summaryrefslogtreecommitdiffstats
path: root/Modules/cmathmodule.c
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/cmathmodule.c')
-rw-r--r--Modules/cmathmodule.c558
1 files changed, 335 insertions, 223 deletions
diff --git a/Modules/cmathmodule.c b/Modules/cmathmodule.c
index b341c34..7f6c2c9 100644
--- a/Modules/cmathmodule.c
+++ b/Modules/cmathmodule.c
@@ -8,6 +8,40 @@
float.h. We assume that FLT_RADIX is either 2 or 16. */
#include <float.h>
+#include "clinic/cmathmodule.c.h"
+/*[clinic input]
+module cmath
+[clinic start generated code]*/
+/*[clinic end generated code: output=da39a3ee5e6b4b0d input=308d6839f4a46333]*/
+
+/*[python input]
+class Py_complex_protected_converter(Py_complex_converter):
+ def modify(self):
+ return 'errno = 0; PyFPE_START_PROTECT("complex function", goto exit);'
+
+
+class Py_complex_protected_return_converter(CReturnConverter):
+ type = "Py_complex"
+
+ def render(self, function, data):
+ self.declare(data)
+ data.return_conversion.append("""
+PyFPE_END_PROTECT(_return_value);
+if (errno == EDOM) {{
+ PyErr_SetString(PyExc_ValueError, "math domain error");
+ goto exit;
+}}
+else if (errno == ERANGE) {{
+ PyErr_SetString(PyExc_OverflowError, "math range error");
+ goto exit;
+}}
+else {{
+ return_value = PyComplex_FromCComplex(_return_value);
+}}
+""".strip())
+[python start generated code]*/
+/*[python end generated code: output=da39a3ee5e6b4b0d input=231019039a6fbb9a]*/
+
#if (FLT_RADIX != 2 && FLT_RADIX != 16)
#error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
#endif
@@ -48,12 +82,12 @@
#define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
/* forward declarations */
-static Py_complex c_asinh(Py_complex);
-static Py_complex c_atanh(Py_complex);
-static Py_complex c_cosh(Py_complex);
-static Py_complex c_sinh(Py_complex);
-static Py_complex c_sqrt(Py_complex);
-static Py_complex c_tanh(Py_complex);
+static Py_complex cmath_asinh_impl(PyModuleDef *, Py_complex);
+static Py_complex cmath_atanh_impl(PyModuleDef *, Py_complex);
+static Py_complex cmath_cosh_impl(PyModuleDef *, Py_complex);
+static Py_complex cmath_sinh_impl(PyModuleDef *, Py_complex);
+static Py_complex cmath_sqrt_impl(PyModuleDef *, Py_complex);
+static Py_complex cmath_tanh_impl(PyModuleDef *, Py_complex);
static PyObject * math_error(void);
/* Code to deal with special values (infinities, NaNs, etc.). */
@@ -123,8 +157,18 @@ special_type(double d)
static Py_complex acos_special_values[7][7];
+/*[clinic input]
+cmath.acos -> Py_complex_protected
+
+ z: Py_complex_protected
+ /
+
+Return the arc cosine of z.
+[clinic start generated code]*/
+
static Py_complex
-c_acos(Py_complex z)
+cmath_acos_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=7c1dd21ff818db6b input=bd6cbd78ae851927]*/
{
Py_complex s1, s2, r;
@@ -145,10 +189,10 @@ c_acos(Py_complex z)
} else {
s1.real = 1.-z.real;
s1.imag = -z.imag;
- s1 = c_sqrt(s1);
+ s1 = cmath_sqrt_impl(module, s1);
s2.real = 1.+z.real;
s2.imag = z.imag;
- s2 = c_sqrt(s2);
+ s2 = cmath_sqrt_impl(module, s2);
r.real = 2.*atan2(s1.real, s2.real);
r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
}
@@ -156,16 +200,18 @@ c_acos(Py_complex z)
return r;
}
-PyDoc_STRVAR(c_acos_doc,
-"acos(x)\n"
-"\n"
-"Return the arc cosine of x.");
-
static Py_complex acosh_special_values[7][7];
+/*[clinic input]
+cmath.acosh = cmath.acos
+
+Return the inverse hyperbolic cosine of z.
