diff options
Diffstat (limited to 'Modules/clinic/cmathmodule.c.h')
-rw-r--r-- | Modules/clinic/cmathmodule.c.h | 860 |
1 files changed, 860 insertions, 0 deletions
diff --git a/Modules/clinic/cmathmodule.c.h b/Modules/clinic/cmathmodule.c.h new file mode 100644 index 0000000..7d61649 --- /dev/null +++ b/Modules/clinic/cmathmodule.c.h @@ -0,0 +1,860 @@ +/*[clinic input] +preserve +[clinic start generated code]*/ + +PyDoc_STRVAR(cmath_acos__doc__, +"acos($module, z, /)\n" +"--\n" +"\n" +"Return the arc cosine of z."); + +#define CMATH_ACOS_METHODDEF \ + {"acos", (PyCFunction)cmath_acos, METH_O, cmath_acos__doc__}, + +static Py_complex +cmath_acos_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_acos(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:acos", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_acos_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_acosh__doc__, +"acosh($module, z, /)\n" +"--\n" +"\n" +"Return the inverse hyperbolic cosine of z."); + +#define CMATH_ACOSH_METHODDEF \ + {"acosh", (PyCFunction)cmath_acosh, METH_O, cmath_acosh__doc__}, + +static Py_complex +cmath_acosh_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_acosh(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:acosh", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_acosh_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_asin__doc__, +"asin($module, z, /)\n" +"--\n" +"\n" +"Return the arc sine of z."); + +#define CMATH_ASIN_METHODDEF \ + {"asin", (PyCFunction)cmath_asin, METH_O, cmath_asin__doc__}, + +static Py_complex +cmath_asin_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_asin(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:asin", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_asin_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_asinh__doc__, +"asinh($module, z, /)\n" +"--\n" +"\n" +"Return the inverse hyperbolic sine of z."); + +#define CMATH_ASINH_METHODDEF \ + {"asinh", (PyCFunction)cmath_asinh, METH_O, cmath_asinh__doc__}, + +static Py_complex +cmath_asinh_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_asinh(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:asinh", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_asinh_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_atan__doc__, +"atan($module, z, /)\n" +"--\n" +"\n" +"Return the arc tangent of z."); + +#define CMATH_ATAN_METHODDEF \ + {"atan", (PyCFunction)cmath_atan, METH_O, cmath_atan__doc__}, + +static Py_complex +cmath_atan_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_atan(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:atan", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_atan_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_atanh__doc__, +"atanh($module, z, /)\n" +"--\n" +"\n" +"Return the inverse hyperbolic tangent of z."); + +#define CMATH_ATANH_METHODDEF \ + {"atanh", (PyCFunction)cmath_atanh, METH_O, cmath_atanh__doc__}, + +static Py_complex +cmath_atanh_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_atanh(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:atanh", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_atanh_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_cos__doc__, +"cos($module, z, /)\n" +"--\n" +"\n" +"Return the cosine of z."); + +#define CMATH_COS_METHODDEF \ + {"cos", (PyCFunction)cmath_cos, METH_O, cmath_cos__doc__}, + +static Py_complex +cmath_cos_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_cos(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:cos", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_cos_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_cosh__doc__, +"cosh($module, z, /)\n" +"--\n" +"\n" +"Return the hyperbolic cosine of z."); + +#define CMATH_COSH_METHODDEF \ + {"cosh", (PyCFunction)cmath_cosh, METH_O, cmath_cosh__doc__}, + +static Py_complex +cmath_cosh_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_cosh(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:cosh", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_cosh_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_exp__doc__, +"exp($module, z, /)\n" +"--\n" +"\n" +"Return the exponential value e**z."); + +#define CMATH_EXP_METHODDEF \ + {"exp", (PyCFunction)cmath_exp, METH_O, cmath_exp__doc__}, + +static Py_complex +cmath_exp_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_exp(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:exp", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_exp_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_log10__doc__, +"log10($module, z, /)\n" +"--\n" +"\n" +"Return