summaryrefslogtreecommitdiffstats
path: root/Objects/longobject.c
diff options
context:
space:
mode:
Diffstat (limited to 'Objects/longobject.c')
-rw-r--r--Objects/longobject.c2027
1 files changed, 1299 insertions, 728 deletions
diff --git a/Objects/longobject.c b/Objects/longobject.c
index 7af5caf..7c9506a 100644
--- a/Objects/longobject.c
+++ b/Objects/longobject.c
@@ -4,7 +4,6 @@
#include "Python.h"
#include "longintrepr.h"
-#include "structseq.h"
#include <float.h>
#include <ctype.h>
@@ -95,14 +94,10 @@ maybe_small_long(PyLongObject *v)
#define MAX(x, y) ((x) < (y) ? (y) : (x))
#define MIN(x, y) ((x) > (y) ? (y) : (x))
-#define SIGCHECK(PyTryBlock) \
- if (--_Py_Ticker < 0) { \
- _Py_Ticker = _Py_CheckInterval; \
- if (PyErr_CheckSignals()) PyTryBlock \
- }
-
-/* forward declaration */
-static int bits_in_digit(digit d);
+#define SIGCHECK(PyTryBlock) \
+ do { \
+ if (PyErr_CheckSignals()) PyTryBlock \
+ } while(0)
/* Normalize (remove leading zeros from) a long int object.
Doesn't attempt to free the storage--in most cases, due to the nature
@@ -284,12 +279,12 @@ PyLong_FromDouble(double dval)
neg = 0;
if (Py_IS_INFINITY(dval)) {
PyErr_SetString(PyExc_OverflowError,
- "cannot convert float infinity to integer");
+ "cannot convert float infinity to integer");
return NULL;
}
if (Py_IS_NAN(dval)) {
PyErr_SetString(PyExc_ValueError,
- "cannot convert float NaN to integer");
+ "cannot convert float NaN to integer");
return NULL;
}
if (dval < 0.0) {
@@ -349,9 +344,10 @@ PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
if (!PyLong_Check(vv)) {
PyNumberMethods *nb;
- if ((nb = vv->ob_type->tp_as_number) == NULL ||
- nb->nb_int == NULL) {
- PyErr_SetString(PyExc_TypeError, "an integer is required");
+ nb = vv->ob_type->tp_as_number;
+ if (nb == NULL || nb->nb_int == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "an integer is required");
return -1;
}
vv = (*nb->nb_int) (vv);
@@ -389,14 +385,14 @@ PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
}
while (--i >= 0) {
prev = x;
- x = (x << PyLong_SHIFT) + v->ob_digit[i];
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
- *overflow = Py_SIZE(v) > 0 ? 1 : -1;
+ *overflow = sign;
goto exit;
}
}
- /* Haven't lost any bits, but casting to long requires extra care
- * (see comment above).
+ /* Haven't lost any bits, but casting to long requires extra
+ * care (see comment above).
*/
if (x <= (unsigned long)LONG_MAX) {
res = (long)x * sign;
@@ -405,11 +401,11 @@ PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
res = LONG_MIN;
}
else {
- *overflow = Py_SIZE(v) > 0 ? 1 : -1;
+ *overflow = sign;
/* res is already set to -1 */
}
}
- exit:
+ exit:
if (do_decref) {
Py_DECREF(vv);
}
@@ -464,7 +460,7 @@ PyLong_AsSsize_t(PyObject *vv) {
}
while (--i >= 0) {
prev = x;
- x = (x << PyLong_SHIFT) + v->ob_digit[i];
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev)
goto overflow;
}
@@ -479,7 +475,7 @@ PyLong_AsSsize_t(PyObject *vv) {
}
/* else overflow */
- overflow:
+ overflow:
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C ssize_t");
return -1;
@@ -509,7 +505,7 @@ PyLong_AsUnsignedLong(PyObject *vv)
x = 0;
if (i < 0) {
PyErr_SetString(PyExc_OverflowError,
- "can't convert negative value to unsigned int");
+ "can't convert negative value to unsigned int");
return (unsigned long) -1;
}
switch (i) {
@@ -518,10 +514,11 @@ PyLong_AsUnsignedLong(PyObject *vv)
}
while (--i >= 0) {
prev = x;
- x = (x << PyLong_SHIFT) + v->ob_digit[i];
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
PyErr_SetString(PyExc_OverflowError,
- "python int too large to convert to C unsigned long");
+ "python int too large to convert "
+ "to C unsigned long");
return (unsigned long) -1;
}
}
@@ -561,7 +558,7 @@ PyLong_AsSize_t(PyObject *vv)
}
while (--i >= 0) {
prev = x;
- x = (x << PyLong_SHIFT) + v->ob_digit[i];
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C size_t");
@@ -599,7 +596,7 @@ _PyLong_AsUnsignedLongMask(PyObject *vv)
i = -i;
}
while (--i >= 0) {
- x = (x << PyLong_SHIFT) + v->ob_digit[i];
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
}
return x * sign;
}
@@ -676,7 +673,7 @@ _PyLong_NumBits(PyObject *vv)
}
return result;
-Overflow:
+ Overflow:
PyErr_SetString(PyExc_OverflowError, "int has too many bits "
"to express in a platform size_t");
return (size_t)-1;
@@ -686,7 +683,7 @@ PyObject *
_PyLong_FromByteArray(const unsigned char* bytes, size_t n,
int little_endian, int is_signed)
{
- const unsigned char* pstartbyte;/* LSB of bytes */
+ const unsigned char* pstartbyte; /* LSB of bytes */
int incr; /* direction to move pstartbyte */
const unsigned char* pendbyte; /* MSB of bytes */
size_t numsignificantbytes; /* number of bytes that matter */
@@ -774,8 +771,7 @@ _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
if (accumbits >= PyLong_SHIFT) {
/* There's enough to fill a Python digit. */
assert(idigit < ndigits);
- v->ob_digit[idigit] = (digit)(accum &
- PyLong_MASK);
+ v->ob_digit[idigit] = (digit)(accum & PyLong_MASK);
++idigit;
accum >>= PyLong_SHIFT;
accumbits -= PyLong_SHIFT;
@@ -800,9 +796,9 @@ _PyLong_AsByteArray(PyLongObject* v,
int little_endian, int is_signed)
{
Py_ssize_t i; /* index into v->ob_digit */
- Py_ssize_t ndigits; /* |v->ob_size| */
+ Py_ssize_t ndigits; /* |v->ob_size| */
twodigits accum; /* sliding register */
- unsigned int accumbits; /* # bits in accum */
+ unsigned int accumbits; /* # bits in accum */
int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */
digit carry; /* for computing 2's-comp */
size_t j; /* # bytes filled */
@@ -815,7 +811,7 @@ _PyLong_AsByteArray(PyLongObject* v,
ndigits = -(Py_SIZE(v));
if (!is_signed) {
PyErr_SetString(PyExc_OverflowError,
- "can't convert negative int to unsigned");
+ "can't convert negative int to unsigned");
return -1;
}
do_twos_comp = 1;
@@ -861,8 +857,7 @@ _PyLong_AsByteArray(PyLongObject* v,
/* Count # of sign bits -- they needn't be stored,
* although for signed conversion we need later to
* make sure at least one sign bit gets stored. */
- digit s = do_twos_comp ? thisdigit ^ PyLong_MASK :
- thisdigit;
+ digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
while (s != 0) {
s >>= 1;
accumbits++;
@@ -922,230 +917,12 @@ _PyLong_AsByteArray(PyLongObject* v,
return 0;
-Overflow:
+ Overflow:
PyErr_SetString(PyExc_OverflowError, "int too big to convert");
return -1;
}
-double
-_PyLong_AsScaledDouble(PyObject *vv, int *exponent)
-{
-/* NBITS_WANTED should be > the number of bits in a double's precision,
- but small enough so that 2**NBITS_WANTED is within the normal double
- range. nbitsneeded is set to 1 less than that because the most-significant
- Python digit contains at least 1 significant bit, but we don't want to
- bother counting them (catering to the worst case cheaply).
