diff options
Diffstat (limited to 'Modules/mathmodule.c')
-rw-r--r-- | Modules/mathmodule.c | 57 |
1 files changed, 57 insertions, 0 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c index 350034f..b1e4521 100644 --- a/Modules/mathmodule.c +++ b/Modules/mathmodule.c @@ -322,6 +322,60 @@ m_tgamma(double x) } /* + lgamma: natural log of the absolute value of the Gamma function. + For large arguments, Lanczos' formula works extremely well here. +*/ + +static double +m_lgamma(double x) +{ + double r, absx; + + /* special cases */ + if (!Py_IS_FINITE(x)) { + if (Py_IS_NAN(x)) + return x; /* lgamma(nan) = nan */ + else + return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */ + } + + /* integer arguments */ + if (x == floor(x) && x <= 2.0) { + if (x <= 0.0) { + errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */ + return Py_HUGE_VAL; /* integers n <= 0 */ + } + else { + return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */ + } + } + + absx = fabs(x); + /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */ + if (absx < 1e-20) + return -log(absx); + + /* Lanczos' formula */ + if (x > 0.0) { + /* we could save a fraction of a ulp in accuracy by having a + second set of numerator coefficients for lanczos_sum that + absorbed the exp(-lanczos_g) term, and throwing out the + lanczos_g subtraction below; it's probably not worth it. */ + r = log(lanczos_sum(x)) - lanczos_g + + (x-0.5)*(log(x+lanczos_g-0.5)-1); + } + else { + r = log(pi) - log(fabs(sinpi(absx))) - log(absx) - + (log(lanczos_sum(absx)) - lanczos_g + + (absx-0.5)*(log(absx+lanczos_g-0.5)-1)); + } + if (Py_IS_INFINITY(r)) + errno = ERANGE; + return r; +} + + +/* wrapper for atan2 that deals directly with special cases before delegating to the platform libm for the remaining cases. This is necessary to get consistent behaviour across platforms. @@ -639,6 +693,8 @@ FUNC1(floor, floor, 0, "This is the largest integral value <= x.") FUNC1A(gamma, m_tgamma, "gamma(x)\n\nGamma function at x.") +FUNC1A(lgamma, m_lgamma, + "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.") FUNC1(log1p, log1p, 1, "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n" "The result is computed in a way which is accurate for x near zero.") @@ -1375,6 +1431,7 @@ static PyMethodDef math_methods[] = { {"isinf", math_isinf, METH_O, math_isinf_doc}, {"isnan", math_isnan, METH_O, math_isnan_doc}, {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc}, + {"lgamma", math_lgamma, METH_O, math_lgamma_doc}, {"log", math_log, METH_VARARGS, math_log_doc}, {"log1p", math_log1p, METH_O, math_log1p_doc}, {"log10", math_log10, METH_O, math_log10_doc}, |