summaryrefslogtreecommitdiffstats
path: root/Modules/_decimal/libmpdec/transpose.c
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/_decimal/libmpdec/transpose.c')
-rw-r--r--Modules/_decimal/libmpdec/transpose.c276
1 files changed, 276 insertions, 0 deletions
diff --git a/Modules/_decimal/libmpdec/transpose.c b/Modules/_decimal/libmpdec/transpose.c
new file mode 100644
index 0000000..5e5d4b6
--- /dev/null
+++ b/Modules/_decimal/libmpdec/transpose.c
@@ -0,0 +1,276 @@
+/*
+ * Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+
+#include "mpdecimal.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <limits.h>
+#include <assert.h>
+#include "bits.h"
+#include "constants.h"
+#include "typearith.h"
+#include "transpose.h"
+
+
+#define BUFSIZE 4096
+#define SIDE 128
+
+
+/* Bignum: The transpose functions are used for very large transforms
+ in sixstep.c and fourstep.c. */
+
+
+/* Definition of the matrix transpose */
+void
+std_trans(mpd_uint_t dest[], mpd_uint_t src[], mpd_size_t rows, mpd_size_t cols)
+{
+ mpd_size_t idest, isrc;
+ mpd_size_t r, c;
+
+ for (r = 0; r < rows; r++) {
+ isrc = r * cols;
+ idest = r;
+ for (c = 0; c < cols; c++) {
+ dest[idest] = src[isrc];
+ isrc += 1;
+ idest += rows;
+ }
+ }
+}
+
+/*
+ * Swap half-rows of 2^n * (2*2^n) matrix.
+ * FORWARD_CYCLE: even/odd permutation of the halfrows.
+ * BACKWARD_CYCLE: reverse the even/odd permutation.
+ */
+static int
+swap_halfrows_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols, int dir)
+{
+ mpd_uint_t buf1[BUFSIZE];
+ mpd_uint_t buf2[BUFSIZE];
+ mpd_uint_t *readbuf, *writebuf, *hp;
+ mpd_size_t *done, dbits;
+ mpd_size_t b = BUFSIZE, stride;
+ mpd_size_t hn, hmax; /* halfrow number */
+ mpd_size_t m, r=0;
+ mpd_size_t offset;
+ mpd_size_t next;
+
+
+ assert(cols == mul_size_t(2, rows));
+
+ if (dir == FORWARD_CYCLE) {
+ r = rows;
+ }
+ else if (dir == BACKWARD_CYCLE) {
+ r = 2;
+ }
+ else {
+ abort(); /* GCOV_NOT_REACHED */
+ }
+
+ m = cols - 1;
+ hmax = rows; /* cycles start at odd halfrows */
+ dbits = 8 * sizeof *done;
+ if ((done = mpd_calloc(hmax/(sizeof *done) + 1, sizeof *done)) == NULL) {
+ return 0;
+ }
+
+ for (hn = 1; hn <= hmax; hn += 2) {
+
+ if (done[hn/dbits] & mpd_bits[hn%dbits]) {
+ continue;
+ }
+
+ readbuf = buf1; writebuf = buf2;
+
+ for (offset = 0; offset < cols/2; offset += b) {
+
+ stride = (offset + b < cols/2) ? b : cols/2-offset;
+
+ hp = matrix + hn*cols/2;
+ memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
+ pointerswap(&readbuf, &writebuf);
+
+ next = mulmod_size_t(hn, r, m);
+ hp = matrix + next*cols/2;
+
+ while (next != hn) {
+
+ memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
+ memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
+ pointerswap(&readbuf, &writebuf);
+
+ done[next/dbits] |= mpd_bits[next%dbits];
+
+ next = mulmod_size_t(next, r, m);
+ hp = matrix + next*cols/2;
+
+ }
+
+ memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
+
+ done[hn/dbits] |= mpd_bits[hn%dbits];
+ }
+ }
+
+ mpd_free(done);
+ return 1;
+}
+
+/* In-place transpose of a square matrix */
+static inline void
+squaretrans(mpd_uint_t *buf, mpd_size_t cols)
+{
+ mpd_uint_t tmp;
+ mpd_size_t idest, isrc;
+ mpd_size_t r, c;
+
+ for (r = 0; r < cols; r++) {
+ c = r+1;
+ isrc = r*cols + c;
+ idest = c*cols + r;
+ for (c = r+1; c < cols; c++) {
+ tmp = buf[isrc];
+ buf[isrc] = buf[idest];
+ buf[idest] = tmp;
+ isrc += 1;
+ idest += cols;
+ }
+ }
+}
+
+/*
+ * Transpose 2^n * 2^n matrix. For cache efficiency, the matrix is split into
+ * square blocks with side length 'SIDE'. First, the blocks are transposed,
+ * then a square tranposition is done on each individual block.