-
- 57 is one more than VAX-D double precision; I (Tim) don't know of a double
- format with more precision than that; it's 1 larger so that we add in at
- least one round bit to stand in for the ignored least-significant bits.
-*/
-#define NBITS_WANTED 57
- PyLongObject *v;
- double x;
- const double multiplier = (double)(1L << PyLong_SHIFT);
- Py_ssize_t i;
- int sign;
- int nbitsneeded;
-
- if (vv == NULL || !PyLong_Check(vv)) {
- PyErr_BadInternalCall();
- return -1;
- }
- v = (PyLongObject *)vv;
- i = Py_SIZE(v);
- sign = 1;
- if (i < 0) {
- sign = -1;
- i = -(i);
- }
- else if (i == 0) {
- *exponent = 0;
- return 0.0;
- }
- --i;
- x = (double)v->ob_digit[i];
- nbitsneeded = NBITS_WANTED - 1;
- /* Invariant: i Python digits remain unaccounted for. */
- while (i > 0 && nbitsneeded > 0) {
- --i;
- x = x * multiplier + (double)v->ob_digit[i];
- nbitsneeded -= PyLong_SHIFT;
- }
- /* There are i digits we didn't shift in. Pretending they're all
- zeroes, the true value is x * 2**(i*PyLong_SHIFT). */
- *exponent = i;
- assert(x > 0.0);
- return x * sign;
-#undef NBITS_WANTED
-}
-
-/* Get a C double from a long int object. Rounds to the nearest double,
- using the round-half-to-even rule in the case of a tie. */
-
-double
-PyLong_AsDouble(PyObject *vv)
-{
- PyLongObject *v = (PyLongObject *)vv;
- Py_ssize_t rnd_digit, rnd_bit, m, n;
- digit lsb, *d;
- int round_up = 0;
- double x;
-
- if (vv == NULL || !PyLong_Check(vv)) {
- PyErr_BadInternalCall();
- return -1.0;
- }
-
- /* Notes on the method: for simplicity, assume v is positive and >=
- 2**DBL_MANT_DIG. (For negative v we just ignore the sign until the
- end; for small v no rounding is necessary.) Write n for the number
- of bits in v, so that 2**(n-1) <= v < 2**n, and n > DBL_MANT_DIG.
-
- Some terminology: the *rounding bit* of v is the 1st bit of v that
- will be rounded away (bit n - DBL_MANT_DIG - 1); the *parity bit*
- is the bit immediately above. The round-half-to-even rule says
- that we round up if the rounding bit is set, unless v is exactly
- halfway between two floats and the parity bit is zero.
-
- Write d[0] ... d[m] for the digits of v, least to most significant.
- Let rnd_bit be the index of the rounding bit, and rnd_digit the
- index of the PyLong digit containing the rounding bit. Then the
- bits of the digit d[rnd_digit] look something like:
-
- rounding bit
- |
- v
- msb -> sssssrttttttttt <- lsb
- ^
- |
- parity bit
-
- where 's' represents a 'significant bit' that will be included in
- the mantissa of the result, 'r' is the rounding bit, and 't'
- represents a 'trailing bit' following the rounding bit. Note that
- if the rounding bit is at the top of d[rnd_digit] then the parity
- bit will be the lsb of d[rnd_digit+1]. If we set
-
- lsb = 1 << (rnd_bit % PyLong_SHIFT)
-
- then d[rnd_digit] & (PyLong_BASE - 2*lsb) selects just the
- significant bits of d[rnd_digit], d[rnd_digit] & (lsb-1) gets the
- trailing bits, and d[rnd_digit] & lsb gives the rounding bit.
-
- We initialize the double x to the integer given by digits
- d[rnd_digit:m-1], but with the rounding bit and trailing bits of
- d[rnd_digit] masked out. So the value of x comes from the top
- DBL_MANT_DIG bits of v, multiplied by 2*lsb. Note that in the loop
- that produces x, all floating-point operations are exact (assuming
- that FLT_RADIX==2). Now if we're rounding down, the value we want
- to return is simply
-
- x * 2**(PyLong_SHIFT * rnd_digit).
-
- and if we're rounding up, it's
-
- (x + 2*lsb) * 2**(PyLong_SHIFT * rnd_digit).
-
- Under the round-half-to-even rule, we round up if, and only
- if, the rounding bit is set *and* at least one of the
- following three conditions is satisfied:
-
- (1) the parity bit is set, or
- (2) at least one of the trailing bits of d[rnd_digit] is set, or
- (3) at least one of the digits d[i], 0 <= i < rnd_digit
- is nonzero.
-
- Finally, we have to worry about overflow. If v >= 2**DBL_MAX_EXP,
- or equivalently n > DBL_MAX_EXP, then overflow occurs. If v <
- 2**DBL_MAX_EXP then we're usually safe, but there's a corner case
- to consider: if v is very close to 2**DBL_MAX_EXP then it's
- possible that v is rounded up to exactly 2**DBL_MAX_EXP, and then
- again overflow occurs.
