summaryrefslogtreecommitdiffstats
path: root/Objects/floatobject.c
diff options
context:
space:
mode:
Diffstat (limited to 'Objects/floatobject.c')
-rw-r--r--Objects/floatobject.c1558
1 files changed, 826 insertions, 732 deletions
diff --git a/Objects/floatobject.c b/Objects/floatobject.c
index 20a5155..5954d39 100644
--- a/Objects/floatobject.c
+++ b/Objects/floatobject.c
@@ -4,28 +4,54 @@
for any kind of float exception without losing portability. */
#include "Python.h"
+#include "structseq.h"
#include <ctype.h>
#include <float.h>
-/*[clinic input]
-class float "PyObject *" "&PyFloat_Type"
-[clinic start generated code]*/
-/*[clinic end generated code: output=da39a3ee5e6b4b0d input=dd0003f68f144284]*/
+#undef MAX
+#undef MIN
+#define MAX(x, y) ((x) < (y) ? (y) : (x))
+#define MIN(x, y) ((x) < (y) ? (x) : (y))
-#include "clinic/floatobject.c.h"
+#ifdef _OSF_SOURCE
+/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
+extern int finite(double);
+#endif
-/* Special free list
- free_list is a singly-linked list of available PyFloatObjects, linked
- via abuse of their ob_type members.
-*/
+/* Special free list -- see comments for same code in intobject.c. */
+#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
+#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
+#define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
-#ifndef PyFloat_MAXFREELIST
-#define PyFloat_MAXFREELIST 100
-#endif
-static int numfree = 0;
+struct _floatblock {
+ struct _floatblock *next;
+ PyFloatObject objects[N_FLOATOBJECTS];
+};
+
+typedef struct _floatblock PyFloatBlock;
+
+static PyFloatBlock *block_list = NULL;
static PyFloatObject *free_list = NULL;
+static PyFloatObject *
+fill_free_list(void)
+{
+ PyFloatObject *p, *q;
+ /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
+ p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
+ if (p == NULL)
+ return (PyFloatObject *) PyErr_NoMemory();
+ ((PyFloatBlock *)p)->next = block_list;
+ block_list = (PyFloatBlock *)p;
+ p = &((PyFloatBlock *)p)->objects[0];
+ q = p + N_FLOATOBJECTS;
+ while (--q > p)
+ Py_TYPE(q) = (struct _typeobject *)(q-1);
+ Py_TYPE(q) = NULL;
+ return p + N_FLOATOBJECTS - 1;
+}
+
double
PyFloat_GetMax(void)
{
@@ -43,7 +69,7 @@ static PyTypeObject FloatInfoType;
PyDoc_STRVAR(floatinfo__doc__,
"sys.float_info\n\
\n\
-A named tuple holding information about the float type. It contains low level\n\
+A structseq holding information about the float type. It contains low level\n\
information about the precision and internal representation. Please study\n\
your system's :file:`float.h` for more information.");
@@ -86,7 +112,7 @@ PyFloat_GetInfo(void)
}
#define SetIntFlag(flag) \
- PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
+ PyStructSequence_SET_ITEM(floatinfo, pos++, PyInt_FromLong(flag))
#define SetDblFlag(flag) \
PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
@@ -114,101 +140,107 @@ PyFloat_GetInfo(void)
PyObject *
PyFloat_FromDouble(double fval)
{
- PyFloatObject *op = free_list;
- if (op != NULL) {
- free_list = (PyFloatObject *) Py_TYPE(op);
- numfree--;
- } else {
- op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject));
- if (!op)
- return PyErr_NoMemory();
+ register PyFloatObject *op;
+ if (free_list == NULL) {
+ if ((free_list = fill_free_list()) == NULL)
+ return NULL;
}
/* Inline PyObject_New */
+ op = free_list;
+ free_list = (PyFloatObject *)Py_TYPE(op);
(void)PyObject_INIT(op, &PyFloat_Type);
op->ob_fval = fval;
return (PyObject *) op;
}
-static PyObject *
-float_from_string_inner(const char *s, Py_ssize_t len, void *obj)
-{
- double x;
- const char *end;
- const char *last = s + len;
- /* strip space */
- while (s < last && Py_ISSPACE(*s)) {
- s++;
- }
+/**************************************************************************
+RED_FLAG 22-Sep-2000 tim
+PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG,
- while (s < last - 1 && Py_ISSPACE(last[-1])) {
- last--;
- }
+1. If v was a regular string, *pend was set to point to its terminating
+ null byte. That's useless (the caller can find that without any
+ help from this function!).
- /* We don't care about overflow or underflow. If the platform
- * supports them, infinities and signed zeroes (on underflow) are
- * fine. */
- x = PyOS_string_to_double(s, (char **)&end, NULL);
- if (end != last) {
- PyErr_Format(PyExc_ValueError,
- "could not convert string to float: "
- "%R", obj);
- return NULL;
- }
- else if (x == -1.0 && PyErr_Occurred()) {
- return NULL;
- }
- else {
- return PyFloat_FromDouble(x);
- }
-}
+2. If v was a Unicode string, or an object convertible to a character
+ buffer, *pend was set to point into stack trash (the auto temp
+ vector holding the character buffer). That was downright dangerous.
+Since we can't change the interface of a public API function, pend is
+still supported but now *officially* useless: if pend is not NULL,
+*pend is set to NULL.
+**************************************************************************/
PyObject *
-PyFloat_FromString(PyObject *v)
+PyFloat_FromString(PyObject *v, char **pend)
{
- const char *s;
- PyObject *s_buffer = NULL;
+ const char *s, *last, *end;
+ double x;
+ char buffer[256]; /* for errors */
+#ifdef Py_USING_UNICODE
+ char *s_buffer = NULL;
+#endif
Py_ssize_t len;
- Py_buffer view = {NULL, NULL};
+ PyObject *str = NULL;
PyObject *result = NULL;
- if (PyUnicode_Check(v)) {
- s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
+ if (pend)
+ *pend = NULL;
+ if (PyString_Check(v)) {
+ s = PyString_AS_STRING(v);
+ len = PyString_GET_SIZE(v);
+ }
+#ifdef Py_USING_UNICODE
+ else if (PyUnicode_Check(v)) {
+ s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
if (s_buffer == NULL)
- return NULL;
- assert(PyUnicode_IS_ASCII(s_buffer));
- /* Simply get a pointer to existing ASCII characters. */
- s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
- assert(s != NULL);
- }
- else if (PyBytes_Check(v)) {
- s = PyBytes_AS_STRING(v);
- len = PyBytes_GET_SIZE(v);
- }
- else if (PyByteArray_Check(v)) {
- s = PyByteArray_AS_STRING(v);
- len = PyByteArray_GET_SIZE(v);
- }
- else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) {
- s = (const char *)view.buf;
- len = view.len;
+ return PyErr_NoMemory();
+ if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
+ PyUnicode_GET_SIZE(v),
+ s_buffer,
+ NULL))
+ goto error;
+ s = s_buffer;
+ len = strlen(s);
+ }
+#endif
+ else if (!PyObject_AsCharBuffer(v, &s, &len)) {
/* Copy to NUL-terminated buffer. */
- s_buffer = PyBytes_FromStringAndSize(s, len);
- if (s_buffer == NULL) {
- PyBuffer_Release(&view);
+ str = PyString_FromStringAndSize(s, len);
+ if (str == NULL)
return NULL;
- }
- s = PyBytes_AS_STRING(s_buffer);
+ s = PyString_AS_STRING(str);
}
else {
- PyErr_Format(PyExc_TypeError,
- "float() argument must be a string or a number, not '%.200s'",
- Py_TYPE(v)->tp_name);
+ PyErr_SetString(PyExc_TypeError,
+ "float() argument must be a string or a number");
return NULL;
}
- result = _Py_string_to_number_with_underscores(s, len, "float", v, v,
- float_from_string_inner);
- PyBuffer_Release(&view);
- Py_XDECREF(s_buffer);
+ last = s + len;
+
+ while (Py_ISSPACE(*s))
+ s++;
+ /* We don't care about overflow or underflow. If the platform
+ * supports them, infinities and signed zeroes (on underflow) are
+ * fine. */
+ x = PyOS_string_to_double(s, (char **)&end, NULL);
+ if (x == -1.0 && PyErr_Occurred())
+ goto error;
+ while (Py_ISSPACE(*end))
+ end++;
+ if (end == last)
+ result = PyFloat_FromDouble(x);
+ else {
+ PyOS_snprintf(buffer, sizeof(buffer),
+ "invalid literal for float(): %.200s", s);
+ PyErr_SetString(PyExc_ValueError, buffer);
+ result = NULL;
+ }
+
+ error:
+#ifdef Py_USING_UNICODE
+ if (s_buffer)
+ PyMem_FREE(s_buffer);
+#endif
+ Py_XDECREF(str);
return result;
}
@@ -216,11 +248,6 @@ static void
float_dealloc(PyFloatObject *op)
{
if (PyFloat_CheckExact(op)) {
- if (numfree >= PyFloat_MAXFREELIST) {
- PyObject_FREE(op);
- return;
- }
- numfree++;
Py_TYPE(op) = (struct _typeobject *)free_list;
free_list = op;
}
@@ -232,65 +259,45 @@ double
PyFloat_AsDouble(PyObject *op)
{
PyNumberMethods *nb;
- PyObject *res;
+ PyFloatObject *fo;
double val;
+ if (op && PyFloat_Check(op))
+ return PyFloat_AS_DOUBLE((PyFloatObject*) op);
+
if (op == NULL) {
PyErr_BadArgument();
return -1;
}
- if (PyFloat_Check(op)) {
- return PyFloat_AS_DOUBLE(op);
- }
-
- nb = Py_TYPE(op)->tp_as_number;
- if (nb == NULL || nb->nb_float == NULL) {
- if (nb && nb->nb_index) {
- PyObject *res = PyNumber_Index(op);
- if (!res) {
- return -1;
- }
- double val = PyLong_AsDouble(res);
- Py_DECREF(res);
- return val;
- }
- PyErr_Format(PyExc_TypeError, "must be real number, not %.50s",
- op->ob_type->tp_name);
+ if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) {
+ PyErr_SetString(PyExc_TypeError, "a float is required");
return -1;
}
- res = (*nb->nb_float) (op);
- if (res == NULL) {
+ fo = (PyFloatObject*) (*nb->nb_float) (op);
+ if (fo == NULL)
+ return -1;
+ if (!PyFloat_Check(fo)) {
+ Py_DECREF(fo);
+ PyErr_SetString(PyExc_TypeError,
+ "nb_float should return float object");
return -1;
}
- if (!PyFloat_CheckExact(res)) {
- if (!PyFloat_Check(res)) {
- PyErr_Format(PyExc_TypeError,
- "%.50s.__float__ returned non-float (type %.50s)",
- op->ob_type->tp_name, res->ob_type->tp_name);
- Py_DECREF(res);
- return -1;
- }
- if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
- "%.50s.__float__ returned non-float (type %.50s). "
- "The ability to return an instance of a strict subclass of float "
- "is deprecated, and may be removed in a future version of Python.",
- op->ob_type->tp_name, res->ob_type->tp_name)) {
- Py_DECREF(res);
- return -1;
- }
- }
- val = PyFloat_AS_DOUBLE(res);
- Py_DECREF(res);
+ val = PyFloat_AS_DOUBLE(fo);
+ Py_DECREF(fo);
+
return val;
}
+/* Methods */
+
/* Macro and helper that convert PyObject obj to a C double and store
- the value in dbl. If conversion to double raises an exception, obj is
+ the value in dbl; this replaces the functionality of the coercion
+ slot function. If conversion to double raises an exception, obj is
set to NULL, and the function invoking this macro returns NULL. If
- obj is not of float or int type, Py_NotImplemented is incref'ed,
+ obj is not of float, int or long type, Py_NotImplemented is incref'ed,
stored in obj, and returned from the function invoking this macro.