+[clinic start generated code]*/
+
static Py_complex
-c_acosh(Py_complex z)
+cmath_acosh_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=c23c776429def981 input=3f61bee7d703e53c]*/
{
Py_complex s1, s2, r;
@@ -178,10 +224,10 @@ c_acosh(Py_complex z)
} else {
s1.real = z.real - 1.;
s1.imag = z.imag;
- s1 = c_sqrt(s1);
+ s1 = cmath_sqrt_impl(module, s1);
s2.real = z.real + 1.;
s2.imag = z.imag;
- s2 = c_sqrt(s2);
+ s2 = cmath_sqrt_impl(module, s2);
r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
r.imag = 2.*atan2(s1.imag, s2.real);
}
@@ -189,35 +235,38 @@ c_acosh(Py_complex z)
return r;
}
-PyDoc_STRVAR(c_acosh_doc,
-"acosh(x)\n"
-"\n"
-"Return the inverse hyperbolic cosine of x.");
+/*[clinic input]
+cmath.asin = cmath.acos
+Return the arc sine of z.
+[clinic start generated code]*/
static Py_complex
-c_asin(Py_complex z)
+cmath_asin_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=42d2346d46690826 input=be0bf0cfdd5239c5]*/
{
/* asin(z) = -i asinh(iz) */
Py_complex s, r;
s.real = -z.imag;
s.imag = z.real;
- s = c_asinh(s);
+ s = cmath_asinh_impl(module, s);
r.real = s.imag;
r.imag = -s.real;
return r;
}
-PyDoc_STRVAR(c_asin_doc,
-"asin(x)\n"
-"\n"
-"Return the arc sine of x.");
-
static Py_complex asinh_special_values[7][7];
+/*[clinic input]
+cmath.asinh = cmath.acos
+
+Return the inverse hyperbolic sine of z.
+[clinic start generated code]*/
+
static Py_complex
-c_asinh(Py_complex z)
+cmath_asinh_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=0c6664823c7b1b35 input=5c09448fcfc89a79]*/
{
Py_complex s1, s2, r;
@@ -235,10 +284,10 @@ c_asinh(Py_complex z)
} else {
s1.real = 1.+z.imag;
s1.imag = -z.real;
- s1 = c_sqrt(s1);
+ s1 = cmath_sqrt_impl(module, s1);
s2.real = 1.-z.imag;
s2.imag = z.real;
- s2 = c_sqrt(s2);
+ s2 = cmath_sqrt_impl(module, s2);
r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
}
@@ -246,20 +295,22 @@ c_asinh(Py_complex z)
return r;
}
-PyDoc_STRVAR(c_asinh_doc,
-"asinh(x)\n"
-"\n"
-"Return the inverse hyperbolic sine of x.");
+/*[clinic input]
+cmath.atan = cmath.acos
+
+Return the arc tangent of z.
+[clinic start generated code]*/
static Py_complex
-c_atan(Py_complex z)
+cmath_atan_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=b7d44f02c6a5c3b5 input=3b21ff7d5eac632a]*/
{
/* atan(z) = -i atanh(iz) */
Py_complex s, r;
s.real = -z.imag;
s.imag = z.real;
- s = c_atanh(s);
+ s = cmath_atanh_impl(module, s);
r.real = s.imag;
r.imag = -s.real;
return r;
@@ -295,16 +346,18 @@ c_atan2(Py_complex z)
return atan2(z.imag, z.real);
}
-PyDoc_STRVAR(c_atan_doc,
-"atan(x)\n"
-"\n"
-"Return the arc tangent of x.");
-
static Py_complex atanh_special_values[7][7];
+/*[clinic input]
+cmath.atanh = cmath.acos
+
+Return the inverse hyperbolic tangent of z.
