summaryrefslogtreecommitdiffstats
path: root/Modules/_decimal/libmpdec/umodarith.h
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/_decimal/libmpdec/umodarith.h')
-rw-r--r--Modules/_decimal/libmpdec/umodarith.h650
1 files changed, 650 insertions, 0 deletions
diff --git a/Modules/_decimal/libmpdec/umodarith.h b/Modules/_decimal/libmpdec/umodarith.h
new file mode 100644
index 0000000..a6aeceb
--- /dev/null
+++ b/Modules/_decimal/libmpdec/umodarith.h
@@ -0,0 +1,650 @@
+/*
+ * Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+
+#ifndef UMODARITH_H
+#define UMODARITH_H
+
+
+#include "constants.h"
+#include "mpdecimal.h"
+#include "typearith.h"
+
+
+/* Bignum: Low level routines for unsigned modular arithmetic. These are
+ used in the fast convolution functions for very large coefficients. */
+
+
+/**************************************************************************/
+/* ANSI modular arithmetic */
+/**************************************************************************/
+
+
+/*
+ * Restrictions: a < m and b < m
+ * ACL2 proof: umodarith.lisp: addmod-correct
+ */
+static inline mpd_uint_t
+addmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
+{
+ mpd_uint_t s;
+
+ s = a + b;
+ s = (s < a) ? s - m : s;
+ s = (s >= m) ? s - m : s;
+
+ return s;
+}
+
+/*
+ * Restrictions: a < m and b < m
+ * ACL2 proof: umodarith.lisp: submod-2-correct
+ */
+static inline mpd_uint_t
+submod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
+{
+ mpd_uint_t d;
+
+ d = a - b;
+ d = (a < b) ? d + m : d;
+
+ return d;
+}
+
+/*
+ * Restrictions: a < 2m and b < 2m
+ * ACL2 proof: umodarith.lisp: section ext-submod
+ */
+static inline mpd_uint_t
+ext_submod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
+{
+ mpd_uint_t d;
+
+ a = (a >= m) ? a - m : a;
+ b = (b >= m) ? b - m : b;
+
+ d = a - b;
+ d = (a < b) ? d + m : d;
+
+ return d;
+}
+
+/*
+ * Reduce double word modulo m.
+ * Restrictions: m != 0
+ * ACL2 proof: umodarith.lisp: section dw-reduce
+ */
+static inline mpd_uint_t
+dw_reduce(mpd_uint_t hi, mpd_uint_t lo, mpd_uint_t m)
+{
+ mpd_uint_t r1, r2, w;
+
+ _mpd_div_word(&w, &r1, hi, m);
+ _mpd_div_words(&w, &r2, r1, lo, m);
+
+ return r2;
+}
+
+/*
+ * Subtract double word from a.
+ * Restrictions: a < m
+ * ACL2 proof: umodarith.lisp: section dw-submod
+ */
+static inline mpd_uint_t
+dw_submod(mpd_uint_t a, mpd_uint_t hi, mpd_uint_t lo, mpd_uint_t m)
+{
+ mpd_uint_t d, r;
+
+ r = dw_reduce(hi, lo, m);
+ d = a - r;
+ d = (a < r) ? d + m : d;
+
+ return d;
+}
+
+#ifdef CONFIG_64
+
+/**************************************************************************/
+/* 64-bit modular arithmetic */
+/**************************************************************************/
+
+/*
+ * A proof of the algorithm is in literature/mulmod-64.txt. An ACL2
+ * proof is in umodarith.lisp: section "Fast modular reduction".
+ *
+ * Algorithm: calculate (a * b) % p:
+ *
+ * a) hi, lo <- a * b # Calculate a * b.
+ *
+ * b) hi, lo <- R(hi, lo) # Reduce modulo p.
+ *
+ * c) Repeat step b) until 0 <= hi * 2**64 + lo < 2*p.
+ *
+ * d) If the result is less than p, return lo. Otherwise return lo - p.