*/
#define CONVERT_TO_DOUBLE(obj, dbl) \
@@ -299,14 +306,15 @@ PyFloat_AsDouble(PyObject *op)
else if (convert_to_double(&(obj), &(dbl)) < 0) \
return obj;
-/* Methods */
-
static int
convert_to_double(PyObject **v, double *dbl)
{
- PyObject *obj = *v;
+ register PyObject *obj = *v;
- if (PyLong_Check(obj)) {
+ if (PyInt_Check(obj)) {
+ *dbl = (double)PyInt_AS_LONG(obj);
+ }
+ else if (PyLong_Check(obj)) {
*dbl = PyLong_AsDouble(obj);
if (*dbl == -1.0 && PyErr_Occurred()) {
*v = NULL;
@@ -321,23 +329,74 @@ convert_to_double(PyObject **v, double *dbl)
return 0;
}
-static PyObject *
-float_repr(PyFloatObject *v)
+/* XXX PyFloat_AsString and PyFloat_AsReprString are deprecated:
+ XXX they pass a char buffer without passing a length.
+*/
+void
+PyFloat_AsString(char *buf, PyFloatObject *v)
+{
+ char *tmp = PyOS_double_to_string(v->ob_fval, 'g',
+ PyFloat_STR_PRECISION,
+ Py_DTSF_ADD_DOT_0, NULL);
+ strcpy(buf, tmp);
+ PyMem_Free(tmp);
+}
+
+void
+PyFloat_AsReprString(char *buf, PyFloatObject *v)
+{
+ char * tmp = PyOS_double_to_string(v->ob_fval, 'r', 0,
+ Py_DTSF_ADD_DOT_0, NULL);
+ strcpy(buf, tmp);
+ PyMem_Free(tmp);
+}
+
+/* ARGSUSED */
+static int
+float_print(PyFloatObject *v, FILE *fp, int flags)
{
- PyObject *result;
char *buf;
+ if (flags & Py_PRINT_RAW)
+ buf = PyOS_double_to_string(v->ob_fval,
+ 'g', PyFloat_STR_PRECISION,
+ Py_DTSF_ADD_DOT_0, NULL);
+ else
+ buf = PyOS_double_to_string(v->ob_fval,
+ 'r', 0, Py_DTSF_ADD_DOT_0, NULL);
+ Py_BEGIN_ALLOW_THREADS
+ fputs(buf, fp);
+ Py_END_ALLOW_THREADS
+ PyMem_Free(buf);
+ return 0;
+}
- buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
- 'r', 0,
- Py_DTSF_ADD_DOT_0,
- NULL);
+static PyObject *
+float_str_or_repr(PyFloatObject *v, int precision, char format_code)
+{
+ PyObject *result;
+ char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
+ format_code, precision,
+ Py_DTSF_ADD_DOT_0,
+ NULL);
if (!buf)
return PyErr_NoMemory();
- result = _PyUnicode_FromASCII(buf, strlen(buf));
+ result = PyString_FromString(buf);
PyMem_Free(buf);
return result;
}
+static PyObject *
+float_repr(PyFloatObject *v)
+{
+ return float_str_or_repr(v, 0, 'r');
+}
+
+static PyObject *
+float_str(PyFloatObject *v)
+{
+ return float_str_or_repr(v, PyFloat_STR_PRECISION, 'g');
+}
+
/* Comparison is pretty much a nightmare. When comparing float to float,
* we do it as straightforwardly (and long-windedly) as conceivable, so
* that, e.g., Python x == y delivers the same result as the platform
@@ -345,7 +404,7 @@ float_repr(PyFloatObject *v)
* When mixing float with an integer type, there's no good *uniform* approach.
* Converting the double to an integer obviously doesn't work, since we
* may lose info from fractional bits. Converting the integer to a double
- * also has two failure modes: (1) an int may trigger overflow (too
+ * also has two failure modes: (1) a long int may trigger overflow (too
* large to fit in the dynamic range of a C double); (2) even a C long may have
* more bits than fit in a C double (e.g., on a 64-bit box long may have
* 63 bits of precision, but a C double probably has only 53), and then
@@ -369,7 +428,7 @@ float_richcompare(PyObject *v, PyObject *w, int op)
j = PyFloat_AS_DOUBLE(w);
else if (!Py_IS_FINITE(i)) {
- if (PyLong_Check(w))
+ if (_PyAnyInt_Check(w))
/* If i is an infinity, its magnitude exceeds any
* finite integer, so it doesn't matter which int we
* compare i with. If i is a NaN, similarly.
@@ -379,6 +438,32 @@ float_richcompare(PyObject *v, PyObject *w, int op)
goto Unimplemented;
}
+ else if (PyInt_Check(w)) {
+ long jj = PyInt_AS_LONG(w);
+ /* In the worst realistic case I can imagine, C double is a
+ * Cray single with 48 bits of precision, and long has 64
+ * bits.
+ */
+#if SIZEOF_LONG > 6
+ unsigned long abs = (unsigned long)(jj < 0 ? -jj : jj);
+ if (abs >> 48) {
+ /* Needs more than 48 bits. Make it take the
+ * PyLong path.
+ */
+ PyObject *result;
+ PyObject *ww = PyLong_FromLong(jj);
+
+ if (ww == NULL)
+ return NULL;
+ result = float_richcompare(v, ww, op);
+ Py_DECREF(ww);
+ return result;
+ }
+#endif
+ j = (double)jj;
+ assert((long)j == jj);
+ }
+
else if (PyLong_Check(w)) {
int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
int wsign = _PyLong_Sign(w);
@@ -443,13 +528,14 @@ float_richcompare(PyObject *v, PyObject *w, int op)
goto Compare;
}
/* v and w have the same number of bits before the radix
- * point. Construct two ints that have the same comparison
+ * point. Construct two longs that have the same comparison
* outcome.