the base-10 logarithm of z."); + +#define CMATH_LOG10_METHODDEF \ + {"log10", (PyCFunction)cmath_log10, METH_O, cmath_log10__doc__}, + +static Py_complex +cmath_log10_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_log10(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:log10", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_log10_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_sin__doc__, +"sin($module, z, /)\n" +"--\n" +"\n" +"Return the sine of z."); + +#define CMATH_SIN_METHODDEF \ + {"sin", (PyCFunction)cmath_sin, METH_O, cmath_sin__doc__}, + +static Py_complex +cmath_sin_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_sin(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:sin", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_sin_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_sinh__doc__, +"sinh($module, z, /)\n" +"--\n" +"\n" +"Return the hyperbolic sine of z."); + +#define CMATH_SINH_METHODDEF \ + {"sinh", (PyCFunction)cmath_sinh, METH_O, cmath_sinh__doc__}, + +static Py_complex +cmath_sinh_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_sinh(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:sinh", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_sinh_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_sqrt__doc__, +"sqrt($module, z, /)\n" +"--\n" +"\n" +"Return the square root of z."); + +#define CMATH_SQRT_METHODDEF \ + {"sqrt", (PyCFunction)cmath_sqrt, METH_O, cmath_sqrt__doc__}, + +static Py_complex +cmath_sqrt_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_sqrt(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:sqrt", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_sqrt_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_tan__doc__, +"tan($module, z, /)\n" +"--\n" +"\n" +"Return the tangent of z."); + +#define CMATH_TAN_METHODDEF \ + {"tan", (PyCFunction)cmath_tan, METH_O, cmath_tan__doc__}, + +static Py_complex +cmath_tan_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_tan(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:tan", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_tan_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_tanh__doc__, +"tanh($module, z, /)\n" +"--\n" +"\n" +"Return the hyperbolic tangent of z."); + +#define CMATH_TANH_METHODDEF \ + {"tanh", (PyCFunction)cmath_tanh, METH_O, cmath_tanh__doc__}, + +static Py_complex +cmath_tanh_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_tanh(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + Py_complex _return_value; + + if (!PyArg_Parse(arg, "D:tanh", &z)) + goto exit; + /* modifications for z */ + errno = 0; PyFPE_START_PROTECT("complex function", goto exit); + _return_value = cmath_tanh_impl(module, z); + PyFPE_END_PROTECT(_return_value); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; + } + else { + return_value = PyComplex_FromCComplex(_return_value); + } + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_log__doc__, +"log($module, x, y_obj=None, /)\n" +"--\n" +"\n" +"The logarithm of z to the given base.\n" +"\n" +"If the base not specified, returns the natural logarithm (base e) of z."); + +#define CMATH_LOG_METHODDEF \ + {"log", (PyCFunction)cmath_log, METH_VARARGS, cmath_log__doc__}, + +static PyObject * +cmath_log_impl(PyModuleDef *module, Py_complex x, PyObject *y_obj); + +static PyObject * +cmath_log(PyModuleDef *module, PyObject *args) +{ + PyObject *return_value = NULL; + Py_complex x; + PyObject *y_obj = NULL; + + if (!PyArg_ParseTuple(args, "D|O:log", + &x, &y_obj)) + goto exit; + return_value = cmath_log_impl(module, x, y_obj); + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_phase__doc__, +"phase($module, z, /)\n" +"--\n" +"\n" +"Return argument, also known as the phase angle, of a complex."); + +#define CMATH_PHASE_METHODDEF \ + {"phase", (PyCFunction)cmath_phase, METH_O, cmath_phase__doc__}, + +static PyObject * +cmath_phase_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_phase(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + + if (!PyArg_Parse(arg, "D:phase", &z)) + goto exit; + return_value = cmath_phase_impl(module, z); + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_polar__doc__, +"polar($module, z, /)\n" +"--\n" +"\n" +"Convert a complex from rectangular coordinates to polar coordinates.