+[clinic start generated code]*/
+
static Py_complex
-c_atanh(Py_complex z)
+cmath_atanh_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=279e0b9fefc8da7c input=2b3fdb82fb34487b]*/
{
Py_complex r;
double ay, h;
@@ -313,7 +366,7 @@ c_atanh(Py_complex z)
/* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
if (z.real < 0.) {
- return c_neg(c_atanh(c_neg(z)));
+ return _Py_c_neg(cmath_atanh_impl(module, _Py_c_neg(z)));
}
ay = fabs(z.imag);
@@ -350,34 +403,38 @@ c_atanh(Py_complex z)
return r;
}
-PyDoc_STRVAR(c_atanh_doc,
-"atanh(x)\n"
-"\n"
-"Return the inverse hyperbolic tangent of x.");
+/*[clinic input]
+cmath.cos = cmath.acos
+
+Return the cosine of z.
+[clinic start generated code]*/
static Py_complex
-c_cos(Py_complex z)
+cmath_cos_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=9d1cdc1b5e761667 input=6022e39b77127ac7]*/
{
/* cos(z) = cosh(iz) */
Py_complex r;
r.real = -z.imag;
r.imag = z.real;
- r = c_cosh(r);
+ r = cmath_cosh_impl(module, r);
return r;
}
-PyDoc_STRVAR(c_cos_doc,
-"cos(x)\n"
-"\n"
-"Return the cosine of x.");
-
/* cosh(infinity + i*y) needs to be dealt with specially */
static Py_complex cosh_special_values[7][7];
+/*[clinic input]
+cmath.cosh = cmath.acos
+
+Return the hyperbolic cosine of z.
+[clinic start generated code]*/
+
static Py_complex
-c_cosh(Py_complex z)
+cmath_cosh_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=f3b5d3282b3024d3 input=d6b66339e9cc332b]*/
{
Py_complex r;
double x_minus_one;
@@ -426,18 +483,20 @@ c_cosh(Py_complex z)
return r;
}
-PyDoc_STRVAR(c_cosh_doc,
-"cosh(x)\n"
-"\n"
-"Return the hyperbolic cosine of x.");
-
/* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
finite y */
static Py_complex exp_special_values[7][7];
+/*[clinic input]
+cmath.exp = cmath.acos
+
+Return the exponential value e**z.
+[clinic start generated code]*/
+
static Py_complex
-c_exp(Py_complex z)
+cmath_exp_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=6f8825eb2bcad9ba input=8b9e6cf8a92174c3]*/
{
Py_complex r;
double l;
@@ -486,12 +545,6 @@ c_exp(Py_complex z)
return r;
}
-PyDoc_STRVAR(c_exp_doc,
-"exp(x)\n"
-"\n"
-"Return the exponential value e**x.");
-
-
static Py_complex log_special_values[7][7];
static Py_complex
@@ -564,8 +617,15 @@ c_log(Py_complex z)
}
+/*[clinic input]
+cmath.log10 = cmath.acos
+
+Return the base-10 logarithm of z.
+[clinic start generated code]*/
+
static Py_complex
-c_log10(Py_complex z)
+cmath_log10_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=c7c426ca0e782341 input=cff5644f73c1519c]*/
{
Py_complex r;
int errno_save;
@@ -578,36 +638,40 @@ c_log10(Py_complex z)
return r;
}
-PyDoc_STRVAR(c_log10_doc,
-"log10(x)\n"
-"\n"
-"Return the base-10 logarithm of x.");
+/*[clinic input]
+cmath.sin = cmath.acos
+
+Return the sine of z.
+[clinic start generated code]*/
static Py_complex
-c_sin(Py_complex z)
+cmath_sin_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=e7f5e2b253825ac7 input=2d3519842a8b4b85]*/
{
/* sin(z) = -i sin(iz) */
Py_complex s, r;
s.real = -z.imag;
s.imag = z.real;
- s = c_sinh(s);
+ s = cmath_sinh_impl(module, s);
r.real = s.imag;
r.imag = -s.real;
return r;
}
-PyDoc_STRVAR(c_sin_doc,
-"sin(x)\n"
-"\n"
-"Return the sine of x.");
-
/* sinh(infinity + i*y) needs to be dealt with specially */
static Py_complex sinh_special_values[7][7];
+/*[clinic input]
+cmath.sinh = cmath.acos
+
+Return the hyperbolic sine of z.