- */
-
- if (Py_SIZE(v) == 0)
- return 0.0;
- m = ABS(Py_SIZE(v)) - 1;
- d = v->ob_digit;
- assert(d[m]); /* v should be normalized */
-
- /* fast path for case where 0 < abs(v) < 2**DBL_MANT_DIG */
- if (m < DBL_MANT_DIG / PyLong_SHIFT ||
- (m == DBL_MANT_DIG / PyLong_SHIFT &&
- d[m] < (digit)1 << DBL_MANT_DIG%PyLong_SHIFT)) {
- x = d[m];
- while (--m >= 0)
- x = x*PyLong_BASE + d[m];
- return Py_SIZE(v) < 0 ? -x : x;
- }
-
- /* if m is huge then overflow immediately; otherwise, compute the
- number of bits n in v. The condition below implies n (= #bits) >=
- m * PyLong_SHIFT + 1 > DBL_MAX_EXP, hence v >= 2**DBL_MAX_EXP. */
- if (m > (DBL_MAX_EXP-1)/PyLong_SHIFT)
- goto overflow;
- n = m * PyLong_SHIFT + bits_in_digit(d[m]);
- if (n > DBL_MAX_EXP)
- goto overflow;
-
- /* find location of rounding bit */
- assert(n > DBL_MANT_DIG); /* dealt with |v| < 2**DBL_MANT_DIG above */
- rnd_bit = n - DBL_MANT_DIG - 1;
- rnd_digit = rnd_bit/PyLong_SHIFT;
- lsb = (digit)1 << (rnd_bit%PyLong_SHIFT);
-
- /* Get top DBL_MANT_DIG bits of v. Assumes PyLong_SHIFT <
- DBL_MANT_DIG, so we'll need bits from at least 2 digits of v. */
- x = d[m];
- assert(m > rnd_digit);
- while (--m > rnd_digit)
- x = x*PyLong_BASE + d[m];
- x = x*PyLong_BASE + (d[m] & (PyLong_BASE-2*lsb));
-
- /* decide whether to round up, using round-half-to-even */
- assert(m == rnd_digit);
- if (d[m] & lsb) { /* if (rounding bit is set) */
- digit parity_bit;
- if (lsb == PyLong_BASE/2)
- parity_bit = d[m+1] & 1;
- else
- parity_bit = d[m] & 2*lsb;
- if (parity_bit)
- round_up = 1;
- else if (d[m] & (lsb-1))
- round_up = 1;
- else {
- while (--m >= 0) {
- if (d[m]) {
- round_up = 1;
- break;
- }
- }
- }
- }
-
- /* and round up if necessary */
- if (round_up) {
- x += 2*lsb;
- if (n == DBL_MAX_EXP &&
- x == ldexp((double)(2*lsb), DBL_MANT_DIG)) {
- /* overflow corner case */
- goto overflow;
- }
- }
-
- /* shift, adjust for sign, and return */
- x = ldexp(x, rnd_digit*PyLong_SHIFT);
- return Py_SIZE(v) < 0 ? -x : x;
-
- overflow:
- PyErr_SetString(PyExc_OverflowError,
- "Python int too large to convert to C double");
- return -1.0;
-}
-
/* Create a new long (or int) object from a C pointer */
PyObject *
@@ -1209,6 +986,7 @@ PyLong_AsVoidPtr(PyObject *vv)
*/
#define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one
+#define PY_ABS_LLONG_MIN (0-(unsigned PY_LONG_LONG)PY_LLONG_MIN)
/* Create a new long int object from a C PY_LONG_LONG int. */
@@ -1394,9 +1172,8 @@ PyLong_AsLongLong(PyObject *vv)
case 0: return 0;
case 1: return v->ob_digit[0];
}
- res = _PyLong_AsByteArray(
- (PyLongObject *)vv, (unsigned char *)&bytes,
- SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1);
+ res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
+ SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1);
/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
if (res < 0)
@@ -1427,9 +1204,8 @@ PyLong_AsUnsignedLongLong(PyObject *vv)
case 1: return v->ob_digit[0];
}
- res = _PyLong_AsByteArray(
- (PyLongObject *)vv, (unsigned char *)&bytes,
- SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0);
+ res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
+ SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0);
/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
if (res < 0)
@@ -1466,7 +1242,7 @@ _PyLong_AsUnsignedLongLongMask(PyObject *vv)
i = -i;
}
while (--i >= 0) {
- x = (x << PyLong_SHIFT) + v->ob_digit[i];
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
}
return x * sign;
}
@@ -1507,13 +1283,110 @@ PyLong_AsUnsignedLongLongMask(register PyObject *op)
}
#undef IS_LITTLE_ENDIAN
-#endif /* HAVE_LONG_LONG */
+/* Get a C long long int from a Python long or Python int object.
+ On overflow, returns -1 and sets *overflow to 1 or -1 depending
+ on the sign of the result. Otherwise *overflow is 0.
+
+ For other errors (e.g., type error), returns -1 and sets an error
+ condition.
+*/
+
+PY_LONG_LONG
+PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
+{
+ /* This version by Tim Peters */
+ register PyLongObject *v;
+ unsigned PY_LONG_LONG x, prev;
+ PY_LONG_LONG res;
+ Py_ssize_t i;
+ int sign;
+ int do_decref = 0; /* if nb_int was called */
+
+ *overflow = 0;
+ if (vv == NULL) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+
+ if (!PyLong_Check(vv)) {
+ PyNumberMethods *nb;
+ nb = vv->ob_type->tp_as_number;
+ if (nb == NULL || nb->nb_int == NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "an integer is required");
+ return -1;
+ }
+ vv = (*nb->nb_int) (vv);
+ if (vv == NULL)
+ return -1;
+ do_decref = 1;
+ if (!PyLong_Check(vv)) {
+ Py_DECREF(vv);
+ PyErr_SetString(PyExc_TypeError,
+ "nb_int should return int object");
+ return -1;
+ }
+ }
-#define CHECK_BINOP(v,w) \
- if (!PyLong_Check(v) || !PyLong_Check(w)) { \
- Py_INCREF(Py_NotImplemented); \
- return Py_NotImplemented; \
+ res = -1;
+ v = (PyLongObject *)vv;
+ i = Py_SIZE(v);
+
+ switch (i) {
+ case -1:
+ res = -(sdigit)v->ob_digit[0];
+ break;
+ case 0:
+ res = 0;
+ break;
+ case 1:
+ res = v->ob_digit[0];
+ break;
+ default:
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -(i);
+ }
+ while (--i >= 0) {
+ prev = x;
+ x = (x << PyLong_SHIFT) + v->ob_digit[i];
+ if ((x >> PyLong_SHIFT) != prev) {
+ *overflow = sign;
+ goto exit;
+ }
+ }
+ /* Haven't lost any bits, but casting to long requires extra
+ * care (see comment above).
+ */
+ if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) {
+ res = (PY_LONG_LONG)x * sign;
+ }
+ else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
+ res = PY_LLONG_MIN;
+ }
+ else {
+ *overflow = sign;
+ /* res is already set to -1 */
+ }
}
+ exit:
+ if (do_decref) {
+ Py_DECREF(vv);
+ }
+ return res;
+}
+
+#endif /* HAVE_LONG_LONG */
+
+#define CHECK_BINOP(v,w) \
+ do { \
+ if (!PyLong_Check(v) || !PyLong_Check(w)) { \
+ Py_INCREF(Py_NotImplemented); \
+ return Py_NotImplemented; \
+ } \
+ } while(0)
/* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
2**k if d is nonzero, else 0. */
@@ -1640,7 +1513,7 @@ inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
pout += size;
while (--size >= 0) {
digit hi;
- rem = (rem << PyLong_SHIFT) + *--pin;
+ rem = (rem << PyLong_SHIFT) | *--pin;
*--pout = hi = (digit)(rem / n);
rem -= (twodigits)hi * n;
}
@@ -1665,8 +1538,122 @@ divrem1(PyLongObject *a, digit n, digit *prem)
return long_normalize(z);
}
-/* Convert a long int object to a string, using a given conversion base.