+ */
+
+static inline mpd_uint_t
+x64_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
+{
+ mpd_uint_t hi, lo, x, y;
+
+
+ _mpd_mul_words(&hi, &lo, a, b);
+
+ if (m & (1ULL<<32)) { /* P1 */
+
+ /* first reduction */
+ x = y = hi;
+ hi >>= 32;
+
+ x = lo - x;
+ if (x > lo) hi--;
+
+ y <<= 32;
+ lo = y + x;
+ if (lo < y) hi++;
+
+ /* second reduction */
+ x = y = hi;
+ hi >>= 32;
+
+ x = lo - x;
+ if (x > lo) hi--;
+
+ y <<= 32;
+ lo = y + x;
+ if (lo < y) hi++;
+
+ return (hi || lo >= m ? lo - m : lo);
+ }
+ else if (m & (1ULL<<34)) { /* P2 */
+
+ /* first reduction */
+ x = y = hi;
+ hi >>= 30;
+
+ x = lo - x;
+ if (x > lo) hi--;
+
+ y <<= 34;
+ lo = y + x;
+ if (lo < y) hi++;
+
+ /* second reduction */
+ x = y = hi;
+ hi >>= 30;
+
+ x = lo - x;
+ if (x > lo) hi--;
+
+ y <<= 34;
+ lo = y + x;
+ if (lo < y) hi++;
+
+ /* third reduction */
+ x = y = hi;
+ hi >>= 30;
+
+ x = lo - x;
+ if (x > lo) hi--;
+
+ y <<= 34;
+ lo = y + x;
+ if (lo < y) hi++;
+
+ return (hi || lo >= m ? lo - m : lo);
+ }
+ else { /* P3 */
+
+ /* first reduction */
+ x = y = hi;
+ hi >>= 24;
+
+ x = lo - x;
+ if (x > lo) hi--;
+
+ y <<= 40;
+ lo = y + x;
+ if (lo < y) hi++;
+
+ /* second reduction */
+ x = y = hi;
+ hi >>= 24;
+
+ x = lo - x;
+ if (x > lo) hi--;
+
+ y <<= 40;
+ lo = y + x;
+ if (lo < y) hi++;
+
+ /* third reduction */
+ x = y = hi;
+ hi >>= 24;
+
+ x = lo - x;
+ if (x > lo) hi--;
+
+ y <<= 40;
+ lo = y + x;
+ if (lo < y) hi++;
+
+ return (hi || lo >= m ? lo - m : lo);
+ }
+}
+
+static inline void
+x64_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m)
+{
+ *a = x64_mulmod(*a, w, m);
+ *b = x64_mulmod(*b, w, m);
+}
+
+static inline void
+x64_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
+ mpd_uint_t m)
+{
+ *a0 = x64_mulmod(*a0, b0, m);
+ *a1 = x64_mulmod(*a1, b1, m);
+}
+
+static inline mpd_uint_t
+x64_powmod(mpd_uint_t base, mpd_uint_t exp, mpd_uint_t umod)
+{
+ mpd_uint_t r = 1;
+
+ while (exp > 0) {
+ if (exp & 1)
+ r = x64_mulmod(r, base, umod);
+ base = x64_mulmod(base, base, umod);
+ exp >>= 1;
+ }
+
+ return r;
+}
+
+/* END CONFIG_64 */
+#else /* CONFIG_32 */
+
+
+/**************************************************************************/
+/* 32-bit modular arithmetic */
+/**************************************************************************/
+
+#if defined(ANSI)
+#if !defined(LEGACY_COMPILER)
+/* HAVE_UINT64_T */
+static inline mpd_uint_t
+std_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
+{
+ return ((mpd_uuint_t) a * b) % m;
+}
+
+static inline void
+std_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m)
+{
+ *a = ((mpd_uuint_t) *a * w) % m;
+ *b = ((mpd_uuint_t) *b * w) % m;
+}
+
+static inline void
+std_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
+ mpd_uint_t m)
+{
+ *a0 = ((mpd_uuint_t) *a0 * b0) % m;
+ *a1 = ((mpd_uuint_t) *a1 * b1) % m;
+}
+/* END HAVE_UINT64_T */
+#else
+/* LEGACY_COMPILER */
+static inline mpd_uint_t
+std_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
+{
+ mpd_uint_t hi, lo, q, r;
+ _mpd_mul_words(&hi, &lo, a, b);
+ _mpd_div_words(&q, &r, hi, lo, m);
+ return r;
+}
+
+static inline void
+std_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m)
+{
+ *a = std_mulmod(*a, w, m);
+ *b = std_mulmod(*b, w, m);
+}
+
+static inline void
+std_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
+ mpd_uint_t m)
+{
+ *a0 = std_mulmod(*a0, b0, m);
+ *a1 = std_mulmod(*a1, b1, m);
+}
+/* END LEGACY_COMPILER */
+#endif
+
+static inline mpd_uint_t
+std_powmod(mpd_uint_t base, mpd_uint_t exp, mpd_uint_t umod)
+{
+ mpd_uint_t r = 1;
+
+ while (exp > 0) {
+ if (exp & 1)
+ r = std_mulmod(r, base, umod);
+ base = std_mulmod(base, base, umod);
+ exp >>= 1;
+ }
+
+ return r;
+}
+#endif /* ANSI CONFIG_32 */
+
+
+/**************************************************************************/
+/* Pentium Pro modular arithmetic */
+/**************************************************************************/
+
+/*
+ * A proof of the algorithm is in literature/mulmod-ppro.txt. The FPU
+ * control word must be set to 64-bit precision and truncation mode
+ * prior to using these functions.