+[clinic start generated code]*/
+
static Py_complex
-c_sinh(Py_complex z)
+cmath_sinh_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=d71fff8298043a95 input=d2d3fc8c1ddfd2dd]*/
{
Py_complex r;
double x_minus_one;
@@ -655,16 +719,18 @@ c_sinh(Py_complex z)
return r;
}
-PyDoc_STRVAR(c_sinh_doc,
-"sinh(x)\n"
-"\n"
-"Return the hyperbolic sine of x.");
-
static Py_complex sqrt_special_values[7][7];
+/*[clinic input]
+cmath.sqrt = cmath.acos
+
+Return the square root of z.
+[clinic start generated code]*/
+
static Py_complex
-c_sqrt(Py_complex z)
+cmath_sqrt_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=b6bda283d0c5a7b4 input=7088b166fc9a58c7]*/
{
/*
Method: use symmetries to reduce to the case when x = z.real and y
@@ -730,36 +796,40 @@ c_sqrt(Py_complex z)
return r;
}
-PyDoc_STRVAR(c_sqrt_doc,
-"sqrt(x)\n"
-"\n"
-"Return the square root of x.");
+/*[clinic input]
+cmath.tan = cmath.acos
+
+Return the tangent of z.
+[clinic start generated code]*/
static Py_complex
-c_tan(Py_complex z)
+cmath_tan_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=df374bacf36d99b4 input=fc167e528767888e]*/
{
/* tan(z) = -i tanh(iz) */
Py_complex s, r;
s.real = -z.imag;
s.imag = z.real;
- s = c_tanh(s);
+ s = cmath_tanh_impl(module, s);
r.real = s.imag;
r.imag = -s.real;
return r;
}
-PyDoc_STRVAR(c_tan_doc,
-"tan(x)\n"
-"\n"
-"Return the tangent of x.");
-
/* tanh(infinity + i*y) needs to be dealt with specially */
static Py_complex tanh_special_values[7][7];
+/*[clinic input]
+cmath.tanh = cmath.acos
+
+Return the hyperbolic tangent of z.
+[clinic start generated code]*/
+
static Py_complex
-c_tanh(Py_complex z)
+cmath_tanh_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=f578773d27a18e96 input=22f67f9dc6d29685]*/
{
/* Formula:
@@ -822,27 +892,35 @@ c_tanh(Py_complex z)
return r;
}
-PyDoc_STRVAR(c_tanh_doc,
-"tanh(x)\n"
-"\n"
-"Return the hyperbolic tangent of x.");
+/*[clinic input]
+cmath.log
+
+ x: Py_complex
+ y_obj: object = NULL
+ /
+
+The logarithm of z to the given base.
+
+If the base not specified, returns the natural logarithm (base e) of z.