- Return a string object.
+/* Convert a long integer to a base 10 string. Returns a new non-shared
+ string. (Return value is non-shared so that callers can modify the
+ returned value if necessary.) */
+
+static PyObject *
+long_to_decimal_string(PyObject *aa)
+{
+ PyLongObject *scratch, *a;
+ PyObject *str;
+ Py_ssize_t size, strlen, size_a, i, j;
+ digit *pout, *pin, rem, tenpow;
+ Py_UNICODE *p;
+ int negative;
+
+ a = (PyLongObject *)aa;
+ if (a == NULL || !PyLong_Check(a)) {
+ PyErr_BadInternalCall();
+ return NULL;
+ }
+ size_a = ABS(Py_SIZE(a));
+ negative = Py_SIZE(a) < 0;
+
+ /* quick and dirty upper bound for the number of digits
+ required to express a in base _PyLong_DECIMAL_BASE:
+
+ #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
+
+ But log2(a) < size_a * PyLong_SHIFT, and
+ log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
+ > 3 * _PyLong_DECIMAL_SHIFT
+ */
+ if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) {
+ PyErr_SetString(PyExc_OverflowError,
+ "long is too large to format");
+ return NULL;
+ }
+ /* the expression size_a * PyLong_SHIFT is now safe from overflow */
+ size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT);
+ scratch = _PyLong_New(size);
+ if (scratch == NULL)
+ return NULL;
+
+ /* convert array of base _PyLong_BASE digits in pin to an array of
+ base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
+ Volume 2 (3rd edn), section 4.4, Method 1b). */
+ pin = a->ob_digit;
+ pout = scratch->ob_digit;
+ size = 0;
+ for (i = size_a; --i >= 0; ) {
+ digit hi = pin[i];
+ for (j = 0; j < size; j++) {
+ twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
+ hi = (digit)(z / _PyLong_DECIMAL_BASE);
+ pout[j] = (digit)(z - (twodigits)hi *
+ _PyLong_DECIMAL_BASE);
+ }
+ while (hi) {
+ pout[size++] = hi % _PyLong_DECIMAL_BASE;
+ hi /= _PyLong_DECIMAL_BASE;
+ }
+ /* check for keyboard interrupt */
+ SIGCHECK({
+ Py_DECREF(scratch);
+ return NULL;
+ });
+ }
+ /* pout should have at least one digit, so that the case when a = 0
+ works correctly */
+ if (size == 0)
+ pout[size++] = 0;
+
+ /* calculate exact length of output string, and allocate */
+ strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
+ tenpow = 10;
+ rem = pout[size-1];
+ while (rem >= tenpow) {
+ tenpow *= 10;
+ strlen++;
+ }
+ str = PyUnicode_FromUnicode(NULL, strlen);
+ if (str == NULL) {
+ Py_DECREF(scratch);
+ return NULL;
+ }
+
+ /* fill the string right-to-left */
+ p = PyUnicode_AS_UNICODE(str) + strlen;
+ *p = '\0';
+ /* pout[0] through pout[size-2] contribute exactly
+ _PyLong_DECIMAL_SHIFT digits each */
+ for (i=0; i < size - 1; i++) {
+ rem = pout[i];
+ for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {
+ *--p = '0' + rem % 10;
+ rem /= 10;
+ }
+ }
+ /* pout[size-1]: always produce at least one decimal digit */
+ rem = pout[i];
+ do {
+ *--p = '0' + rem % 10;
+ rem /= 10;
+ } while (rem != 0);
+
+ /* and sign */
+ if (negative)
+ *--p = '-';
+
+ /* check we've counted correctly */
+ assert(p == PyUnicode_AS_UNICODE(str));
+ Py_DECREF(scratch);
+ return (PyObject *)str;
+}
+
+/* Convert a long int object to a string, using a given conversion base,
+ which should be one of 2, 8, 10 or 16. Return a string object.
If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'. */
PyObject *
@@ -1676,32 +1663,44 @@ _PyLong_Format(PyObject *aa, int base)
PyObject *str;
Py_ssize_t i, sz;
Py_ssize_t size_a;
- Py_UNICODE *p;
+ Py_UNICODE *p, sign = '\0';
int bits;
- char sign = '\0';
+
+ assert(base == 2 || base == 8 || base == 10 || base == 16);
+ if (base == 10)
+ return long_to_decimal_string((PyObject *)a);
if (a == NULL || !PyLong_Check(a)) {
PyErr_BadInternalCall();
return NULL;
}
- assert(base >= 2 && base <= 36);
size_a = ABS(Py_SIZE(a));
/* Compute a rough upper bound for the length of the string */
- i = base;
- bits = 0;
- while (i > 1) {
- ++bits;
- i >>= 1;
- }
- i = 5;
- /* ensure we don't get signed overflow in sz calculation */
- if (size_a > (PY_SSIZE_T_MAX - i) / PyLong_SHIFT) {
+ switch (base) {
+ case 16:
+ bits = 4;
+ break;
+ case 8:
+ bits = 3;
+ break;
+ case 2:
+ bits = 1;
+ break;
+ default:
+ assert(0); /* shouldn't ever get here */
+ bits = 0; /* to silence gcc warning */
+ }
+ /* compute length of output string: allow 2 characters for prefix and
+ 1 for possible '-' sign. */
+ if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
PyErr_SetString(PyExc_OverflowError,
"int is too large to format");
return NULL;
}
- sz = i + 1 + (size_a * PyLong_SHIFT - 1) / bits;
+ /* now size_a * PyLong_SHIFT + 3 <= PY_SSIZE_T_MAX, so the RHS below
+ is safe from overflow */
+ sz = 3 + (size_a * PyLong_SHIFT + (bits - 1)) / bits;
assert(sz >= 0);
str = PyUnicode_FromUnicode(NULL, sz);
if (str == NULL)
@@ -1714,106 +1713,33 @@ _PyLong_Format(PyObject *aa, int base)
if (Py_SIZE(a) == 0) {
*--p = '0';
}
- else if ((base & (base - 1)) == 0) {
+ else {
/* JRH: special case for power-of-2 bases */
twodigits accum = 0;
int accumbits = 0; /* # of bits in accum */
- int basebits = 1; /* # of bits in base-1 */
- i = base;
- while ((i >>= 1) > 1)
- ++basebits;
-
for (i = 0; i < size_a; ++i) {
accum |= (twodigits)a->ob_digit[i] << accumbits;
accumbits += PyLong_SHIFT;
- assert(accumbits >= basebits);
+ assert(accumbits >= bits);
do {
- char cdigit = (char)(accum & (base - 1));
+ Py_UNICODE cdigit;
+ cdigit = (Py_UNICODE)(accum & (base - 1));
cdigit += (cdigit < 10) ? '0' : 'a'-10;
assert(p > PyUnicode_AS_UNICODE(str));
*--p = cdigit;
- accumbits -= basebits;
- accum >>= basebits;
- } while (i < size_a-1 ? accumbits >= basebits :
- accum > 0);
- }
- }
- else {
- /* Not 0, and base not a power of 2. Divide repeatedly by
- base, but for speed use the highest power of base that
- fits in a digit. */
- Py_ssize_t size = size_a;
- digit *pin = a->ob_digit;
- PyLongObject *scratch;
- /* powbasw <- largest power of base that fits in a digit. */
- digit powbase = base; /* powbase == base ** power */
- int power = 1;
- for (;;) {
- twodigits newpow = powbase * (twodigits)base;