*/
{
double fracpart;
double intpart;
PyObject *result = NULL;
+ PyObject *one = NULL;
PyObject *vv = NULL;
PyObject *ww = w;
@@ -472,19 +558,23 @@ float_richcompare(PyObject *v, PyObject *w, int op)
*/
PyObject *temp;
- temp = _PyLong_Lshift(ww, 1);
+ one = PyInt_FromLong(1);
+ if (one == NULL)
+ goto Error;
+
+ temp = PyNumber_Lshift(ww, one);
if (temp == NULL)
goto Error;
Py_DECREF(ww);
ww = temp;
- temp = _PyLong_Lshift(vv, 1);
+ temp = PyNumber_Lshift(vv, one);
if (temp == NULL)
goto Error;
Py_DECREF(vv);
vv = temp;
- temp = PyNumber_Or(vv, _PyLong_One);
+ temp = PyNumber_Or(vv, one);
if (temp == NULL)
goto Error;
Py_DECREF(vv);
@@ -498,14 +588,16 @@ float_richcompare(PyObject *v, PyObject *w, int op)
Error:
Py_XDECREF(vv);
Py_XDECREF(ww);
+ Py_XDECREF(one);
return result;
}
} /* else if (PyLong_Check(w)) */
- else /* w isn't float or int */
+ else /* w isn't float, int, or long */
goto Unimplemented;
Compare:
+ PyFPE_START_PROTECT("richcompare", return NULL)
switch (op) {
case Py_EQ:
r = i == j;
@@ -526,13 +618,15 @@ float_richcompare(PyObject *v, PyObject *w, int op)
r = i > j;
break;
}
+ PyFPE_END_PROTECT(r)
return PyBool_FromLong(r);
Unimplemented:
- Py_RETURN_NOTIMPLEMENTED;
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
}
-static Py_hash_t
+static long
float_hash(PyFloatObject *v)
{
return _Py_HashDouble(v->ob_fval);
@@ -544,7 +638,9 @@ float_add(PyObject *v, PyObject *w)
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
+ PyFPE_START_PROTECT("add", return 0)
a = a + b;
+ PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
@@ -554,7 +650,9 @@ float_sub(PyObject *v, PyObject *w)
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
+ PyFPE_START_PROTECT("subtract", return 0)
a = a - b;
+ PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
@@ -564,7 +662,9 @@ float_mul(PyObject *v, PyObject *w)
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
+ PyFPE_START_PROTECT("multiply", return 0)
a = a * b;
+ PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
@@ -574,12 +674,38 @@ float_div(PyObject *v, PyObject *w)
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
+#ifdef Py_NAN
+ if (b == 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "float division by zero");
+ return NULL;
+ }
+#endif
+ PyFPE_START_PROTECT("divide", return 0)
+ a = a / b;
+ PyFPE_END_PROTECT(a)
+ return PyFloat_FromDouble(a);
+}
+
+static PyObject *
+float_classic_div(PyObject *v, PyObject *w)
+{
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ if (Py_DivisionWarningFlag >= 2 &&
+ PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0)
+ return NULL;
+#ifdef Py_NAN
if (b == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"float division by zero");
return NULL;
}
+#endif
+ PyFPE_START_PROTECT("divide", return 0)
a = a / b;
+ PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
@@ -590,11 +716,14 @@ float_rem(PyObject *v, PyObject *w)
double mod;
CONVERT_TO_DOUBLE(v, vx);
CONVERT_TO_DOUBLE(w, wx);
+#ifdef Py_NAN
if (wx == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"float modulo");
return NULL;
}
+#endif
+ PyFPE_START_PROTECT("modulo", return 0)
mod = fmod(vx, wx);
if (mod) {
/* ensure the remainder has the same sign as the denominator */
@@ -605,9 +734,13 @@ float_rem(PyObject *v, PyObject *w)
else {
/* the remainder is zero, and in the presence of signed zeroes
fmod returns different results across platforms; ensure
- it has the same sign as the denominator. */
- mod = copysign(0.0, wx);
+ it has the same sign as the denominator; we'd like to do
+ "mod = wx * 0.0", but that may get optimized away */
+ mod *= mod; /* hide "mod = +0" from optimizer */
+ if (wx < 0.0)
+ mod = -mod;
}
+ PyFPE_END_PROTECT(mod)
return PyFloat_FromDouble(mod);
}
@@ -622,6 +755,7 @@ float_divmod(PyObject *v, PyObject *w)
PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
return NULL;
}
+ PyFPE_START_PROTECT("divmod", return 0)
mod = fmod(vx, wx);
/* fmod is typically exact, so vx-mod is *mathematically* an
exact multiple of wx. But this is fp arithmetic, and fp
@@ -640,8 +774,11 @@ float_divmod(PyObject *v, PyObject *w)
else {
/* the remainder is zero, and in the presence of signed zeroes
fmod returns different results across platforms; ensure
- it has the same sign as the denominator. */
- mod = copysign(0.0, wx);
+ it has the same sign as the denominator; we'd like to do
+ "mod = wx * 0.0", but that may get optimized away */
+ mod *= mod; /* hide "mod = +0" from optimizer */
+ if (wx < 0.0)
+ mod = -mod;
}
/* snap quotient to nearest integral value */
if (div) {
@@ -651,8 +788,10 @@ float_divmod(PyObject *v, PyObject *w)
}
else {
/* div is zero - get the same sign as the true quotient */
- floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */
+ div *= div; /* hide "div = +0" from optimizers */
+ floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
}
+ PyFPE_END_PROTECT(floordiv)
return Py_BuildValue("(dd)", floordiv, mod);
}
@@ -746,10 +885,9 @@ float_pow(PyObject *v, PyObject *w, PyObject *z)
* bugs so we have to figure it out ourselves.
*/
if (iw != floor(iw)) {
- /* Negative numbers raised to fractional powers
- * become complex.
- */
- return PyComplex_Type.tp_as_number->nb_power(v, w, z);
+ PyErr_SetString(PyExc_ValueError, "negative number "
+ "cannot be raised to a fractional power");
+ return NULL;
}
/* iw is an exact integer, albeit perhaps a very large
* one. Replace iv by its absolute value and remember
@@ -779,7 +917,9 @@ float_pow(PyObject *v, PyObject *w, PyObject *z)
* the platform pow to step in and do the rest.
*/
errno = 0;
+ PyFPE_START_PROTECT("pow", return NULL)
ix = pow(iv, iw);
+ PyFPE_END_PROTECT(ix)
Py_ADJUST_ERANGE1(ix);
if (negate_result)
ix = -ix;
@@ -810,22 +950,40 @@ float_abs(PyFloatObject *v)
}
static int
-float_bool(PyFloatObject *v)
+float_nonzero(PyFloatObject *v)
{
return v->ob_fval != 0.0;
}
-/*[clinic input]
-float.is_integer
-
-Return True if the float is an integer.
-[clinic start generated code]*/
+static int
+float_coerce(PyObject **pv, PyObject **pw)
+{
+ if (PyInt_Check(*pw)) {
+ long x = PyInt_AsLong(*pw);
+ *pw = PyFloat_FromDouble((double)x);
+ Py_INCREF(*pv);
+ return 0;
+ }
+ else if (PyLong_Check(*pw)) {
+ double x = PyLong_AsDouble(*pw);
+ if (x == -1.0 && PyErr_Occurred())
+ return -1;
+ *pw = PyFloat_FromDouble(x);
+ Py_INCREF(*pv);
+ return 0;
+ }
+ else if (PyFloat_Check(*pw)) {
+ Py_INCREF(*pv);
+ Py_INCREF(*pw);
+ return 0;
+ }
+ return 1; /* Can't do it */
+}
static PyObject *
-float_is_integer_impl(PyObject *self)
-/*[clinic end generated code: output=7112acf95a4d31ea input=311810d3f777e10d]*/
+float_is_integer(PyObject *v)
{
- double x = PyFloat_AsDouble(self);
+ double x = PyFloat_AsDouble(v);
PyObject *o;
if (x == -1.0 && PyErr_Occurred())
@@ -833,7 +991,9 @@ float_is_integer_impl(PyObject *self)
if (!Py_IS_FINITE(x))
Py_RETURN_FALSE;
errno = 0;
+ PyFPE_START_PROTECT("is_integer", return NULL)
o = (floor(x) == x) ? Py_True : Py_False;
+ PyFPE_END_PROTECT(x)
if (errno != 0) {
PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
PyExc_ValueError);
@@ -872,17 +1032,10 @@ float_is_finite(PyObject *v)
}
#endif
-/*[clinic input]
-float.__trunc__
-
-Return the Integral closest to x between 0 and x.
-[clinic start generated code]*/
-
static PyObject *
-float___trunc___impl(PyObject *self)
-/*[clinic end generated code: output=dd3e289dd4c6b538 input=591b9ba0d650fdff]*/
+float_trunc(PyObject *v)
{
- double x = PyFloat_AsDouble(self);
+ double x = PyFloat_AsDouble(v);
double wholepart; /* integral portion of x, rounded toward 0 */
(void)modf(x, &wholepart);
@@ -891,51 +1044,155 @@ float___trunc___impl(PyObject *self)
* happens if the double is too big to fit in a long. Some rare
* systems raise an exception then (RISCOS was mentioned as one,
* and someone using a non-default option on Sun also bumped into
- * that). Note that checking for >= and <= LONG_{MIN,MAX} would
- * still be vulnerable: if a long has more bits of precision than
- * a double, casting MIN/MAX to double may yield an approximation,
- * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
- * yield true from the C expression wholepart<=LONG_MAX, despite
- * that wholepart is actually greater than LONG_MAX.