\n" +"\n" +"r is the distance from 0 and phi the phase angle."); + +#define CMATH_POLAR_METHODDEF \ + {"polar", (PyCFunction)cmath_polar, METH_O, cmath_polar__doc__}, + +static PyObject * +cmath_polar_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_polar(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + + if (!PyArg_Parse(arg, "D:polar", &z)) + goto exit; + return_value = cmath_polar_impl(module, z); + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_rect__doc__, +"rect($module, r, phi, /)\n" +"--\n" +"\n" +"Convert from polar coordinates to rectangular coordinates."); + +#define CMATH_RECT_METHODDEF \ + {"rect", (PyCFunction)cmath_rect, METH_VARARGS, cmath_rect__doc__}, + +static PyObject * +cmath_rect_impl(PyModuleDef *module, double r, double phi); + +static PyObject * +cmath_rect(PyModuleDef *module, PyObject *args) +{ + PyObject *return_value = NULL; + double r; + double phi; + + if (!PyArg_ParseTuple(args, "dd:rect", + &r, &phi)) + goto exit; + return_value = cmath_rect_impl(module, r, phi); + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_isfinite__doc__, +"isfinite($module, z, /)\n" +"--\n" +"\n" +"Return True if both the real and imaginary parts of z are finite, else False."); + +#define CMATH_ISFINITE_METHODDEF \ + {"isfinite", (PyCFunction)cmath_isfinite, METH_O, cmath_isfinite__doc__}, + +static PyObject * +cmath_isfinite_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_isfinite(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + + if (!PyArg_Parse(arg, "D:isfinite", &z)) + goto exit; + return_value = cmath_isfinite_impl(module, z); + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_isnan__doc__, +"isnan($module, z, /)\n" +"--\n" +"\n" +"Checks if the real or imaginary part of z not a number (NaN)."); + +#define CMATH_ISNAN_METHODDEF \ + {"isnan", (PyCFunction)cmath_isnan, METH_O, cmath_isnan__doc__}, + +static PyObject * +cmath_isnan_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_isnan(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + + if (!PyArg_Parse(arg, "D:isnan", &z)) + goto exit; + return_value = cmath_isnan_impl(module, z); + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_isinf__doc__, +"isinf($module, z, /)\n" +"--\n" +"\n" +"Checks if the real or imaginary part of z is infinite."); + +#define CMATH_ISINF_METHODDEF \ + {"isinf", (PyCFunction)cmath_isinf, METH_O, cmath_isinf__doc__}, + +static PyObject * +cmath_isinf_impl(PyModuleDef *module, Py_complex z); + +static PyObject * +cmath_isinf(PyModuleDef *module, PyObject *arg) +{ + PyObject *return_value = NULL; + Py_complex z; + + if (!PyArg_Parse(arg, "D:isinf", &z)) + goto exit; + return_value = cmath_isinf_impl(module, z); + +exit: + return return_value; +} + +PyDoc_STRVAR(cmath_isclose__doc__, +"isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0)\n" +"--\n" +"\n" +"Determine whether two complex numbers are close in value.\n" +"\n" +" rel_tol\n" +" maximum difference for being considered \"close\", relative to the\n" +" magnitude of the input values\n" +" abs_tol\n" +" maximum difference for being considered \"close\", regardless of the\n" +" magnitude of the input values\n" +"\n" +"Return True if a is close in value to b, and False otherwise.\n" +"\n" +"For the values to be considered close, the difference between them must be\n" +"smaller than at least one of the tolerances.\n" +"\n" +"-inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is\n" +"not close to anything, even itself. inf and -inf are only close to themselves."); + +#define CMATH_ISCLOSE_METHODDEF \ + {"isclose", (PyCFunction)cmath_isclose, METH_VARARGS|METH_KEYWORDS, cmath_isclose__doc__}, + +static int +cmath_isclose_impl(PyModuleDef *module, Py_complex a, Py_complex b, + double rel_tol, double abs_tol); + +static PyObject * +cmath_isclose(PyModuleDef *module, PyObject *args, PyObject *kwargs) +{ + PyObject *return_value = NULL; + static char *_keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL}; + Py_complex a; + Py_complex b; + double rel_tol = 1e-09; + double abs_tol = 0.0; + int _return_value; + + if (!PyArg_ParseTupleAndKeywords(args, kwargs, "DD|$dd:isclose", _keywords, + &a, &b, &rel_tol, &abs_tol)) + goto exit; + _return_value = cmath_isclose_impl(module, a, b, rel_tol, abs_tol); + if ((_return_value == -1) && PyErr_Occurred()) + goto exit; + return_value = PyBool_FromLong((long)_return_value); + +exit: + return return_value; +} +/*[clinic end generated code: output=229e9c48c9d27362 input=a9049054013a1b77]*/ |