- if (newpow >> PyLong_SHIFT)
- /* doesn't fit in a digit */
- break;
- powbase = (digit)newpow;
- ++power;
- }
-
- /* Get a scratch area for repeated division. */
- scratch = _PyLong_New(size);
- if (scratch == NULL) {
- Py_DECREF(str);
- return NULL;
+ accumbits -= bits;
+ accum >>= bits;
+ } while (i < size_a-1 ? accumbits >= bits : accum > 0);
}
-
- /* Repeatedly divide by powbase. */
- do {
- int ntostore = power;
- digit rem = inplace_divrem1(scratch->ob_digit,
- pin, size, powbase);
- pin = scratch->ob_digit; /* no need to use a again */
- if (pin[size - 1] == 0)
- --size;
- SIGCHECK({
- Py_DECREF(scratch);
- Py_DECREF(str);
- return NULL;
- })
-
- /* Break rem into digits. */
- assert(ntostore > 0);
- do {
- digit nextrem = (digit)(rem / base);
- char c = (char)(rem - nextrem * base);
- assert(p > PyUnicode_AS_UNICODE(str));
- c += (c < 10) ? '0' : 'a'-10;
- *--p = c;
- rem = nextrem;
- --ntostore;
- /* Termination is a bit delicate: must not
- store leading zeroes, so must get out if
- remaining quotient and rem are both 0. */
- } while (ntostore && (size || rem));
- } while (size != 0);
- Py_DECREF(scratch);
}
- if (base == 16) {
+ if (base == 16)
*--p = 'x';
- *--p = '0';
- }
- else if (base == 8) {
+ else if (base == 8)
*--p = 'o';
- *--p = '0';
- }
- else if (base == 2) {
+ else /* (base == 2) */
*--p = 'b';
- *--p = '0';
- }
- else if (base != 10) {
- *--p = '#';
- *--p = '0' + base%10;
- if (base > 10)
- *--p = '0' + base/10;
- }
+ *--p = '0';
if (sign)
*--p = sign;
if (p != PyUnicode_AS_UNICODE(str)) {
@@ -2072,8 +1998,8 @@ digit beyond the first.
twodigits convmax = base;
int i = 1;
- log_base_BASE[base] = log((double)base) /
- log((double)PyLong_BASE);
+ log_base_BASE[base] = (log((double)base) /
+ log((double)PyLong_BASE));
for (;;) {
twodigits next = convmax * base;
if (next > PyLong_BASE)
@@ -2117,7 +2043,7 @@ digit beyond the first.
c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
for (i = 1; i < convwidth && str != scan; ++i, ++str) {
c = (twodigits)(c * base +
- (int)_PyLong_DigitValue[Py_CHARMASK(*str)]);
+ (int)_PyLong_DigitValue[Py_CHARMASK(*str)]);
assert(c < PyLong_BASE);
}
@@ -2190,7 +2116,7 @@ digit beyond the first.
long_normalize(z);
return (PyObject *) maybe_small_long(z);
- onError:
+ onError:
Py_XDECREF(z);
slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
strobj = PyUnicode_FromStringAndSize(orig_str, slen);
@@ -2207,17 +2133,34 @@ PyObject *
PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
{
PyObject *result;
- char *buffer = (char *)PyMem_MALLOC(length+1);
+ PyObject *asciidig;
+ char *buffer, *end;
+ Py_ssize_t i, buflen;
+ Py_UNICODE *ptr;
- if (buffer == NULL)
+ asciidig = PyUnicode_TransformDecimalToASCII(u, length);
+ if (asciidig == NULL)
return NULL;
-
- if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) {
- PyMem_FREE(buffer);
+ /* Replace non-ASCII whitespace with ' ' */
+ ptr = PyUnicode_AS_UNICODE(asciidig);
+ for (i = 0; i < length; i++) {
+ Py_UNICODE ch = ptr[i];
+ if (ch > 127 && Py_UNICODE_ISSPACE(ch))
+ ptr[i] = ' ';
+ }
+ buffer = _PyUnicode_AsStringAndSize(asciidig, &buflen);
+ if (buffer == NULL) {
+ Py_DECREF(asciidig);
return NULL;
}
- result = PyLong_FromString(buffer, NULL, base);
- PyMem_FREE(buffer);
+ result = PyLong_FromString(buffer, &end, base);
+ if (result != NULL && end != buffer + buflen) {
+ PyErr_SetString(PyExc_ValueError,
+ "null byte in argument for int()");
+ Py_DECREF(result);
+ result = NULL;
+ }
+ Py_DECREF(asciidig);
return result;
}
@@ -2346,12 +2289,12 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
single-digit quotient q, remainder in vk[0:size_w]. */
SIGCHECK({
- Py_DECREF(a);
- Py_DECREF(w);
- Py_DECREF(v);
- *prem = NULL;
- return NULL;
- })
+ Py_DECREF(a);
+ Py_DECREF(w);
+ Py_DECREF(v);
+ *prem = NULL;
+ return NULL;
+ });
/* estimate quotient digit q; may overestimate by 1 (rare) */
vtop = vk[size_w];
@@ -2377,7 +2320,7 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
(stwodigits)q * (stwodigits)w0[i];
vk[i] = (digit)z & PyLong_MASK;
zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
- z, PyLong_SHIFT);
+ z, PyLong_SHIFT);
}
/* add w back if q was too large (this branch taken rarely) */
@@ -2406,6 +2349,153 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
return long_normalize(a);
}
+/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
+ abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is
+ rounded to DBL_MANT_DIG significant bits using round-half-to-even.
+ If a == 0, return 0.0 and set *e = 0. If the resulting exponent
+ e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
+ -1.0. */
+
+/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
+#if DBL_MANT_DIG == 53
+#define EXP2_DBL_MANT_DIG 9007199254740992.0
+#else
+#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
+#endif
+
+double
+_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
+{
+ Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
+ /* See below for why x_digits is always large enough. */
+ digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT];
+ double dx;
+ /* Correction term for round-half-to-even rounding. For a digit x,
+ "x + half_even_correction[x & 7]" gives x rounded to the nearest
+ multiple of 4, rounding ties to a multiple of 8. */
+ static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
+
+ a_size = ABS(Py_SIZE(a));
+ if (a_size == 0) {
+ /* Special case for 0: significand 0.0, exponent 0. */
+ *e = 0;
+ return 0.0;
+ }
+ a_bits = bits_in_digit(a->ob_digit[a_size-1]);
+ /* The following is an overflow-free version of the check
+ "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
+ if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
+ (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
+ a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
+ goto overflow;
+ a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
+
+ /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
+ (shifting left if a_bits <= DBL_MANT_DIG + 2).