+ * that). Note that checking for <= LONG_MAX is unsafe: if a long
+ * has more bits of precision than a double, casting LONG_MAX to
+ * double may yield an approximation, and if that's rounded up,
+ * then, e.g., wholepart=LONG_MAX+1 would yield true from the C
+ * expression wholepart<=LONG_MAX, despite that wholepart is
+ * actually greater than LONG_MAX. However, assuming a two's complement
+ * machine with no trap representation, LONG_MIN will be a power of 2 (and
+ * hence exactly representable as a double), and LONG_MAX = -1-LONG_MIN, so
+ * the comparisons with (double)LONG_MIN below should be safe.
*/
- if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
+ if ((double)LONG_MIN <= wholepart && wholepart < -(double)LONG_MIN) {
const long aslong = (long)wholepart;
- return PyLong_FromLong(aslong);
+ return PyInt_FromLong(aslong);
}
return PyLong_FromDouble(wholepart);
}
-/* double_round: rounds a finite double to the closest multiple of
+static PyObject *
+float_long(PyObject *v)
+{
+ double x = PyFloat_AsDouble(v);
+ return PyLong_FromDouble(x);
+}
+
+/* _Py_double_round: rounds a finite nonzero double to the closest multiple of
10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
ndigits <= 323). Returns a Python float, or sets a Python error and
returns NULL on failure (OverflowError and memory errors are possible). */
#ifndef PY_NO_SHORT_FLOAT_REPR
-/* version of double_round that uses the correctly-rounded string<->double
+/* version of _Py_double_round that uses the correctly-rounded string<->double
conversions from Python/dtoa.c */
-static PyObject *
-double_round(double x, int ndigits) {
+/* FIVE_POW_LIMIT is the largest k such that 5**k is exactly representable as
+ a double. Since we're using the code in Python/dtoa.c, it should be safe
+ to assume that C doubles are IEEE 754 binary64 format. To be on the safe
+ side, we check this. */
+#if DBL_MANT_DIG == 53
+#define FIVE_POW_LIMIT 22
+#else
+#error "C doubles do not appear to be IEEE 754 binary64 format"
+#endif
- double rounded;
+PyObject *
+_Py_double_round(double x, int ndigits) {
+
+ double rounded, m;
Py_ssize_t buflen, mybuflen=100;
char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
- int decpt, sign;
+ int decpt, sign, val, halfway_case;
PyObject *result = NULL;
_Py_SET_53BIT_PRECISION_HEADER;
- /* round to a decimal string */
+ /* Easy path for the common case ndigits == 0. */
+ if (ndigits == 0) {
+ rounded = round(x);
+ if (fabs(rounded - x) == 0.5)
+ /* halfway between two integers; use round-away-from-zero */
+ rounded = x + (x > 0.0 ? 0.5 : -0.5);
+ return PyFloat_FromDouble(rounded);
+ }
+
+ /* The basic idea is very simple: convert and round the double to a
+ decimal string using _Py_dg_dtoa, then convert that decimal string
+ back to a double with _Py_dg_strtod. There's one minor difficulty:
+ Python 2.x expects round to do round-half-away-from-zero, while
+ _Py_dg_dtoa does round-half-to-even. So we need some way to detect
+ and correct the halfway cases.
+
+ Detection: a halfway value has the form k * 0.5 * 10**-ndigits for
+ some odd integer k. Or in other words, a rational number x is
+ exactly halfway between two multiples of 10**-ndigits if its
+ 2-valuation is exactly -ndigits-1 and its 5-valuation is at least
+ -ndigits. For ndigits >= 0 the latter condition is automatically
+ satisfied for a binary float x, since any such float has
+ nonnegative 5-valuation. For 0 > ndigits >= -22, x needs to be an
+ integral multiple of 5**-ndigits; we can check this using fmod.
+ For -22 > ndigits, there are no halfway cases: 5**23 takes 54 bits
+ to represent exactly, so any odd multiple of 0.5 * 10**n for n >=
+ 23 takes at least 54 bits of precision to represent exactly.
+
+ Correction: a simple strategy for dealing with halfway cases is to
+ (for the halfway cases only) call _Py_dg_dtoa with an argument of
+ ndigits+1 instead of ndigits (thus doing an exact conversion to
+ decimal), round the resulting string manually, and then convert
+ back using _Py_dg_strtod.
+ */
+
+ /* nans, infinities and zeros should have already been dealt
+ with by the caller (in this case, builtin_round) */
+ assert(Py_IS_FINITE(x) && x != 0.0);
+
+ /* find 2-valuation val of x */
+ m = frexp(x, &val);
+ while (m != floor(m)) {
+ m *= 2.0;
+ val--;
+ }
+
+ /* determine whether this is a halfway case */
+ if (val == -ndigits-1) {
+ if (ndigits >= 0)
+ halfway_case = 1;
+ else if (ndigits >= -FIVE_POW_LIMIT) {
+ double five_pow = 1.0;
+ int i;
+ for (i=0; i < -ndigits; i++)
+ five_pow *= 5.0;
+ halfway_case = fmod(x, five_pow) == 0.0;
+ }
+ else
+ halfway_case = 0;
+ }
+ else
+ halfway_case = 0;
+
+ /* round to a decimal string; use an extra place for halfway case */
_Py_SET_53BIT_PRECISION_START;
- buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
+ buf = _Py_dg_dtoa(x, 3, ndigits+halfway_case, &decpt, &sign, &buf_end);
_Py_SET_53BIT_PRECISION_END;
if (buf == NULL) {
PyErr_NoMemory();
return NULL;
}
+ buflen = buf_end - buf;
+
+ /* in halfway case, do the round-half-away-from-zero manually */
+ if (halfway_case) {
+ int i, carry;
+ /* sanity check: _Py_dg_dtoa should not have stripped
+ any zeros from the result: there should be exactly
+ ndigits+1 places following the decimal point, and
+ the last digit in the buffer should be a '5'.*/
+ assert(buflen - decpt == ndigits+1);
+ assert(buf[buflen-1] == '5');
+
+ /* increment and shift right at the same time. */
+ decpt += 1;
+ carry = 1;
+ for (i=buflen-1; i-- > 0;) {
+ carry += buf[i] - '0';
+ buf[i+1] = carry % 10 + '0';
+ carry /= 10;
+ }
+ buf[0] = carry + '0';
+ }
/* Get new buffer if shortbuf is too small. Space needed <= buf_end -
- buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
- buflen = buf_end - buf;
+ buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
if (buflen + 8 > mybuflen) {
mybuflen = buflen+8;
mybuf = (char *)PyMem_Malloc(mybuflen);
@@ -967,13 +1224,15 @@ double_round(double x, int ndigits) {
return result;
}
+#undef FIVE_POW_LIMIT
+
#else /* PY_NO_SHORT_FLOAT_REPR */
/* fallback version, to be used when correctly rounded binary<->decimal
conversions aren't available */
-static PyObject *
-double_round(double x, int ndigits) {
+PyObject *
+_Py_double_round(double x, int ndigits) {
double pow1, pow2, y, z;
if (ndigits >= 0) {
if (ndigits > 22) {
@@ -999,8 +1258,8 @@ double_round(double x, int ndigits) {
z = round(y);
if (fabs(y-z) == 0.5)
- /* halfway between two integers; use round-half-even */
- z = 2.0*round(y/2.0);
+ /* halfway between two integers; use round-away-from-zero */
+ z = y + copysign(0.5, y);
if (ndigits >= 0)
z = (z / pow2) / pow1;
@@ -1019,64 +1278,6 @@ double_round(double x, int ndigits) {
#endif /* PY_NO_SHORT_FLOAT_REPR */
-/* round a Python float v to the closest multiple of 10**-ndigits */
-
-/*[clinic input]
-float.__round__
-
- ndigits as o_ndigits: object = None
- /
-
-Return the Integral closest to x, rounding half toward even.
-
-When an argument is passed, work like built-in round(x, ndigits).
-[clinic start generated code]*/
-
-static PyObject *
-float___round___impl(PyObject *self, PyObject *o_ndigits)
-/*[clinic end generated code: output=374c36aaa0f13980 input=fc0fe25924fbc9ed]*/
-{
- double x, rounded;
- Py_ssize_t ndigits;
-
- x = PyFloat_AsDouble(self);
- if (o_ndigits == Py_None) {
- /* single-argument round or with None ndigits:
- * round to nearest integer */
- rounded = round(x);
- if (fabs(x-rounded) == 0.5)
- /* halfway case: round to even */
- rounded = 2.0*round(x/2.0);
- return PyLong_FromDouble(rounded);
- }
-
- /* interpret second argument as a Py_ssize_t; clips on overflow */
- ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
- if (ndigits == -1 && PyErr_Occurred())
- return NULL;
-
- /* nans and infinities round to themselves */
- if (!Py_IS_FINITE(x))
- return PyFloat_FromDouble(x);
-
- /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
- always rounds to itself. For ndigits < NDIGITS_MIN, x always
- rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
-#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
-#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
- if (ndigits > NDIGITS_MAX)
- /* return x */
- return PyFloat_FromDouble(x);
- else if (ndigits < NDIGITS_MIN)
- /* return 0.0, but with sign of x */
- return PyFloat_FromDouble(0.0*x);
- else
- /* finite x, and ndigits is not unreasonably large */
- return double_round(x, (int)ndigits);
-#undef NDIGITS_MAX
-#undef NDIGITS_MIN
-}
-
static PyObject *
float_float(PyObject *v)
{
@@ -1087,26 +1288,13 @@ float_float(PyObject *v)
return v;
}
-/*[clinic input]
-float.conjugate
-
-Return self, the complex conjugate of any float.