+[clinic start generated code]*/
static PyObject *
-cmath_log(PyObject *self, PyObject *args)
+cmath_log_impl(PyModuleDef *module, Py_complex x, PyObject *y_obj)
+/*[clinic end generated code: output=35e2a1e5229b5a46 input=ee0e823a7c6e68ea]*/
{
- Py_complex x;
Py_complex y;
- if (!PyArg_ParseTuple(args, "D|D", &x, &y))
- return NULL;
-
errno = 0;
PyFPE_START_PROTECT("complex function", return 0)
x = c_log(x);
- if (PyTuple_GET_SIZE(args) == 2) {
+ if (y_obj != NULL) {
+ y = PyComplex_AsCComplex(y_obj);
+ if (PyErr_Occurred()) {
+ return NULL;
+ }
y = c_log(y);
- x = c_quot(x, y);
+ x = _Py_c_quot(x, y);
}
PyFPE_END_PROTECT(x)
if (errno != 0)
@@ -850,10 +928,6 @@ cmath_log(PyObject *self, PyObject *args)
return PyComplex_FromCComplex(x);
}
-PyDoc_STRVAR(cmath_log_doc,
-"log(x[, base]) -> the logarithm of x to the given base.\n\
-If the base not specified, returns the natural logarithm (base e) of x.");
-
/* And now the glue to make them available from Python: */
@@ -869,57 +943,22 @@ math_error(void)
return NULL;
}
-static PyObject *
-math_1(PyObject *args, Py_complex (*func)(Py_complex))
-{
- Py_complex x,r ;
- if (!PyArg_ParseTuple(args, "D", &x))
- return NULL;
- errno = 0;
- PyFPE_START_PROTECT("complex function", return 0);
- r = (*func)(x);
- PyFPE_END_PROTECT(r);
- if (errno == EDOM) {
- PyErr_SetString(PyExc_ValueError, "math domain error");
- return NULL;
- }
- else if (errno == ERANGE) {
- PyErr_SetString(PyExc_OverflowError, "math range error");
- return NULL;
- }
- else {
- return PyComplex_FromCComplex(r);
- }
-}
-#define FUNC1(stubname, func) \
- static PyObject * stubname(PyObject *self, PyObject *args) { \
- return math_1(args, func); \
- }
+/*[clinic input]
+cmath.phase
+
+ z: Py_complex
+ /
-FUNC1(cmath_acos, c_acos)
-FUNC1(cmath_acosh, c_acosh)
-FUNC1(cmath_asin, c_asin)
-FUNC1(cmath_asinh, c_asinh)
-FUNC1(cmath_atan, c_atan)
-FUNC1(cmath_atanh, c_atanh)
-FUNC1(cmath_cos, c_cos)
-FUNC1(cmath_cosh, c_cosh)
-FUNC1(cmath_exp, c_exp)
-FUNC1(cmath_log10, c_log10)
-FUNC1(cmath_sin, c_sin)
-FUNC1(cmath_sinh, c_sinh)
-FUNC1(cmath_sqrt, c_sqrt)
-FUNC1(cmath_tan, c_tan)
-FUNC1(cmath_tanh, c_tanh)
+Return argument, also known as the phase angle, of a complex.
+[clinic start generated code]*/
static PyObject *
-cmath_phase(PyObject *self, PyObject *args)
+cmath_phase_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=e09eaf373cb624c3 input=5cf75228ba94b69d]*/
{
- Py_complex z;
double phi;
- if (!PyArg_ParseTuple(args, "D:phase", &z))
- return NULL;
+
errno = 0;
PyFPE_START_PROTECT("arg function", return 0)
phi = c_atan2(z);
@@ -930,21 +969,27 @@ cmath_phase(PyObject *self, PyObject *args)
return PyFloat_FromDouble(phi);
}
-PyDoc_STRVAR(cmath_phase_doc,
-"phase(z) -> float\n\n\
-Return argument, also known as the phase angle, of a complex.");
+/*[clinic input]
+cmath.polar
+
+ z: Py_complex
+ /
+
+Convert a complex from rectangular coordinates to polar coordinates.
+
+r is the distance from 0 and phi the phase angle.
+[clinic start generated code]*/
static PyObject *
-cmath_polar(PyObject *self, PyObject *args)
+cmath_polar_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=07d41b16c877875a input=26c353574fd1a861]*/
{
- Py_complex z;
double r, phi;
- if (!PyArg_ParseTuple(args, "D:polar", &z))
- return NULL;
+
errno = 0;
PyFPE_START_PROTECT("polar function", return 0)
phi = c_atan2(z); /* should not cause any exception */
- r = c_abs(z); /* sets errno to ERANGE on overflow */
+ r = _Py_c_abs(z); /* sets errno to ERANGE on overflow */
PyFPE_END_PROTECT(r)
if (errno != 0)
return math_error();
@@ -952,11 +997,6 @@ cmath_polar(PyObject *self, PyObject *args)
return Py_BuildValue("dd", r, phi);
}
-PyDoc_STRVAR(cmath_polar_doc,
-"polar(z) -> r: float, phi: float\n\n\
-Convert a complex from rectangular coordinates to polar coordinates. r is\n\
-the distance from 0 and phi the phase angle.");
-
/*
rect() isn't covered by the C99 standard, but it's not too hard to
figure out 'spirit of C99' rules for special value handing:
@@ -970,13 +1010,21 @@ the distance from 0 and phi the phase angle.");
static Py_complex rect_special_values[7][7];
+/*[clinic input]
+cmath.rect
+
+ r: double
+ phi: double
+ /
+
+Convert from polar coordinates to rectangular coordinates.