+
+ Number of digits needed for result: write // for floor division.
+ Then if shifting left, we end up using
+
+ 1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
+
+ digits. If shifting right, we use
+
+ a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
+
+ digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
+ the inequalities
+
+ m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
+ m // PyLong_SHIFT - n // PyLong_SHIFT <=
+ 1 + (m - n - 1) // PyLong_SHIFT,
+
+ valid for any integers m and n, we find that x_size satisfies
+
+ x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
+
+ in both cases.
+ */
+ if (a_bits <= DBL_MANT_DIG + 2) {
+ shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
+ shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
+ x_size = 0;
+ while (x_size < shift_digits)
+ x_digits[x_size++] = 0;
+ rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
+ (int)shift_bits);
+ x_size += a_size;
+ x_digits[x_size++] = rem;
+ }
+ else {
+ shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
+ shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
+ rem = v_rshift(x_digits, a->ob_digit + shift_digits,
+ a_size - shift_digits, (int)shift_bits);
+ x_size = a_size - shift_digits;
+ /* For correct rounding below, we need the least significant
+ bit of x to be 'sticky' for this shift: if any of the bits
+ shifted out was nonzero, we set the least significant bit
+ of x. */
+ if (rem)
+ x_digits[0] |= 1;
+ else
+ while (shift_digits > 0)
+ if (a->ob_digit[--shift_digits]) {
+ x_digits[0] |= 1;
+ break;
+ }
+ }
+ assert(1 <= x_size &&
+ x_size <= (Py_ssize_t)(sizeof(x_digits)/sizeof(digit)));
+
+ /* Round, and convert to double. */
+ x_digits[0] += half_even_correction[x_digits[0] & 7];
+ dx = x_digits[--x_size];
+ while (x_size > 0)
+ dx = dx * PyLong_BASE + x_digits[--x_size];
+
+ /* Rescale; make correction if result is 1.0. */
+ dx /= 4.0 * EXP2_DBL_MANT_DIG;
+ if (dx == 1.0) {
+ if (a_bits == PY_SSIZE_T_MAX)
+ goto overflow;
+ dx = 0.5;
+ a_bits += 1;
+ }
+
+ *e = a_bits;
+ return Py_SIZE(a) < 0 ? -dx : dx;
+
+ overflow:
+ /* exponent > PY_SSIZE_T_MAX */
+ PyErr_SetString(PyExc_OverflowError,
+ "huge integer: number of bits overflows a Py_ssize_t");
+ *e = 0;
+ return -1.0;
+}
+
+/* Get a C double from a long int object. Rounds to the nearest double,
+ using the round-half-to-even rule in the case of a tie. */
+
+double
+PyLong_AsDouble(PyObject *v)
+{
+ Py_ssize_t exponent;
+ double x;
+
+ if (v == NULL || !PyLong_Check(v)) {
+ PyErr_BadInternalCall();
+ return -1.0;
+ }
+ x = _PyLong_Frexp((PyLongObject *)v, &exponent);
+ if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
+ PyErr_SetString(PyExc_OverflowError,
+ "long int too large to convert to float");
+ return -1.0;
+ }
+ return ldexp(x, (int)exponent);
+}
+
/* Methods */
static void
@@ -2414,22 +2504,13 @@ long_dealloc(PyObject *v)
Py_TYPE(v)->tp_free(v);
}
-static PyObject *
-long_repr(PyObject *v)
-{
- return _PyLong_Format(v, 10);
-}
-
static int
long_compare(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t sign;
if (Py_SIZE(a) != Py_SIZE(b)) {
- if (ABS(Py_SIZE(a)) == 0 && ABS(Py_SIZE(b)) == 0)
- sign = 0;
- else
- sign = Py_SIZE(a) - Py_SIZE(b);
+ sign = Py_SIZE(a) - Py_SIZE(b);
}
else {
Py_ssize_t i = ABS(Py_SIZE(a));
@@ -2487,16 +2568,13 @@ long_richcompare(PyObject *self, PyObject *other, int op)
return v;
}
-static long
+static Py_hash_t
long_hash(PyLongObject *v)
{
- unsigned long x;
+ Py_uhash_t x;
Py_ssize_t i;
int sign;
- /* This is designed so that Python ints and longs with the
- same value hash to the same value, otherwise comparisons
- of mapping keys will turn out weird */
i = Py_SIZE(v);
switch(i) {
case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0];
@@ -2509,23 +2587,42 @@ long_hash(PyLongObject *v)
sign = -1;
i = -(i);
}
- /* The following loop produces a C unsigned long x such that x is
- congruent to the absolute value of v modulo ULONG_MAX. The
- resulting x is nonzero if and only if v is. */
while (--i >= 0) {
- /* Force a native long #-bits (32 or 64) circular shift */
- x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT);
+ /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we
+ want to compute x * 2**PyLong_SHIFT + v->ob_digit[i] modulo
+ _PyHASH_MODULUS.
+
+ The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS
+ amounts to a rotation of the bits of x. To see this, write
+
+ x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z
+
+ where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top
+ PyLong_SHIFT bits of x (those that are shifted out of the
+ original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
+ _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT
+ bits of x, shifted up. Then since 2**_PyHASH_BITS is
+ congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is
+ congruent to y modulo _PyHASH_MODULUS. So
+
+ x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS).