-[clinic start generated code]*/
-
-static PyObject *
-float_conjugate_impl(PyObject *self)
-/*[clinic end generated code: output=8ca292c2479194af input=82ba6f37a9ff91dd]*/
-{
- return float_float(self);
-}
-
/* turn ASCII hex characters into integer values and vice versa */
static char
char_from_hex(int x)
{
assert(0 <= x && x < 16);
- return Py_hexdigits[x];
+ return "0123456789abcdef"[x];
}
static int
@@ -1180,20 +1368,8 @@ hex_from_char(char c) {
of the form 4k+1. */
#define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
-/*[clinic input]
-float.hex
-
-Return a hexadecimal representation of a floating-point number.
-
->>> (-0.1).hex()
-'-0x1.999999999999ap-4'
->>> 3.14159.hex()
-'0x1.921f9f01b866ep+1'
-[clinic start generated code]*/
-
static PyObject *
-float_hex_impl(PyObject *self)
-/*[clinic end generated code: output=0ebc9836e4d302d4 input=bec1271a33d47e67]*/
+float_hex(PyObject *v)
{
double x, m;
int e, shift, i, si, esign;
@@ -1201,20 +1377,20 @@ float_hex_impl(PyObject *self)
trailing NUL byte. */
char s[(TOHEX_NBITS-1)/4+3];
- CONVERT_TO_DOUBLE(self, x);
+ CONVERT_TO_DOUBLE(v, x);
if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
- return float_repr((PyFloatObject *)self);
+ return float_str((PyFloatObject *)v);
if (x == 0.0) {
if (copysign(1.0, x) == -1.0)
- return PyUnicode_FromString("-0x0.0p+0");
+ return PyString_FromString("-0x0.0p+0");
else
- return PyUnicode_FromString("0x0.0p+0");
+ return PyString_FromString("0x0.0p+0");
}
m = frexp(fabs(x), &e);
- shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0);
+ shift = 1 - MAX(DBL_MIN_EXP - e, 0);
m = ldexp(m, shift);
e -= shift;
@@ -1240,37 +1416,44 @@ float_hex_impl(PyObject *self)
esign = (int)'+';
if (x < 0.0)
- return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
+ return PyString_FromFormat("-0x%sp%c%d", s, esign, e);
else
- return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
+ return PyString_FromFormat("0x%sp%c%d", s, esign, e);
}
-/* Convert a hexadecimal string to a float. */
-
-/*[clinic input]
-@classmethod
-float.fromhex
+PyDoc_STRVAR(float_hex_doc,
+"float.hex() -> string\n\
+\n\
+Return a hexadecimal representation of a floating-point number.\n\
+>>> (-0.1).hex()\n\
+'-0x1.999999999999ap-4'\n\
+>>> 3.14159.hex()\n\
+'0x1.921f9f01b866ep+1'");
- string: object
- /
+/* Case-insensitive locale-independent string match used for nan and inf
+ detection. t should be lower-case and null-terminated. Return a nonzero
+ result if the first strlen(t) characters of s match t and 0 otherwise. */
-Create a floating-point number from a hexadecimal string.
+static int
+case_insensitive_match(const char *s, const char *t)
+{
+ while(*t && Py_TOLOWER(*s) == *t) {
+ s++;
+ t++;
+ }
+ return *t ? 0 : 1;
+}
->>> float.fromhex('0x1.ffffp10')
-2047.984375
->>> float.fromhex('-0x1p-1074')
--5e-324
-[clinic start generated code]*/
+/* Convert a hexadecimal string to a float. */
static PyObject *
-float_fromhex(PyTypeObject *type, PyObject *string)
-/*[clinic end generated code: output=46c0274d22b78e82 input=0407bebd354bca89]*/
+float_fromhex(PyObject *cls, PyObject *arg)
{
- PyObject *result;
+ PyObject *result_as_float, *result;
double x;
long exp, top_exp, lsb, key_digit;
- const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
- int half_eps, digit, round_up, negate=0;
+ char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
+ int half_eps, digit, round_up, sign=1;
Py_ssize_t length, ndigits, fdigits, i;
/*
@@ -1318,8 +1501,7 @@ float_fromhex(PyTypeObject *type, PyObject *string)
* exp+4*ndigits and exp-4*ndigits are within the range of a long.
*/
- s = PyUnicode_AsUTF8AndSize(string, &length);
- if (s == NULL)
+ if (PyString_AsStringAndSize(arg, &s, &length))
return NULL;
s_end = s + length;
@@ -1327,25 +1509,34 @@ float_fromhex(PyTypeObject *type, PyObject *string)
* Parse the string *
********************/
- /* leading whitespace */
+ /* leading whitespace and optional sign */
while (Py_ISSPACE(*s))
s++;
-
- /* infinities and nans */
- x = _Py_parse_inf_or_nan(s, (char **)&coeff_end);
- if (coeff_end != s) {
- s = coeff_end;
- goto finished;
- }
-
- /* optional sign */
if (*s == '-') {
s++;
- negate = 1;
+ sign = -1;
}
else if (*s == '+')
s++;
+ /* infinities and nans */
+ if (*s == 'i' || *s == 'I') {
+ if (!case_insensitive_match(s+1, "nf"))
+ goto parse_error;
+ s += 3;
+ x = Py_HUGE_VAL;
+ if (case_insensitive_match(s, "inity"))
+ s += 5;
+ goto finished;
+ }
+ if (*s == 'n' || *s == 'N') {
+ if (!case_insensitive_match(s+1, "an"))
+ goto parse_error;
+ s += 3;
+ x = Py_NAN;
+ goto finished;
+ }
+
/* [0x] */
s_store = s;
if (*s == '0') {
@@ -1375,8 +1566,8 @@ float_fromhex(PyTypeObject *type, PyObject *string)
fdigits = coeff_end - s_store;
if (ndigits == 0)
goto parse_error;
- if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
- LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
+ if (ndigits > MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
+ LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
goto insane_length_error;
/* [p <exponent>] */
@@ -1432,7 +1623,7 @@ float_fromhex(PyTypeObject *type, PyObject *string)
/* lsb = exponent of least significant bit of the *rounded* value.
This is top_exp - DBL_MANT_DIG unless result is subnormal. */
- lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
+ lsb = MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
x = 0.0;
if (exp >= lsb) {
@@ -1464,7 +1655,7 @@ float_fromhex(PyTypeObject *type, PyObject *string)
round_up = 1;
break;
}
- if (round_up) {
+ if (round_up == 1) {
x += 2*half_eps;
if (top_exp == DBL_MAX_EXP &&
x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
@@ -1481,10 +1672,11 @@ float_fromhex(PyTypeObject *type, PyObject *string)
s++;
if (s != s_end)
goto parse_error;
- result = PyFloat_FromDouble(negate ? -x : x);
- if (type != &PyFloat_Type && result != NULL) {
- Py_SETREF(result, _PyObject_CallOneArg((PyObject *)type, result));
- }
+ result_as_float = Py_BuildValue("(d)", sign * x);
+ if (result_as_float == NULL)
+ return NULL;
+ result = PyObject_CallObject(cls, result_as_float);
+ Py_DECREF(result_as_float);
return result;
overflow_error:
@@ -1503,53 +1695,54 @@ float_fromhex(PyTypeObject *type, PyObject *string)
return NULL;
}
-/*[clinic input]
-float.as_integer_ratio
-
-Return integer ratio.
-
-Return a pair of integers, whose ratio is exactly equal to the original float
-and with a positive denominator.
-
-Raise OverflowError on infinities and a ValueError on NaNs.