+ *
+ * Algorithm: calculate (a * b) % p:
+ *
+ * p := prime < 2**31
+ * pinv := (long double)1.0 / p (precalculated)
+ *
+ * a) n = a * b # Calculate exact product.
+ * b) qest = n * pinv # Calculate estimate for q = n / p.
+ * c) q = (qest+2**63)-2**63 # Truncate qest to the exact quotient.
+ * d) r = n - q * p # Calculate remainder.
+ *
+ * Remarks:
+ *
+ * - p = dmod and pinv = dinvmod.
+ * - dinvmod points to an array of three uint32_t, which is interpreted
+ * as an 80 bit long double by fldt.
+ * - Intel compilers prior to version 11 do not seem to handle the
+ * __GNUC__ inline assembly correctly.
+ * - random tests are provided in tests/extended/ppro_mulmod.c
+ */
+
+#if defined(PPRO)
+#if defined(ASM)
+
+/* Return (a * b) % dmod */
+static inline mpd_uint_t
+ppro_mulmod(mpd_uint_t a, mpd_uint_t b, double *dmod, uint32_t *dinvmod)
+{
+ mpd_uint_t retval;
+
+ __asm__ (
+ "fildl %2\n\t"
+ "fildl %1\n\t"
+ "fmulp %%st, %%st(1)\n\t"
+ "fldt (%4)\n\t"
+ "fmul %%st(1), %%st\n\t"
+ "flds %5\n\t"
+ "fadd %%st, %%st(1)\n\t"
+ "fsubrp %%st, %%st(1)\n\t"
+ "fldl (%3)\n\t"
+ "fmulp %%st, %%st(1)\n\t"
+ "fsubrp %%st, %%st(1)\n\t"
+ "fistpl %0\n\t"
+ : "=m" (retval)
+ : "m" (a), "m" (b), "r" (dmod), "r" (dinvmod), "m" (MPD_TWO63)
+ : "st", "memory"
+ );
+
+ return retval;
+}
+
+/*
+ * Two modular multiplications in parallel:
+ * *a0 = (*a0 * w) % dmod
+ * *a1 = (*a1 * w) % dmod
+ */
+static inline void
+ppro_mulmod2c(mpd_uint_t *a0, mpd_uint_t *a1, mpd_uint_t w,
+ double *dmod, uint32_t *dinvmod)
+{
+ __asm__ (
+ "fildl %2\n\t"
+ "fildl (%1)\n\t"
+ "fmul %%st(1), %%st\n\t"
+ "fxch %%st(1)\n\t"
+ "fildl (%0)\n\t"
+ "fmulp %%st, %%st(1) \n\t"
+ "fldt (%4)\n\t"
+ "flds %5\n\t"
+ "fld %%st(2)\n\t"
+ "fmul %%st(2)\n\t"
+ "fadd %%st(1)\n\t"
+ "fsub %%st(1)\n\t"
+ "fmull (%3)\n\t"
+ "fsubrp %%st, %%st(3)\n\t"
+ "fxch %%st(2)\n\t"
+ "fistpl (%0)\n\t"
+ "fmul %%st(2)\n\t"
+ "fadd %%st(1)\n\t"
+ "fsubp %%st, %%st(1)\n\t"
+ "fmull (%3)\n\t"
+ "fsubrp %%st, %%st(1)\n\t"
+ "fistpl (%1)\n\t"
+ : : "r" (a0), "r" (a1), "m" (w),
+ "r" (dmod), "r" (dinvmod),
+ "m" (MPD_TWO63)
+ : "st", "memory"
+ );
+}
+
+/*
+ * Two modular multiplications in parallel:
+ * *a0 = (*a0 * b0) % dmod
+ * *a1 = (*a1 * b1) % dmod
+ */
+static inline void
+ppro_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
+ double *dmod, uint32_t *dinvmod)
+{
+ __asm__ (
+ "fildl %3\n\t"
+ "fildl (%2)\n\t"
+ "fmulp %%st, %%st(1)\n\t"
+ "fildl %1\n\t"
+ "fildl (%0)\n\t"
+ "fmulp %%st, %%st(1)\n\t"
+ "fldt (%5)\n\t"
+ "fld %%st(2)\n\t"
+ "fmul %%st(1), %%st\n\t"
+ "fxch %%st(1)\n\t"
+ "fmul %%st(2), %%st\n\t"
+ "flds %6\n\t"
+ "fldl (%4)\n\t"
+ "fxch %%st(3)\n\t"
+ "fadd %%st(1), %%st\n\t"
+ "fxch %%st(2)\n\t"
+ "fadd %%st(1), %%st\n\t"
+ "fxch %%st(2)\n\t"
+ "fsub %%st(1), %%st\n\t"
+ "fxch %%st(2)\n\t"
+ "fsubp %%st, %%st(1)\n\t"