+
+ The right-hand side is just the result of rotating the
+ _PyHASH_BITS bits of x left by PyLong_SHIFT places; since
+ not all _PyHASH_BITS bits of x are 1s, the same is true
+ after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is
+ the reduction of x*2**PyLong_SHIFT modulo
+ _PyHASH_MODULUS. */
+ x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) |
+ (x >> (_PyHASH_BITS - PyLong_SHIFT));
x += v->ob_digit[i];
- /* If the addition above overflowed we compensate by
- incrementing. This preserves the value modulo
- ULONG_MAX. */
- if (x < v->ob_digit[i])
- x++;
+ if (x >= _PyHASH_MODULUS)
+ x -= _PyHASH_MODULUS;
}
x = x * sign;
- if (x == (unsigned long)-1)
- x = (unsigned long)-2;
- return (long)x;
+ if (x == (Py_uhash_t)-1)
+ x = (Py_uhash_t)-2;
+ return (Py_hash_t)x;
}
@@ -2543,8 +2640,8 @@ x_add(PyLongObject *a, PyLongObject *b)
if (size_a < size_b) {
{ PyLongObject *temp = a; a = b; b = temp; }
{ Py_ssize_t size_temp = size_a;
- size_a = size_b;
- size_b = size_temp; }
+ size_a = size_b;
+ size_b = size_temp; }
}
z = _PyLong_New(size_a+1);
if (z == NULL)
@@ -2579,8 +2676,8 @@ x_sub(PyLongObject *a, PyLongObject *b)
sign = -1;
{ PyLongObject *temp = a; a = b; b = temp; }
{ Py_ssize_t size_temp = size_a;
- size_a = size_b;
- size_b = size_temp; }
+ size_a = size_b;
+ size_b = size_temp; }
}
else if (size_a == size_b) {
/* Find highest digit where a and b differ: */
@@ -2708,9 +2805,9 @@ x_mul(PyLongObject *a, PyLongObject *b)
digit *paend = a->ob_digit + size_a;
SIGCHECK({
- Py_DECREF(z);
- return NULL;
- })
+ Py_DECREF(z);
+ return NULL;
+ });
carry = *pz + f * f;
*pz++ = (digit)(carry & PyLong_MASK);
@@ -2746,9 +2843,9 @@ x_mul(PyLongObject *a, PyLongObject *b)
digit *pbend = b->ob_digit + size_b;
SIGCHECK({
- Py_DECREF(z);
- return NULL;
- })
+ Py_DECREF(z);
+ return NULL;
+ });
while (pb < pbend) {
carry += *pz + *pb++ * f;
@@ -2772,7 +2869,10 @@ x_mul(PyLongObject *a, PyLongObject *b)
Returns 0 on success, -1 on failure.
*/
static int
-kmul_split(PyLongObject *n, Py_ssize_t size, PyLongObject **high, PyLongObject **low)
+kmul_split(PyLongObject *n,
+ Py_ssize_t size,
+ PyLongObject **high,
+ PyLongObject **low)
{
PyLongObject *hi, *lo;
Py_ssize_t size_lo, size_hi;
@@ -2961,7 +3061,7 @@ k_mul(PyLongObject *a, PyLongObject *b)
return long_normalize(ret);
- fail:
+ fail:
Py_XDECREF(ret);
Py_XDECREF(ah);
Py_XDECREF(al);
@@ -3071,7 +3171,7 @@ k_lopsided_mul(PyLongObject *a, PyLongObject *b)
Py_DECREF(bslice);
return long_normalize(ret);
- fail:
+ fail:
Py_DECREF(ret);
Py_XDECREF(bslice);
return NULL;
@@ -3183,47 +3283,267 @@ long_div(PyObject *a, PyObject *b)
return (PyObject *)div;
}
+/* PyLong/PyLong -> float, with correctly rounded result. */
+
+#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
+#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
+
static PyObject *
-long_true_divide(PyObject *a, PyObject *b)
+long_true_divide(PyObject *v, PyObject *w)
{
- double ad, bd;
- int failed, aexp = -1, bexp = -1;
+ PyLongObject *a, *b, *x;
+ Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
+ digit mask, low;
+ int inexact, negate, a_is_small, b_is_small;
+ double dx, result;
- CHECK_BINOP(a, b);
- ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp);
- bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp);
- failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred();
- if (failed)
- return NULL;
- /* 'aexp' and 'bexp' were initialized to -1 to silence gcc-4.0.x,
- but should really be set correctly after sucessful calls to
- _PyLong_AsScaledDouble() */
- assert(aexp >= 0 && bexp >= 0);
+ CHECK_BINOP(v, w);
+ a = (PyLongObject *)v;
+ b = (PyLongObject *)w;
+
+ /*
+ Method in a nutshell:
+
+ 0. reduce to case a, b > 0; filter out obvious underflow/overflow
+ 1. choose a suitable integer 'shift'
+ 2. use integer arithmetic to compute x = floor(2**-shift*a/b)
+ 3. adjust x for correct rounding
+ 4. convert x to a double dx with the same value
+ 5. return ldexp(dx, shift).
+
+ In more detail:
+
+ 0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
+ returns either 0.0 or -0.0, depending on the sign of b. For a and
+ b both nonzero, ignore signs of a and b, and add the sign back in
+ at the end. Now write a_bits and b_bits for the bit lengths of a
+ and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
+ for b). Then
+
+ 2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
+
+ So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
+ so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP -
+ DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of
+ the way, we can assume that
+
+ DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
+
+ 1. The integer 'shift' is chosen so that x has the right number of
+ bits for a double, plus two or three extra bits that will be used
+ in the rounding decisions. Writing a_bits and b_bits for the
+ number of significant bits in a and b respectively, a
+ straightforward formula for shift is:
+
+ shift = a_bits - b_bits - DBL_MANT_DIG - 2
+
+ This is fine in the usual case, but if a/b is smaller than the
+ smallest normal float then it can lead to double rounding on an
+ IEEE 754 platform, giving incorrectly rounded results. So we
+ adjust the formula slightly. The actual formula used is:
+
+ shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
+
+ 2. The quantity x is computed by first shifting a (left -shift bits
+ if shift <= 0, right shift bits if shift > 0) and then dividing by
+ b. For both the shift and the division, we keep track of whether
+ the result is inexact, in a flag 'inexact'; this information is
+ needed at the rounding stage.
+
+ With the choice of shift above, together with our assumption that
+ a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
+ that x >= 1.
+
+ 3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace
+ this with an exactly representable float of the form
+
+ round(x/2**extra_bits) * 2**(extra_bits+shift).
+
+ For float representability, we need x/2**extra_bits <
+ 2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
+ DBL_MANT_DIG. This translates to the condition:
+
+ extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
+
+ To round, we just modify the bottom digit of x in-place; this can
+ end up giving a digit with value > PyLONG_MASK, but that's not a
+ problem since digits can hold values up to 2*PyLONG_MASK+1.
+
+ With the original choices for shift above, extra_bits will always
+ be 2 or 3. Then rounding under the round-half-to-even rule, we
+ round up iff the most significant of the extra bits is 1, and
+ either: (a) the computation of x in step 2 had an inexact result,
+ or (b) at least one other of the extra bits is 1, or (c) the least
+ significant bit of x (above those to be rounded) is 1.
+
+ 4. Conversion to a double is straightforward; all floating-point
+ operations involved in the conversion are exact, so there's no
+ danger of rounding errors.
+
+ 5. Use ldexp(x, shift) to compute x*2**shift, the final result.
+ The result will always be exactly representable as a double, except
+ in the case that it overflows. To avoid dependence on the exact
+ behaviour of ldexp on overflow, we check for overflow before
+ applying ldexp. The result of ldexp is adjusted for sign before
+ returning.