+PyDoc_STRVAR(float_fromhex_doc,
+"float.fromhex(string) -> float\n\
+\n\
+Create a floating-point number from a hexadecimal string.\n\
+>>> float.fromhex('0x1.ffffp10')\n\
+2047.984375\n\
+>>> float.fromhex('-0x1p-1074')\n\
+-4.9406564584124654e-324");
->>> (10.0).as_integer_ratio()
-(10, 1)
->>> (0.0).as_integer_ratio()
-(0, 1)
->>> (-.25).as_integer_ratio()
-(-1, 4)
-[clinic start generated code]*/
static PyObject *
-float_as_integer_ratio_impl(PyObject *self)
-/*[clinic end generated code: output=65f25f0d8d30a712 input=e21d08b4630c2e44]*/
+float_as_integer_ratio(PyObject *v, PyObject *unused)
{
- double self_double;
+ double self;
double float_part;
int exponent;
int i;
+ PyObject *prev;
PyObject *py_exponent = NULL;
PyObject *numerator = NULL;
PyObject *denominator = NULL;
PyObject *result_pair = NULL;
PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
- CONVERT_TO_DOUBLE(self, self_double);
+#define INPLACE_UPDATE(obj, call) \
+ prev = obj; \
+ obj = call; \
+ Py_DECREF(prev); \
- if (Py_IS_INFINITY(self_double)) {
- PyErr_SetString(PyExc_OverflowError,
- "cannot convert Infinity to integer ratio");
- return NULL;
+ CONVERT_TO_DOUBLE(v, self);
+
+ if (Py_IS_INFINITY(self)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "Cannot pass infinity to float.as_integer_ratio.");
+ return NULL;
}
- if (Py_IS_NAN(self_double)) {
- PyErr_SetString(PyExc_ValueError,
- "cannot convert NaN to integer ratio");
- return NULL;
+#ifdef Py_NAN
+ if (Py_IS_NAN(self)) {
+ PyErr_SetString(PyExc_ValueError,
+ "Cannot pass NaN to float.as_integer_ratio.");
+ return NULL;
}
+#endif
- float_part = frexp(self_double, &exponent); /* self_double == float_part * 2**exponent exactly */
+ PyFPE_START_PROTECT("as_integer_ratio", goto error);
+ float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */
+ PyFPE_END_PROTECT(float_part);
for (i=0; i<300 && float_part != floor(float_part) ; i++) {
float_part *= 2.0;
@@ -1560,31 +1753,35 @@ float_as_integer_ratio_impl(PyObject *self)
to be truncated by PyLong_FromDouble(). */
numerator = PyLong_FromDouble(float_part);
- if (numerator == NULL)
- goto error;
- denominator = PyLong_FromLong(1);
- if (denominator == NULL)
- goto error;
- py_exponent = PyLong_FromLong(Py_ABS(exponent));
- if (py_exponent == NULL)
- goto error;
+ if (numerator == NULL) goto error;
/* fold in 2**exponent */
+ denominator = PyLong_FromLong(1);
+ py_exponent = PyLong_FromLong(labs((long)exponent));
+ if (py_exponent == NULL) goto error;
+ INPLACE_UPDATE(py_exponent,
+ long_methods->nb_lshift(denominator, py_exponent));
+ if (py_exponent == NULL) goto error;
if (exponent > 0) {
- Py_SETREF(numerator,
- long_methods->nb_lshift(numerator, py_exponent));
- if (numerator == NULL)
- goto error;
+ INPLACE_UPDATE(numerator,
+ long_methods->nb_multiply(numerator, py_exponent));
+ if (numerator == NULL) goto error;
}
else {
- Py_SETREF(denominator,
- long_methods->nb_lshift(denominator, py_exponent));
- if (denominator == NULL)
- goto error;
+ Py_DECREF(denominator);
+ denominator = py_exponent;
+ py_exponent = NULL;
}
+ /* Returns ints instead of longs where possible */
+ INPLACE_UPDATE(numerator, PyNumber_Int(numerator));
+ if (numerator == NULL) goto error;
+ INPLACE_UPDATE(denominator, PyNumber_Int(denominator));
+ if (denominator == NULL) goto error;
+
result_pair = PyTuple_Pack(2, numerator, denominator);
+#undef INPLACE_UPDATE
error:
Py_XDECREF(py_exponent);
Py_XDECREF(denominator);
@@ -1592,28 +1789,38 @@ error:
return result_pair;
}
-static PyObject *
-float_subtype_new(PyTypeObject *type, PyObject *x);
+PyDoc_STRVAR(float_as_integer_ratio_doc,
+"float.as_integer_ratio() -> (int, int)\n"
+"\n"
+"Return a pair of integers, whose ratio is exactly equal to the original\n"
+"float and with a positive denominator.\n"
+"Raise OverflowError on infinities and a ValueError on NaNs.\n"
+"\n"
+">>> (10.0).as_integer_ratio()\n"
+"(10, 1)\n"
+">>> (0.0).as_integer_ratio()\n"
+"(0, 1)\n"
+">>> (-.25).as_integer_ratio()\n"
+"(-1, 4)");
-/*[clinic input]
-@classmethod
-float.__new__ as float_new
- x: object(c_default="_PyLong_Zero") = 0
- /
-Convert a string or number to a floating point number, if possible.
-[clinic start generated code]*/
+static PyObject *
+float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static PyObject *
-float_new_impl(PyTypeObject *type, PyObject *x)
-/*[clinic end generated code: output=ccf1e8dc460ba6ba input=540ee77c204ff87a]*/
+float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
+ PyObject *x = Py_False; /* Integer zero */
+ static char *kwlist[] = {"x", 0};
+
if (type != &PyFloat_Type)
- return float_subtype_new(type, x); /* Wimp out */
+ return float_subtype_new(type, args, kwds); /* Wimp out */
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
+ return NULL;
/* If it's a string, but not a string subclass, use
PyFloat_FromString. */
- if (PyUnicode_CheckExact(x))
- return PyFloat_FromString(x);
+ if (PyString_CheckExact(x))
+ return PyFloat_FromString(x, NULL);
return PyNumber_Float(x);
}
@@ -1623,12 +1830,12 @@ float_new_impl(PyTypeObject *type, PyObject *x)
from the regular float. The regular float is then thrown away.
*/
static PyObject *
-float_subtype_new(PyTypeObject *type, PyObject *x)
+float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *tmp, *newobj;
assert(PyType_IsSubtype(type, &PyFloat_Type));
- tmp = float_new_impl(&PyFloat_Type, x);
+ tmp = float_new(&PyFloat_Type, args, kwds);
if (tmp == NULL)
return NULL;
assert(PyFloat_Check(tmp));
@@ -1642,15 +1849,10 @@ float_subtype_new(PyTypeObject *type, PyObject *x)
return newobj;
}
-/*[clinic input]
-float.__getnewargs__
-[clinic start generated code]*/
-
static PyObject *
-float___getnewargs___impl(PyObject *self)
-/*[clinic end generated code: output=873258c9d206b088 input=002279d1d77891e6]*/
+float_getnewargs(PyFloatObject *v)
{
- return Py_BuildValue("(d)", ((PyFloatObject *)self)->ob_fval);
+ return Py_BuildValue("(d)", v->ob_fval);
}
/* this is for the benefit of the pack/unpack routines below */
@@ -1662,33 +1864,23 @@ typedef enum {
static float_format_type double_format, float_format;
static float_format_type detected_double_format, detected_float_format;
-/*[clinic input]
-@classmethod
-float.__getformat__
-
- typestr: str
- Must be 'double' or 'float'.
- /
-
-You probably don't want to use this function.
-
-It exists mainly to be used in Python's test suite.
-
-This function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE,
-little-endian' best describes the format of floating point numbers used by the
-C type named by typestr.
-[clinic start generated code]*/
-
static PyObject *
-float___getformat___impl(PyTypeObject *type, const char *typestr)
-/*[clinic end generated code: output=2bfb987228cc9628 input=d5a52600f835ad67]*/
+float_getformat(PyTypeObject *v, PyObject* arg)
{
+ char* s;
float_format_type r;
- if (strcmp(typestr, "double") == 0) {
+ if (!PyString_Check(arg)) {
+ PyErr_Format(PyExc_TypeError,
+ "__getformat__() argument must be string, not %.500s",
+ Py_TYPE(arg)->tp_name);
+ return NULL;
+ }
+ s = PyString_AS_STRING(arg);
+ if (strcmp(s, "double") == 0) {
r = double_format;
}
- else if (strcmp(typestr, "float") == 0) {
+ else if (strcmp(s, "float") == 0) {
r = float_format;
}
else {
@@ -1700,47 +1892,39 @@ float___getformat___impl(PyTypeObject *type, const char *typestr)
switch (r) {
case unknown_format:
- return PyUnicode_FromString("unknown");
+ return PyString_FromString("unknown");
case ieee_little_endian_format:
- return PyUnicode_FromString("IEEE, little-endian");
+ return PyString_FromString("IEEE, little-endian");
case ieee_big_endian_format:
- return PyUnicode_FromString("IEEE, big-endian");
+ return PyString_FromString("IEEE, big-endian");
default:
- PyErr_SetString(PyExc_RuntimeError,
- "insane float_format or double_format");
+ Py_FatalError("insane float_format or double_format");
return NULL;
}
}
-/*[clinic input]
-@classmethod
-float.__set_format__
-
- typestr: str
- Must be 'double' or 'float'.
- fmt: str
- Must be one of 'unknown', 'IEEE, big-endian' or 'IEEE, little-endian',
- and in addition can only be one of the latter two if it appears to
- match the underlying C reality.
- /
-
-You probably don't want to use this function.
-
-It exists mainly to be used in Python's test suite.
-
-Override the automatic determination of C-level floating point type.
-This affects how floats are converted to and from binary strings.