+ "fxch %%st(1)\n\t"
+ "fmul %%st(2), %%st\n\t"
+ "fxch %%st(1)\n\t"
+ "fmulp %%st, %%st(2)\n\t"
+ "fsubrp %%st, %%st(3)\n\t"
+ "fsubrp %%st, %%st(1)\n\t"
+ "fxch %%st(1)\n\t"
+ "fistpl (%2)\n\t"
+ "fistpl (%0)\n\t"
+ : : "r" (a0), "m" (b0), "r" (a1), "m" (b1),
+ "r" (dmod), "r" (dinvmod),
+ "m" (MPD_TWO63)
+ : "st", "memory"
+ );
+}
+/* END PPRO GCC ASM */
+#elif defined(MASM)
+
+/* Return (a * b) % dmod */
+static inline mpd_uint_t __cdecl
+ppro_mulmod(mpd_uint_t a, mpd_uint_t b, double *dmod, uint32_t *dinvmod)
+{
+ mpd_uint_t retval;
+
+ __asm {
+ mov eax, dinvmod
+ mov edx, dmod
+ fild b
+ fild a
+ fmulp st(1), st
+ fld TBYTE PTR [eax]
+ fmul st, st(1)
+ fld MPD_TWO63
+ fadd st(1), st
+ fsubp st(1), st
+ fld QWORD PTR [edx]
+ fmulp st(1), st
+ fsubp st(1), st
+ fistp retval
+ }
+
+ return retval;
+}
+
+/*
+ * Two modular multiplications in parallel:
+ * *a0 = (*a0 * w) % dmod
+ * *a1 = (*a1 * w) % dmod
+ */
+static inline mpd_uint_t __cdecl
+ppro_mulmod2c(mpd_uint_t *a0, mpd_uint_t *a1, mpd_uint_t w,
+ double *dmod, uint32_t *dinvmod)
+{
+ __asm {
+ mov ecx, dmod
+ mov edx, a1
+ mov ebx, dinvmod
+ mov eax, a0
+ fild w
+ fild DWORD PTR [edx]
+ fmul st, st(1)
+ fxch st(1)
+ fild DWORD PTR [eax]
+ fmulp st(1), st
+ fld TBYTE PTR [ebx]
+ fld MPD_TWO63
+ fld st(2)
+ fmul st, st(2)
+ fadd st, st(1)
+ fsub st, st(1)
+ fmul QWORD PTR [ecx]
+ fsubp st(3), st
+ fxch st(2)
+ fistp DWORD PTR [eax]
+ fmul st, st(2)
+ fadd st, st(1)
+ fsubrp st(1), st
+ fmul QWORD PTR [ecx]
+ fsubp st(1), st
+ fistp DWORD PTR [edx]
+ }
+}
+
+/*
+ * Two modular multiplications in parallel:
+ * *a0 = (*a0 * b0) % dmod
+ * *a1 = (*a1 * b1) % dmod
+ */
+static inline void __cdecl
+ppro_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
+ double *dmod, uint32_t *dinvmod)
+{
+ __asm {
+ mov ecx, dmod
+ mov edx, a1
+ mov ebx, dinvmod
+ mov eax, a0
+ fild b1
+ fild DWORD PTR [edx]
+ fmulp st(1), st
+ fild b0
+ fild DWORD PTR [eax]
+ fmulp st(1), st
+ fld TBYTE PTR [ebx]
+ fld st(2)
+ fmul st, st(1)
+ fxch st(1)
+ fmul st, st(2)
+ fld DWORD PTR MPD_TWO63
+ fld QWORD PTR [ecx]
+ fxch st(3)
+ fadd st, st(1)
+ fxch st(2)
+ fadd st, st(1)
+ fxch st(2)
+ fsub st, st(1)
+ fxch st(2)
+ fsubrp st(1), st
+ fxch st(1)
+ fmul st, st(2)
+ fxch st(1)
+ fmulp st(2), st
+ fsubp st(3), st
+ fsubp st(1), st
+ fxch st(1)
+ fistp DWORD PTR [edx]
+ fistp DWORD PTR [eax]
+ }
+}
+#endif /* PPRO MASM (_MSC_VER) */
+
+
+/* Return (base ** exp) % dmod */
+static inline mpd_uint_t
+ppro_powmod(mpd_uint_t base, mpd_uint_t exp, double *dmod, uint32_t *dinvmod)
+{
+ mpd_uint_t r = 1;
+
+ while (exp > 0) {
+ if (exp & 1)
+ r = ppro_mulmod(r, base, dmod, dinvmod);
+ base = ppro_mulmod(base, base, dmod, dinvmod);
+ exp >>= 1;
+ }
+
+ return r;
+}
+#endif /* PPRO */
+#endif /* CONFIG_32 */
+
+
+#endif /* UMODARITH_H */
+
+
+