rw-r--r-- | Modules/_decimal/libmpdec/sixstep.c | 214 |
1 files changed, 214 insertions, 0 deletions
diff --git a/Modules/_decimal/libmpdec/sixstep.c b/Modules/_decimal/libmpdec/sixstep.c new file mode 100644 index 0000000..7d0542d --- /dev/null +++ b/Modules/_decimal/libmpdec/sixstep.c @@ -0,0 +1,214 @@ +/* + * Copyright (c) 2008-2012 Stefan Krah. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + + +#include "mpdecimal.h" +#include <stdio.h> +#include <stdlib.h> +#include <assert.h> +#include "bits.h" +#include "difradix2.h" +#include "numbertheory.h" +#include "transpose.h" +#include "umodarith.h" +#include "sixstep.h" + + +/* Bignum: Cache efficient Matrix Fourier Transform for arrays of the + form 2**n (See literature/six-step.txt). */ + + +/* forward transform with sign = -1 */ +int +six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) +{ + struct fnt_params *tparams; + mpd_size_t log2n, C, R; + mpd_uint_t kernel; + mpd_uint_t umod; +#ifdef PPRO + double dmod; + uint32_t dinvmod[3]; +#endif + mpd_uint_t *x, w0, w1, wstep; + mpd_size_t i, k; + + + assert(ispower2(n)); + assert(n >= 16); + assert(n <= MPD_MAXTRANSFORM_2N); + + log2n = mpd_bsr(n); + C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */ + R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */ + + + /* Transpose the matrix. */ + if (!transpose_pow2(a, R, C)) { + return 0; + } + + /* Length R transform on the rows. */ + if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) { + return 0; + } + for (x = a; x < a+n; x += R) { + fnt_dif2(x, R, tparams); + } + + /* Transpose the matrix. */ + if (!transpose_pow2(a, C, R)) { + mpd_free(tparams); + return 0; + } + + /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ + SETMODULUS(modnum); + kernel = _mpd_getkernel(n, -1, modnum); + for (i = 1; i < R; i++) { + w0 = 1; /* r**(i*0): initial value for k=0 */ + w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */ + wstep = MULMOD(w1, w1); /* r**(2*i) */ + for (k = 0; k < C; k += 2) { + mpd_uint_t x0 = a[i*C+k]; + mpd_uint_t x1 = a[i*C+k+1]; + MULMOD2(&x0, w0, &x1, w1); + MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */ + a[i*C+k] = x0; + a[i*C+k+1] = x1; + } + } + + /* Length C transform on the rows. */ + if (C != R) { + mpd_free(tparams); + if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) { + return 0; + } + } + for (x = a; x < a+n; x += C) { + fnt_dif2(x, C, tparams); + } + mpd_free(tparams); + +#if 0 + /* An unordered transform is sufficient for convolution. */ + /* Transpose the matrix. */ + if (!transpose_pow2(a, R, C)) { + return 0; + } +#endif + + return 1; +} + + +/* reverse transform, sign = 1 */ +int +inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) +{ + struct fnt_params *tparams; + mpd_size_t log2n, C, R; + mpd_uint_t kernel; + mpd_uint_t umod; +#ifdef PPRO + double dmod; + uint32_t dinvmod[3]; +#endif + mpd_uint_t *x, w0, w1, wstep; + mpd_size_t i, k; + + + assert(ispower2(n)); + assert(n >= 16); + assert(n <= MPD_MAXTRANSFORM_2N); + + log2n = mpd_bsr(n); + C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */ + R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */ + + +#if 0 + /* An unordered transform is sufficient for convolution. */ + /* Transpose the matrix, producing an R*C matrix. */ + if (!transpose_pow2(a, C, R)) { + return 0; + } +#endif + + /* Length C transform on the rows. */ + if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) { + return 0; + } + for (x = a; x < a+n; x += C) { + fnt_dif2(x, C, tparams); + } + + /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ + SETMODULUS(modnum); + kernel = _mpd_getkernel(n, 1, modnum); + for (i = 1; i < R; i++) { + w0 = 1; + w1 = POWMOD(kernel, i); + wstep = MULMOD(w1, w1); + for (k = 0; k < C; k += 2) { + mpd_uint_t x0 = a[i*C+k]; + mpd_uint_t x1 = a[i*C+k+1]; + MULMOD2(&x0, w0, &x1, w1); + MULMOD2C(&w0, &w1, wstep); + a[i*C+k] = x0; + a[i*C+k+1] = x1; + } + } + + /* Transpose the matrix. */ + if (!transpose_pow2(a, R, C)) { + mpd_free(tparams); + return 0; + } + + /* Length R transform on the rows. */ + if (R != C) { + mpd_free(tparams); + if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) { + return 0; + } + } + for (x = a; x < a+n; x += R) { + fnt_dif2(x, R, tparams); + } + mpd_free(tparams); + + /* Transpose the matrix. */ + if (!transpose_pow2(a, C, R)) { + return 0; + } + + return 1; +} + + |