+[clinic start generated code]*/
+
static PyObject *
-cmath_rect(PyObject *self, PyObject *args)
+cmath_rect_impl(PyModuleDef *module, double r, double phi)
+/*[clinic end generated code: output=d97a8749bd63e9d5 input=24c5646d147efd69]*/
{
Py_complex z;
- double r, phi;
- if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
- return NULL;
errno = 0;
PyFPE_START_PROTECT("rect function", return 0)
@@ -1027,79 +1075,143 @@ cmath_rect(PyObject *self, PyObject *args)
return PyComplex_FromCComplex(z);
}
-PyDoc_STRVAR(cmath_rect_doc,
-"rect(r, phi) -> z: complex\n\n\
-Convert from polar coordinates to rectangular coordinates.");
+/*[clinic input]
+cmath.isfinite = cmath.polar
+
+Return True if both the real and imaginary parts of z are finite, else False.
+[clinic start generated code]*/
static PyObject *
-cmath_isfinite(PyObject *self, PyObject *args)
+cmath_isfinite_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=8f6682fa93de45d6 input=848e7ee701895815]*/
{
- Py_complex z;
- if (!PyArg_ParseTuple(args, "D:isfinite", &z))
- return NULL;
return PyBool_FromLong(Py_IS_FINITE(z.real) && Py_IS_FINITE(z.imag));
}
-PyDoc_STRVAR(cmath_isfinite_doc,
-"isfinite(z) -> bool\n\
-Return True if both the real and imaginary parts of z are finite, else False.");
+/*[clinic input]
+cmath.isnan = cmath.polar
+
+Checks if the real or imaginary part of z not a number (NaN).
+[clinic start generated code]*/
static PyObject *
-cmath_isnan(PyObject *self, PyObject *args)
+cmath_isnan_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=b85fe8c2047718ee input=71799f5d284c9baf]*/
{
- Py_complex z;
- if (!PyArg_ParseTuple(args, "D:isnan", &z))
- return NULL;
return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
}
-PyDoc_STRVAR(cmath_isnan_doc,
-"isnan(z) -> bool\n\
-Checks if the real or imaginary part of z not a number (NaN)");
+/*[clinic input]
+cmath.isinf = cmath.polar
+
+Checks if the real or imaginary part of z is infinite.
+[clinic start generated code]*/
static PyObject *
-cmath_isinf(PyObject *self, PyObject *args)
+cmath_isinf_impl(PyModuleDef *module, Py_complex z)
+/*[clinic end generated code: output=8ca9c6109e468bf4 input=363df155c7181329]*/
{
- Py_complex z;
- if (!PyArg_ParseTuple(args, "D:isinf", &z))
- return NULL;
return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
Py_IS_INFINITY(z.imag));
}
-PyDoc_STRVAR(cmath_isinf_doc,
-"isinf(z) -> bool\n\
-Checks if the real or imaginary part of z is infinite.");
+/*[clinic input]
+cmath.isclose -> bool
+
+ a: Py_complex
+ b: Py_complex
+ *
+ rel_tol: double = 1e-09
+ maximum difference for being considered "close", relative to the
+ magnitude of the input values
+ abs_tol: double = 0.0
+ maximum difference for being considered "close", regardless of the
+ magnitude of the input values
+
+Determine whether two complex numbers are close in value.
+Return True if a is close in value to b, and False otherwise.
+
+For the values to be considered close, the difference between them must be
+smaller than at least one of the tolerances.