+ */
+static void
+squaretrans_pow2(mpd_uint_t *matrix, mpd_size_t size)
+{
+ mpd_uint_t buf1[SIDE*SIDE];
+ mpd_uint_t buf2[SIDE*SIDE];
+ mpd_uint_t *to, *from;
+ mpd_size_t b = size;
+ mpd_size_t r, c;
+ mpd_size_t i;
+
+ while (b > SIDE) b >>= 1;
+
+ for (r = 0; r < size; r += b) {
+
+ for (c = r; c < size; c += b) {
+
+ from = matrix + r*size + c;
+ to = buf1;
+ for (i = 0; i < b; i++) {
+ memcpy(to, from, b*(sizeof *to));
+ from += size;
+ to += b;
+ }
+ squaretrans(buf1, b);
+
+ if (r == c) {
+ to = matrix + r*size + c;
+ from = buf1;
+ for (i = 0; i < b; i++) {
+ memcpy(to, from, b*(sizeof *to));
+ from += b;
+ to += size;
+ }
+ continue;
+ }
+ else {
+ from = matrix + c*size + r;
+ to = buf2;
+ for (i = 0; i < b; i++) {
+ memcpy(to, from, b*(sizeof *to));
+ from += size;
+ to += b;
+ }
+ squaretrans(buf2, b);
+
+ to = matrix + c*size + r;
+ from = buf1;
+ for (i = 0; i < b; i++) {
+ memcpy(to, from, b*(sizeof *to));
+ from += b;
+ to += size;
+ }
+
+ to = matrix + r*size + c;
+ from = buf2;
+ for (i = 0; i < b; i++) {
+ memcpy(to, from, b*(sizeof *to));
+ from += b;
+ to += size;
+ }
+ }
+ }
+ }
+
+}
+
+/*
+ * In-place transposition of a 2^n x 2^n or a 2^n x (2*2^n)
+ * or a (2*2^n) x 2^n matrix.
+ */
+int
+transpose_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols)
+{
+ mpd_size_t size = mul_size_t(rows, cols);
+
+ assert(ispower2(rows));
+ assert(ispower2(cols));
+
+ if (cols == rows) {
+ squaretrans_pow2(matrix, rows);
+ }
+ else if (cols == mul_size_t(2, rows)) {
+ if (!swap_halfrows_pow2(matrix, rows, cols, FORWARD_CYCLE)) {
+ return 0;
+ }
+ squaretrans_pow2(matrix, rows);
+ squaretrans_pow2(matrix+(size/2), rows);
+ }
+ else if (rows == mul_size_t(2, cols)) {
+ squaretrans_pow2(matrix, cols);
+ squaretrans_pow2(matrix+(size/2), cols);
+ if (!swap_halfrows_pow2(matrix, cols, rows, BACKWARD_CYCLE)) {
+ return 0;
+ }
+ }
+ else {
+ abort(); /* GCOV_NOT_REACHED */
+ }
+
+ return 1;
+}
+
+