-[clinic start generated code]*/
+PyDoc_STRVAR(float_getformat_doc,
+"float.__getformat__(typestr) -> string\n"
+"\n"
+"You probably don't want to use this function. It exists mainly to be\n"
+"used in Python's test suite.\n"
+"\n"
+"typestr must be 'double' or 'float'. This function returns whichever of\n"
+"'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
+"format of floating point numbers used by the C type named by typestr.");
static PyObject *
-float___set_format___impl(PyTypeObject *type, const char *typestr,
- const char *fmt)
-/*[clinic end generated code: output=504460f5dc85acbd input=5306fa2b81a997e4]*/
+float_setformat(PyTypeObject *v, PyObject* args)
{
+ char* typestr;
+ char* format;
float_format_type f;
float_format_type detected;
float_format_type *p;
+ if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
+ return NULL;
+
if (strcmp(typestr, "double") == 0) {
p = &double_format;
detected = detected_double_format;
@@ -1756,13 +1940,13 @@ float___set_format___impl(PyTypeObject *type, const char *typestr,
return NULL;
}
- if (strcmp(fmt, "unknown") == 0) {
+ if (strcmp(format, "unknown") == 0) {
f = unknown_format;
}
- else if (strcmp(fmt, "IEEE, little-endian") == 0) {
+ else if (strcmp(format, "IEEE, little-endian") == 0) {
f = ieee_little_endian_format;
}
- else if (strcmp(fmt, "IEEE, big-endian") == 0) {
+ else if (strcmp(format, "IEEE, big-endian") == 0) {
f = ieee_big_endian_format;
}
else {
@@ -1785,54 +1969,74 @@ float___set_format___impl(PyTypeObject *type, const char *typestr,
Py_RETURN_NONE;
}
-static PyObject *
-float_getreal(PyObject *v, void *closure)
-{
- return float_float(v);
-}
+PyDoc_STRVAR(float_setformat_doc,
+"float.__setformat__(typestr, fmt) -> None\n"
+"\n"
+"You probably don't want to use this function. It exists mainly to be\n"
+"used in Python's test suite.\n"
+"\n"
+"typestr must be 'double' or 'float'. fmt must be one of 'unknown',\n"
+"'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
+"one of the latter two if it appears to match the underlying C reality.\n"
+"\n"
+"Override the automatic determination of C-level floating point type.\n"
+"This affects how floats are converted to and from binary strings.");
static PyObject *
-float_getimag(PyObject *v, void *closure)
+float_getzero(PyObject *v, void *closure)
{
return PyFloat_FromDouble(0.0);
}
-/*[clinic input]
-float.__format__
-
- format_spec: unicode
- /
-
-Formats the float according to format_spec.
-[clinic start generated code]*/
-
static PyObject *
-float___format___impl(PyObject *self, PyObject *format_spec)
-/*[clinic end generated code: output=b260e52a47eade56 input=2ece1052211fd0e6]*/
+float__format__(PyObject *self, PyObject *args)
{
- _PyUnicodeWriter writer;
- int ret;
-
- _PyUnicodeWriter_Init(&writer);
- ret = _PyFloat_FormatAdvancedWriter(
- &writer,
- self,
- format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
- if (ret == -1) {
- _PyUnicodeWriter_Dealloc(&writer);
+ PyObject *format_spec;
+
+ if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
return NULL;
+ if (PyBytes_Check(format_spec))
+ return _PyFloat_FormatAdvanced(self,
+ PyBytes_AS_STRING(format_spec),
+ PyBytes_GET_SIZE(format_spec));
+ if (PyUnicode_Check(format_spec)) {
+ /* Convert format_spec to a str */
+ PyObject *result;
+ PyObject *str_spec = PyObject_Str(format_spec);
+
+ if (str_spec == NULL)
+ return NULL;
+
+ result = _PyFloat_FormatAdvanced(self,
+ PyBytes_AS_STRING(str_spec),
+ PyBytes_GET_SIZE(str_spec));
+
+ Py_DECREF(str_spec);
+ return result;
}
- return _PyUnicodeWriter_Finish(&writer);
+ PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
+ return NULL;
}
+PyDoc_STRVAR(float__format__doc,
+"float.__format__(format_spec) -> string\n"
+"\n"
+"Formats the float according to format_spec.");
+
+
static PyMethodDef float_methods[] = {
- FLOAT_CONJUGATE_METHODDEF
- FLOAT___TRUNC___METHODDEF
- FLOAT___ROUND___METHODDEF
- FLOAT_AS_INTEGER_RATIO_METHODDEF
- FLOAT_FROMHEX_METHODDEF
- FLOAT_HEX_METHODDEF
- FLOAT_IS_INTEGER_METHODDEF
+ {"conjugate", (PyCFunction)float_float, METH_NOARGS,
+ "Return self, the complex conjugate of any float."},
+ {"__trunc__", (PyCFunction)float_trunc, METH_NOARGS,
+ "Return the Integral closest to x between 0 and x."},
+ {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS,
+ float_as_integer_ratio_doc},
+ {"fromhex", (PyCFunction)float_fromhex,
+ METH_O|METH_CLASS, float_fromhex_doc},
+ {"hex", (PyCFunction)float_hex,
+ METH_NOARGS, float_hex_doc},
+ {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS,
+ "Return True if the float is an integer."},
#if 0
{"is_inf", (PyCFunction)float_is_inf, METH_NOARGS,
"Return True if the float is positive or negative infinite."},
@@ -1841,49 +2045,62 @@ static PyMethodDef float_methods[] = {
{"is_nan", (PyCFunction)float_is_nan, METH_NOARGS,
"Return True if the float is not a number (NaN)."},
#endif
- FLOAT___GETNEWARGS___METHODDEF
- FLOAT___GETFORMAT___METHODDEF
- FLOAT___SET_FORMAT___METHODDEF
- FLOAT___FORMAT___METHODDEF
+ {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
+ {"__getformat__", (PyCFunction)float_getformat,
+ METH_O|METH_CLASS, float_getformat_doc},
+ {"__setformat__", (PyCFunction)float_setformat,
+ METH_VARARGS|METH_CLASS, float_setformat_doc},
+ {"__format__", (PyCFunction)float__format__,
+ METH_VARARGS, float__format__doc},
{NULL, NULL} /* sentinel */
};
static PyGetSetDef float_getset[] = {
{"real",
- float_getreal, (setter)NULL,
+ (getter)float_float, (setter)NULL,
"the real part of a complex number",
NULL},
{"imag",
- float_getimag, (setter)NULL,
+ (getter)float_getzero, (setter)NULL,
"the imaginary part of a complex number",
NULL},
{NULL} /* Sentinel */
};
+PyDoc_STRVAR(float_doc,
+"float(x) -> floating point number\n\
+\n\
+Convert a string or number to a floating point number, if possible.");
+
static PyNumberMethods float_as_number = {
- float_add, /* nb_add */
- float_sub, /* nb_subtract */
- float_mul, /* nb_multiply */
- float_rem, /* nb_remainder */
- float_divmod, /* nb_divmod */
- float_pow, /* nb_power */
- (unaryfunc)float_neg, /* nb_negative */
- float_float, /* nb_positive */
- (unaryfunc)float_abs, /* nb_absolute */
- (inquiry)float_bool, /* nb_bool */
- 0, /* nb_invert */
- 0, /* nb_lshift */
- 0, /* nb_rshift */
- 0, /* nb_and */
- 0, /* nb_xor */
- 0, /* nb_or */
- float___trunc___impl, /* nb_int */
- 0, /* nb_reserved */
- float_float, /* nb_float */
+ float_add, /*nb_add*/
+ float_sub, /*nb_subtract*/
+ float_mul, /*nb_multiply*/
+ float_classic_div, /*nb_divide*/
+ float_rem, /*nb_remainder*/
+ float_divmod, /*nb_divmod*/
+ float_pow, /*nb_power*/
+ (unaryfunc)float_neg, /*nb_negative*/
+ (unaryfunc)float_float, /*nb_positive*/
+ (unaryfunc)float_abs, /*nb_absolute*/
+ (inquiry)float_nonzero, /*nb_nonzero*/
+ 0, /*nb_invert*/
+ 0, /*nb_lshift*/
+ 0, /*nb_rshift*/
+ 0, /*nb_and*/
+ 0, /*nb_xor*/
+ 0, /*nb_or*/
+ float_coerce, /*nb_coerce*/
+ float_trunc, /*nb_int*/
+ float_long, /*nb_long*/
+ float_float, /*nb_float*/
+ 0, /* nb_oct */
+ 0, /* nb_hex */
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
+ 0, /* nb_inplace_divide */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
@@ -1891,7 +2108,7 @@ static PyNumberMethods float_as_number = {
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
- float_floor_div, /* nb_floor_divide */
+ float_floor_div, /* nb_floor_divide */
float_div, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
@@ -1903,22 +2120,23 @@ PyTypeObject PyFloat_Type = {
sizeof(PyFloatObject),
0,
(destructor)float_dealloc, /* tp_dealloc */
- 0, /* tp_vectorcall_offset */
+ (printfunc)float_print, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
- 0, /* tp_as_async */
+ 0, /* tp_compare */
(reprfunc)float_repr, /* tp_repr */
&float_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)float_hash, /* tp_hash */
0, /* tp_call */
- 0, /* tp_str */
+ (reprfunc)float_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
- float_new__doc__, /* tp_doc */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+ Py_TPFLAGS_BASETYPE, /* tp_flags */
+ float_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
float_richcompare, /* tp_richcompare */
@@ -1938,7 +2156,7 @@ PyTypeObject PyFloat_Type = {
float_new, /* tp_new */
};
-int
+void
_PyFloat_Init(void)
{
/* We attempt to determine if this machine is using IEEE
@@ -1988,160 +2206,108 @@ _PyFloat_Init(void)
float_format = detected_float_format;
/* Init float info */
- if (FloatInfoType.tp_name == NULL) {
- if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0) {
- return 0;
- }
- }
- return 1;
+ if (FloatInfoType.tp_name == 0)
+ PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc);
}
int
PyFloat_ClearFreeList(void)
{
- PyFloatObject *f = free_list, *next;
- int i = numfree;
- while (f) {
- next = (PyFloatObject*) Py_TYPE(f);
- PyObject_FREE(f);
- f = next;
- }
- free_list = NULL;
- numfree = 0;
- return i;
-}
+ PyFloatObject *p;
+ PyFloatBlock *list, *next;
+ int i;
+ int u; /* remaining unfreed ints per block */
+ int freelist_size = 0;
-void
-_PyFloat_Fini(void)
-{
- (void)PyFloat_ClearFreeList();
+ list = block_list;
+ block_list = NULL;
+ free_list = NULL;
+ while (list != NULL) {
+ u = 0;
+ for (i = 0, p = &list->objects[0];
+ i < N_FLOATOBJECTS;
+ i++, p++) {
+ if (PyFloat_CheckExact(p) && Py_REFCNT(p) != 0)
+ u++;
+ }
+ next = list->next;
+ if (u) {
+ list->next = block_list;
+ block_list = list;
+ for (i = 0, p = &list->objects[0];
+ i < N_FLOATOBJECTS;
+ i++, p++) {
+ if (!PyFloat_CheckExact(p) ||
+ Py_REFCNT(p) == 0) {
+ Py_TYPE(p) = (struct _typeobject *)
+ free_list;
+ free_list = p;
+ }
+ }
+ }
+ else {
+ PyMem_FREE(list);
+ }
+ freelist_size += u;
+ list = next;
+ }
+ return freelist_size;
}
-/* Print summary info about the state of the optimized allocator */
void
-_PyFloat_DebugMallocStats(FILE *out)
+PyFloat_Fini(void)
{
- _PyDebugAllocatorStats(out,
- "free PyFloatObject",
- numfree, sizeof(PyFloatObject));
-}
-
-
-/*----------------------------------------------------------------------------
- * _PyFloat_{Pack,Unpack}{2,4,8}. See floatobject.h.
- * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in:
- * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c
- * We use:
- * bits = (unsigned short)f; Note the truncation
- * if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) {
- * bits++;
- * }
- */
+ PyFloatObject *p;
+ PyFloatBlock *list;
+ int i;
+ int u; /* total unfreed floats per block */
-int
-_PyFloat_Pack2(double x, unsigned char *p, int le)
-{
- unsigned char sign;
- int e;
- double f;
- unsigned short bits;
- int incr = 1;
+ u = PyFloat_ClearFreeList();
- if (x == 0.0) {
- sign = (copysign(1.0, x) == -1.0);
- e = 0;
- bits = 0;
- }
- else if (Py_IS_INFINITY(x)) {
- sign = (x < 0.0);
- e = 0x1f;
- bits = 0;
- }
- else if (Py_IS_NAN(x)) {
- /* There are 2046 distinct half-precision NaNs (1022 signaling and
- 1024 quiet), but there are only two quiet NaNs that don't arise by
- quieting a signaling NaN; we get those by setting the topmost bit
- of the fraction field and clearing all other fraction bits. We
- choose the one with the appropriate sign. */
- sign = (copysign(1.0, x) == -1.0);
- e = 0x1f;
- bits = 512;
+ if (!Py_VerboseFlag)
+ return;
+ fprintf(stderr, "# cleanup floats");
+ if (!u) {
+ fprintf(stderr, "\n");
}
else {
- sign = (x < 0.0);
- if (sign) {
- x = -x;
- }
-
- f = frexp(x, &e);
- if (f < 0.5 || f >= 1.0) {
- PyErr_SetString(PyExc_SystemError,
- "frexp() result out of range");
- return -1;
- }
-
- /* Normalize f to be in the range [1.0, 2.0) */
- f *= 2.0;
- e--;
-
- if (e >= 16) {
- goto Overflow;
- }
- else if (e < -25) {
- /* |x| < 2**-25. Underflow to zero. */
- f = 0.0;
- e = 0;
- }
- else if (e < -14) {
- /* |x| < 2**-14. Gradual underflow */
- f = ldexp(f, 14 + e);
- e = 0;
- }
- else /* if (!(e == 0 && f == 0.0)) */ {
- e += 15;
- f -= 1.0; /* Get rid of leading 1 */
- }
-
- f *= 1024.0; /* 2**10 */
- /* Round to even */
- bits = (unsigned short)f; /* Note the truncation */
- assert(bits < 1024);
- assert(e < 31);
- if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) {
- ++bits;
- if (bits == 1024) {
- /* The carry propagated out of a string of 10 1 bits. */
- bits = 0;
- ++e;
- if (e == 31)
- goto Overflow;
+ fprintf(stderr,
+ ": %d unfreed float%s\n",
+ u, u == 1 ? "" : "s");
+ }
+ if (Py_VerboseFlag > 1) {
+ list = block_list;
+ while (list != NULL) {
+ for (i = 0, p = &list->objects[0];
+ i < N_FLOATOBJECTS;
+ i++, p++) {
+ if (PyFloat_CheckExact(p) &&
+ Py_REFCNT(p) != 0) {
+ char *buf = PyOS_double_to_string(
+ PyFloat_AS_DOUBLE(p), 'r',
+ 0, 0, NULL);
+ if (buf) {
+ /* XXX(twouters) cast
+ refcount to long
+ until %zd is
+ universally
+ available
+ */
+ fprintf(stderr,
+ "# <float at %p, refcnt=%ld, val=%s>\n",
+ p, (long)Py_REFCNT(p), buf);
+ PyMem_Free(buf);
+ }
+ }
}
+ list = list->next;
}
}
-
- bits |= (e << 10) | (sign << 15);
-
- /* Write out result. */
- if (le) {
- p += 1;
- incr = -1;
- }
-
- /* First byte */
- *p = (unsigned char)((bits >> 8) & 0xFF);
- p += incr;
-
- /* Second byte */
- *p = (unsigned char)(bits & 0xFF);
-
- return 0;
-
- Overflow:
- PyErr_SetString(PyExc_OverflowError,
- "float too large to pack with e format");
- return -1;
}
+/*----------------------------------------------------------------------------
+ * _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h.
+ */
int
_PyFloat_Pack4(double x, unsigned char *p, int le)
{
@@ -2223,14 +2389,12 @@ _PyFloat_Pack4(double x, unsigned char *p, int le)
}
else {
float y = (float)x;
+ const char *s = (char*)&y;
int i, incr = 1;
if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
goto Overflow;
- unsigned char s[sizeof(float)];
- memcpy(s, &y, sizeof(float));
-
if ((float_format == ieee_little_endian_format && !le)
|| (float_format == ieee_big_endian_format && le)) {
p += 3;
@@ -2238,7 +2402,7 @@ _PyFloat_Pack4(double x, unsigned char *p, int le)
}
for (i = 0; i < 4; i++) {
- *p = s[i];
+ *p = *s++;
p += incr;
}
return 0;
@@ -2350,7 +2514,7 @@ _PyFloat_Pack8(double x, unsigned char *p, int le)
/* Eighth byte */
*p = flo & 0xFF;
- /* p += incr; */
+ /* p += incr; Unneeded (for now) */
/* Done */
return 0;
@@ -2361,7 +2525,7 @@ _PyFloat_Pack8(double x, unsigned char *p, int le)
return -1;
}
else {
- const unsigned char *s = (unsigned char*)&x;
+ const char *s = (char*)&x;
int i, incr = 1;
if ((double_format == ieee_little_endian_format && !le)
@@ -2379,76 +2543,6 @@ _PyFloat_Pack8(double x, unsigned char *p, int le)
}
double
-_PyFloat_Unpack2(const unsigned char *p, int le)
-{
- unsigned char sign;
- int e;
- unsigned int f;
- double x;
- int incr = 1;
-
- if (le) {
- p += 1;
- incr = -1;
- }
-
- /* First byte */
- sign = (*p >> 7) & 1;
- e = (*p & 0x7C) >> 2;
- f = (*p & 0x03) << 8;
- p += incr;
-
- /* Second byte */
- f |= *p;
-
- if (e == 0x1f) {
-#ifdef PY_NO_SHORT_FLOAT_REPR
- if (f == 0) {
- /* Infinity */
- return sign ? -Py_HUGE_VAL : Py_HUGE_VAL;
- }
- else {
- /* NaN */
-#ifdef Py_NAN
- return sign ? -Py_NAN : Py_NAN;
-#else
- PyErr_SetString(
- PyExc_ValueError,
- "can't unpack IEEE 754 NaN "
- "on platform that does not support NaNs");
- return -1;
-#endif /* #ifdef Py_NAN */
- }
-#else
- if (f == 0) {
- /* Infinity */
- return _Py_dg_infinity(sign);
- }
- else {
- /* NaN */
- return _Py_dg_stdnan(sign);
- }
-#endif /* #ifdef PY_NO_SHORT_FLOAT_REPR */
- }
-
- x = (double)f / 1024.0;
-
- if (e == 0) {
- e = -14;
- }
- else {
- x += 1.0;
- e -= 15;
- }
- x = ldexp(x, e);
-
- if (sign)
- x = -x;
-
- return x;
-}
-
-double
_PyFloat_Unpack4(const unsigned char *p, int le)
{
if (float_format == unknown_format) {