summaryrefslogtreecommitdiffstats
path: root/Modules/mathmodule.c
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/mathmodule.c')
-rw-r--r--Modules/mathmodule.c87
1 files changed, 74 insertions, 13 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c
index 2c4cc73..d693da1 100644
--- a/Modules/mathmodule.c
+++ b/Modules/mathmodule.c
@@ -55,11 +55,6 @@ raised for division by zero and mod by zero.
#include "Python.h"
#include "_math.h"
-#ifdef _OSF_SOURCE
-/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
-extern double copysign(double, double);
-#endif
-
/*
sin(pi*x), giving accurate results for all finite x (especially x
integral or close to an integer). This is here for use in the
@@ -244,7 +239,8 @@ m_tgamma(double x)
}
if (x == 0.0) {
errno = EDOM;
- return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */
+ /* tgamma(+-0.0) = +-inf, divide-by-zero */
+ return copysign(Py_HUGE_VAL, x);
}
/* integer arguments */
@@ -582,6 +578,61 @@ m_log(double x)
}
}
+/*
+ log2: log to base 2.
+
+ Uses an algorithm that should:
+
+ (a) produce exact results for powers of 2, and
+ (b) give a monotonic log2 (for positive finite floats),
+ assuming that the system log is monotonic.
+*/
+
+static double
+m_log2(double x)
+{
+ if (!Py_IS_FINITE(x)) {
+ if (Py_IS_NAN(x))
+ return x; /* log2(nan) = nan */
+ else if (x > 0.0)
+ return x; /* log2(+inf) = +inf */
+ else {
+ errno = EDOM;
+ return Py_NAN; /* log2(-inf) = nan, invalid-operation */
+ }
+ }
+
+ if (x > 0.0) {
+#ifdef HAVE_LOG2
+ return log2(x);
+#else
+ double m;
+ int e;
+ m = frexp(x, &e);
+ /* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when
+ * x is just greater than 1.0: in that case e is 1, log(m) is negative,
+ * and we get significant cancellation error from the addition of
+ * log(m) / log(2) to e. The slight rewrite of the expression below
+ * avoids this problem.
+ */
+ if (x >= 1.0) {
+ return log(2.0 * m) / log(2.0) + (e - 1);
+ }
+ else {
+ return log(m) / log(2.0) + e;
+ }
+#endif
+ }
+ else if (x == 0.0) {
+ errno = EDOM;
+ return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
+ }
+ else {
+ errno = EDOM;
+ return Py_NAN; /* log2(-inf) = nan, invalid-operation */
+ }
+}
+
static double
m_log10(double x)
{
@@ -836,10 +887,10 @@ FUNC1(atanh, m_atanh, 0,
"atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
static PyObject * math_ceil(PyObject *self, PyObject *number) {
- static PyObject *ceil_str = NULL;
+ _Py_IDENTIFIER(__ceil__);
PyObject *method, *result;
- method = _PyObject_LookupSpecial(number, "__ceil__", &ceil_str);
+ method = _PyObject_LookupSpecial(number, &PyId___ceil__);
if (method == NULL) {
if (PyErr_Occurred())
return NULL;
@@ -874,10 +925,10 @@ FUNC1(fabs, fabs, 0,
"fabs(x)\n\nReturn the absolute value of the float x.")
static PyObject * math_floor(PyObject *self, PyObject *number) {
- static PyObject *floor_str = NULL;
+ _Py_IDENTIFIER(__floor__);
PyObject *method, *result;
- method = _PyObject_LookupSpecial(number, "__floor__", &floor_str);
+ method = _PyObject_LookupSpecial(number, &PyId___floor__);
if (method == NULL) {
if (PyErr_Occurred())
return NULL;
@@ -1384,7 +1435,7 @@ math_factorial(PyObject *self, PyObject *arg)
}
/* use lookup table if x is small */
- if (x < (long)(sizeof(SmallFactorials)/sizeof(SmallFactorials[0])))
+ if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
return PyLong_FromUnsignedLong(SmallFactorials[x]);
/* else express in the form odd_part * 2**two_valuation, and compute as
@@ -1411,7 +1462,7 @@ PyDoc_STRVAR(math_factorial_doc,
static PyObject *
math_trunc(PyObject *self, PyObject *number)
{
- static PyObject *trunc_str = NULL;
+ _Py_IDENTIFIER(__trunc__);
PyObject *trunc, *result;
if (Py_TYPE(number)->tp_dict == NULL) {
@@ -1419,7 +1470,7 @@ math_trunc(PyObject *self, PyObject *number)
return NULL;
}
- trunc = _PyObject_LookupSpecial(number, "__trunc__", &trunc_str);
+ trunc = _PyObject_LookupSpecial(number, &PyId___trunc__);
if (trunc == NULL) {
if (!PyErr_Occurred())
PyErr_Format(PyExc_TypeError,
@@ -1628,6 +1679,15 @@ Return the logarithm of x to the given base.\n\
If the base not specified, returns the natural logarithm (base e) of x.");
static PyObject *
+math_log2(PyObject *self, PyObject *arg)
+{
+ return loghelper(arg, m_log2, "log2");
+}
+
+PyDoc_STRVAR(math_log2_doc,
+"log2(x)\n\nReturn the base 2 logarithm of x.");
+
+static PyObject *
math_log10(PyObject *self, PyObject *arg)
{
return loghelper(arg, m_log10, "log10");
@@ -1899,6 +1959,7 @@ static PyMethodDef math_methods[] = {
{"log", math_log, METH_VARARGS, math_log_doc},
{"log1p", math_log1p, METH_O, math_log1p_doc},
{"log10", math_log10, METH_O, math_log10_doc},
+ {"log2", math_log2, METH_O, math_log2_doc},
{"modf", math_modf, METH_O, math_modf_doc},
{"pow", math_pow, METH_VARARGS, math_pow_doc},
{"radians", math_radians, METH_O, math_radians_doc},