summaryrefslogtreecommitdiffstats
path: root/Modules/mathmodule.c
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/mathmodule.c')
-rw-r--r--Modules/mathmodule.c160
1 files changed, 154 insertions, 6 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c
index 243e2a3..9359eb2 100644
--- a/Modules/mathmodule.c
+++ b/Modules/mathmodule.c
@@ -223,6 +223,35 @@ lanczos_sum(double x)
return num/den;
}
+/* Constant for +infinity, generated in the same way as float('inf'). */
+
+static double
+m_inf(void)
+{
+#ifndef PY_NO_SHORT_FLOAT_REPR
+ return _Py_dg_infinity(0);
+#else
+ return Py_HUGE_VAL;
+#endif
+}
+
+/* Constant nan value, generated in the same way as float('nan'). */
+/* We don't currently assume that Py_NAN is defined everywhere. */
+
+#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
+
+static double
+m_nan(void)
+{
+#ifndef PY_NO_SHORT_FLOAT_REPR
+ return _Py_dg_stdnan(0);
+#else
+ return Py_NAN;
+#endif
+}
+
+#endif
+
static double
m_tgamma(double x)
{
@@ -656,6 +685,33 @@ m_log10(double x)
}
+static PyObject *
+math_gcd(PyObject *self, PyObject *args)
+{
+ PyObject *a, *b, *g;
+
+ if (!PyArg_ParseTuple(args, "OO:gcd", &a, &b))
+ return NULL;
+
+ a = PyNumber_Index(a);
+ if (a == NULL)
+ return NULL;
+ b = PyNumber_Index(b);
+ if (b == NULL) {
+ Py_DECREF(a);
+ return NULL;
+ }
+ g = _PyLong_GCD(a, b);
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return g;
+}
+
+PyDoc_STRVAR(math_gcd_doc,
+"gcd(x, y) -> int\n\
+greatest common divisor of x and y");
+
+
/* Call is_error when errno != 0, and where x is the result libm
* returned. is_error will usually set up an exception and return
* true (1), but may return false (0) without setting up an exception.
@@ -1010,7 +1066,7 @@ _fsum_realloc(double **p_ptr, Py_ssize_t n,
Py_ssize_t m = *m_ptr;
m += m; /* double */
- if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
+ if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
double *p = *p_ptr;
if (p == ps) {
v = PyMem_Malloc(sizeof(double) * m);
@@ -1408,6 +1464,7 @@ static PyObject *
math_factorial(PyObject *self, PyObject *arg)
{
long x;
+ int overflow;
PyObject *result, *odd_part, *two_valuation;
if (PyFloat_Check(arg)) {
@@ -1421,15 +1478,22 @@ math_factorial(PyObject *self, PyObject *arg)
lx = PyLong_FromDouble(dx);
if (lx == NULL)
return NULL;
- x = PyLong_AsLong(lx);
+ x = PyLong_AsLongAndOverflow(lx, &overflow);
Py_DECREF(lx);
}
else
- x = PyLong_AsLong(arg);
+ x = PyLong_AsLongAndOverflow(arg, &overflow);
- if (x == -1 && PyErr_Occurred())
+ if (x == -1 && PyErr_Occurred()) {
return NULL;
- if (x < 0) {
+ }
+ else if (overflow == 1) {
+ PyErr_Format(PyExc_OverflowError,
+ "factorial() argument should not exceed %ld",
+ LONG_MAX);
+ return NULL;
+ }
+ else if (overflow == -1 || x < 0) {
PyErr_SetString(PyExc_ValueError,
"factorial() not defined for negative values");
return NULL;
@@ -1926,6 +1990,83 @@ PyDoc_STRVAR(math_isinf_doc,
"isinf(x) -> bool\n\n\
Return True if x is a positive or negative infinity, and False otherwise.");
+static PyObject *
+math_isclose(PyObject *self, PyObject *args, PyObject *kwargs)
+{
+ double a, b;
+ double rel_tol = 1e-9;
+ double abs_tol = 0.0;
+ double diff = 0.0;
+ long result = 0;
+
+ static char *keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL};
+
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwargs, "dd|$dd:isclose",
+ keywords,
+ &a, &b, &rel_tol, &abs_tol
+ ))
+ return NULL;
+
+ /* sanity check on the inputs */
+ if (rel_tol < 0.0 || abs_tol < 0.0 ) {
+ PyErr_SetString(PyExc_ValueError,
+ "tolerances must be non-negative");
+ return NULL;
+ }
+
+ if ( a == b ) {
+ /* short circuit exact equality -- needed to catch two infinities of
+ the same sign. And perhaps speeds things up a bit sometimes.
+ */
+ Py_RETURN_TRUE;
+ }
+
+ /* This catches the case of two infinities of opposite sign, or
+ one infinity and one finite number. Two infinities of opposite
+ sign would otherwise have an infinite relative tolerance.
+ Two infinities of the same sign are caught by the equality check
+ above.
+ */
+
+ if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
+ Py_RETURN_FALSE;
+ }
+
+ /* now do the regular computation
+ this is essentially the "weak" test from the Boost library
+ */
+
+ diff = fabs(b - a);
+
+ result = (((diff <= fabs(rel_tol * b)) ||
+ (diff <= fabs(rel_tol * a))) ||
+ (diff <= abs_tol));
+
+ return PyBool_FromLong(result);
+}
+
+PyDoc_STRVAR(math_isclose_doc,
+"is_close(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool\n"
+"\n"
+"Determine whether two floating point numbers are close in value.\n"
+"\n"
+" rel_tol\n"
+" maximum difference for being considered \"close\", relative to the\n"
+" magnitude of the input values\n"
+" abs_tol\n"
+" maximum difference for being considered \"close\", regardless of the\n"
+" magnitude of the input values\n"
+"\n"
+"Return True if a is close in value to b, and False otherwise.\n"
+"\n"
+"For the values to be considered close, the difference between them\n"
+"must be smaller than at least one of the tolerances.\n"
+"\n"
+"-inf, inf and NaN behave similarly to the IEEE 754 Standard. That\n"
+"is, NaN is not close to anything, even itself. inf and -inf are\n"
+"only close to themselves.");
+
static PyMethodDef math_methods[] = {
{"acos", math_acos, METH_O, math_acos_doc},
{"acosh", math_acosh, METH_O, math_acosh_doc},
@@ -1950,7 +2091,10 @@ static PyMethodDef math_methods[] = {
{"frexp", math_frexp, METH_O, math_frexp_doc},
{"fsum", math_fsum, METH_O, math_fsum_doc},
{"gamma", math_gamma, METH_O, math_gamma_doc},
+ {"gcd", math_gcd, METH_VARARGS, math_gcd_doc},
{"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
+ {"isclose", (PyCFunction) math_isclose, METH_VARARGS | METH_KEYWORDS,
+ math_isclose_doc},
{"isfinite", math_isfinite, METH_O, math_isfinite_doc},
{"isinf", math_isinf, METH_O, math_isinf_doc},
{"isnan", math_isnan, METH_O, math_isnan_doc},
@@ -2001,7 +2145,11 @@ PyInit_math(void)
PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
+ PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf()));
+#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
+ PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan()));
+#endif
- finally:
+ finally:
return m;
}