+
+-inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is
+not close to anything, even itself. inf and -inf are only close to themselves.
+[clinic start generated code]*/
+
+static int
+cmath_isclose_impl(PyModuleDef *module, Py_complex a, Py_complex b,
+ double rel_tol, double abs_tol)
+/*[clinic end generated code: output=da0c535fb54e2310 input=df9636d7de1d4ac3]*/
+{
+ double diff;
+
+ /* sanity check on the inputs */
+ if (rel_tol < 0.0 || abs_tol < 0.0 ) {
+ PyErr_SetString(PyExc_ValueError,
+ "tolerances must be non-negative");
+ return -1;
+ }
+
+ if ( (a.real == b.real) && (a.imag == b.imag) ) {
+ /* short circuit exact equality -- needed to catch two infinities of
+ the same sign. And perhaps speeds things up a bit sometimes.
+ */
+ return 1;
+ }
+
+ /* This catches the case of two infinities of opposite sign, or
+ one infinity and one finite number. Two infinities of opposite
+ sign would otherwise have an infinite relative tolerance.
+ Two infinities of the same sign are caught by the equality check
+ above.
+ */
+
+ if (Py_IS_INFINITY(a.real) || Py_IS_INFINITY(a.imag) ||
+ Py_IS_INFINITY(b.real) || Py_IS_INFINITY(b.imag)) {
+ return 0;
+ }
+
+ /* now do the regular computation
+ this is essentially the "weak" test from the Boost library
+ */
+
+ diff = _Py_c_abs(_Py_c_diff(a, b));
+
+ return (((diff <= rel_tol * _Py_c_abs(b)) ||
+ (diff <= rel_tol * _Py_c_abs(a))) ||
+ (diff <= abs_tol));
+}
PyDoc_STRVAR(module_doc,
"This module is always available. It provides access to mathematical\n"
"functions for complex numbers.");
static PyMethodDef cmath_methods[] = {
- {"acos", cmath_acos, METH_VARARGS, c_acos_doc},
- {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
- {"asin", cmath_asin, METH_VARARGS, c_asin_doc},
- {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
- {"atan", cmath_atan, METH_VARARGS, c_atan_doc},
- {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
- {"cos", cmath_cos, METH_VARARGS, c_cos_doc},
- {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
- {"exp", cmath_exp, METH_VARARGS, c_exp_doc},
- {"isfinite", cmath_isfinite, METH_VARARGS, cmath_isfinite_doc},
- {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc},
- {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc},
- {"log", cmath_log, METH_VARARGS, cmath_log_doc},
- {"log10", cmath_log10, METH_VARARGS, c_log10_doc},
- {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc},
- {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc},
- {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc},
- {"sin", cmath_sin, METH_VARARGS, c_sin_doc},
- {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
- {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
- {"tan", cmath_tan, METH_VARARGS, c_tan_doc},
- {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
- {NULL, NULL} /* sentinel */
+ CMATH_ACOS_METHODDEF
+ CMATH_ACOSH_METHODDEF
+ CMATH_ASIN_METHODDEF
+ CMATH_ASINH_METHODDEF
+ CMATH_ATAN_METHODDEF
+ CMATH_ATANH_METHODDEF
+ CMATH_COS_METHODDEF
+ CMATH_COSH_METHODDEF
+ CMATH_EXP_METHODDEF
+ CMATH_ISCLOSE_METHODDEF
+ CMATH_ISFINITE_METHODDEF
+ CMATH_ISINF_METHODDEF
+ CMATH_ISNAN_METHODDEF
+ CMATH_LOG_METHODDEF
+ CMATH_LOG10_METHODDEF
+ CMATH_PHASE_METHODDEF
+ CMATH_POLAR_METHODDEF
+ CMATH_RECT_METHODDEF
+ CMATH_SIN_METHODDEF
+ CMATH_SINH_METHODDEF
+ CMATH_SQRT_METHODDEF
+ CMATH_TAN_METHODDEF
+ CMATH_TANH_METHODDEF
+ {NULL, NULL} /* sentinel */
};