+ */
- if (bd == 0.0) {
+ /* Reduce to case where a and b are both positive. */
+ a_size = ABS(Py_SIZE(a));
+ b_size = ABS(Py_SIZE(b));
+ negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
+ if (b_size == 0) {
PyErr_SetString(PyExc_ZeroDivisionError,
- "int division or modulo by zero");
- return NULL;
+ "division by zero");
+ goto error;
}
-
- /* True value is very close to ad/bd * 2**(PyLong_SHIFT*(aexp-bexp)) */
- ad /= bd; /* overflow/underflow impossible here */
- aexp -= bexp;
- if (aexp > INT_MAX / PyLong_SHIFT)
+ if (a_size == 0)
+ goto underflow_or_zero;
+
+ /* Fast path for a and b small (exactly representable in a double).
+ Relies on floating-point division being correctly rounded; results
+ may be subject to double rounding on x86 machines that operate with
+ the x87 FPU set to 64-bit precision. */
+ a_is_small = a_size <= MANT_DIG_DIGITS ||
+ (a_size == MANT_DIG_DIGITS+1 &&
+ a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
+ b_is_small = b_size <= MANT_DIG_DIGITS ||
+ (b_size == MANT_DIG_DIGITS+1 &&
+ b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
+ if (a_is_small && b_is_small) {
+ double da, db;
+ da = a->ob_digit[--a_size];
+ while (a_size > 0)
+ da = da * PyLong_BASE + a->ob_digit[--a_size];
+ db = b->ob_digit[--b_size];
+ while (b_size > 0)
+ db = db * PyLong_BASE + b->ob_digit[--b_size];
+ result = da / db;
+ goto success;
+ }
+
+ /* Catch obvious cases of underflow and overflow */
+ diff = a_size - b_size;
+ if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
+ /* Extreme overflow */
goto overflow;
- else if (aexp < -(INT_MAX / PyLong_SHIFT))
- return PyFloat_FromDouble(0.0); /* underflow to 0 */
- errno = 0;
- ad = ldexp(ad, aexp * PyLong_SHIFT);
- if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */
+ else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
+ /* Extreme underflow */
+ goto underflow_or_zero;
+ /* Next line is now safe from overflowing a Py_ssize_t */
+ diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) -
+ bits_in_digit(b->ob_digit[b_size - 1]);
+ /* Now diff = a_bits - b_bits. */
+ if (diff > DBL_MAX_EXP)
goto overflow;
- return PyFloat_FromDouble(ad);
+ else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
+ goto underflow_or_zero;
+
+ /* Choose value for shift; see comments for step 1 above. */
+ shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
+
+ inexact = 0;
+
+ /* x = abs(a * 2**-shift) */
+ if (shift <= 0) {
+ Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
+ digit rem;
+ /* x = a << -shift */
+ if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
+ /* In practice, it's probably impossible to end up
+ here. Both a and b would have to be enormous,
+ using close to SIZE_T_MAX bytes of memory each. */
+ PyErr_SetString(PyExc_OverflowError,
+ "intermediate overflow during division");
+ goto error;
+ }
+ x = _PyLong_New(a_size + shift_digits + 1);
+ if (x == NULL)
+ goto error;
+ for (i = 0; i < shift_digits; i++)
+ x->ob_digit[i] = 0;
+ rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
+ a_size, -shift % PyLong_SHIFT);
+ x->ob_digit[a_size + shift_digits] = rem;
+ }
+ else {
+ Py_ssize_t shift_digits = shift / PyLong_SHIFT;
+ digit rem;
+ /* x = a >> shift */
+ assert(a_size >= shift_digits);
+ x = _PyLong_New(a_size - shift_digits);
+ if (x == NULL)
+ goto error;
+ rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
+ a_size - shift_digits, shift % PyLong_SHIFT);
+ /* set inexact if any of the bits shifted out is nonzero */
+ if (rem)
+ inexact = 1;
+ while (!inexact && shift_digits > 0)
+ if (a->ob_digit[--shift_digits])
+ inexact = 1;
+ }
+ long_normalize(x);
+ x_size = Py_SIZE(x);
+
+ /* x //= b. If the remainder is nonzero, set inexact. We own the only
+ reference to x, so it's safe to modify it in-place. */
+ if (b_size == 1) {
+ digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
+ b->ob_digit[0]);
+ long_normalize(x);
+ if (rem)
+ inexact = 1;
+ }
+ else {
+ PyLongObject *div, *rem;
+ div = x_divrem(x, b, &rem);
+ Py_DECREF(x);
+ x = div;
+ if (x == NULL)
+ goto error;
+ if (Py_SIZE(rem))
+ inexact = 1;
+ Py_DECREF(rem);
+ }
+ x_size = ABS(Py_SIZE(x));
+ assert(x_size > 0); /* result of division is never zero */
+ x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]);
+
+ /* The number of extra bits that have to be rounded away. */
+ extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
+ assert(extra_bits == 2 || extra_bits == 3);
+
+ /* Round by directly modifying the low digit of x. */
+ mask = (digit)1 << (extra_bits - 1);
+ low = x->ob_digit[0] | inexact;
+ if (low & mask && low & (3*mask-1))
+ low += mask;
+ x->ob_digit[0] = low & ~(mask-1U);
+
+ /* Convert x to a double dx; the conversion is exact. */
+ dx = x->ob_digit[--x_size];
+ while (x_size > 0)
+ dx = dx * PyLong_BASE + x->ob_digit[--x_size];
+ Py_DECREF(x);
+
+ /* Check whether ldexp result will overflow a double. */
+ if (shift + x_bits >= DBL_MAX_EXP &&
+ (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
+ goto overflow;
+ result = ldexp(dx, (int)shift);
+
+ success:
+ return PyFloat_FromDouble(negate ? -result : result);
-overflow:
+ underflow_or_zero:
+ return PyFloat_FromDouble(negate ? -0.0 : 0.0);
+
+ overflow:
PyErr_SetString(PyExc_OverflowError,
- "int/int too large for a float");
+ "integer division result too large for a float");
+ error:
return NULL;
-
}
static PyObject *
@@ -3298,7 +3618,7 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
if (Py_SIZE(b) < 0) { /* if exponent is negative */
if (c) {
PyErr_SetString(PyExc_TypeError, "pow() 2nd argument "
- "cannot be negative when 3rd argument specified");
+ "cannot be negative when 3rd argument specified");
goto Error;
}
else {
@@ -3364,26 +3684,28 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
* is NULL.
*/
#define REDUCE(X) \
- if (c != NULL) { \
- if (l_divmod(X, c, NULL, &temp) < 0) \
- goto Error; \
- Py_XDECREF(X); \
- X = temp; \
- temp = NULL; \
- }
+ do { \
+ if (c != NULL) { \
+ if (l_divmod(X, c, NULL, &temp) < 0) \
+ goto Error; \
+ Py_XDECREF(X); \
+ X = temp; \
+ temp = NULL; \
+ } \
+ } while(0)
/* Multiply two values, then reduce the result:
result = X*Y % c. If c is NULL, skip the mod. */
-#define MULT(X, Y, result) \
-{ \
- temp = (PyLongObject *)long_mul(X, Y); \
- if (temp == NULL) \
- goto Error; \
- Py_XDECREF(result); \
- result = temp; \
- temp = NULL; \
- REDUCE(result) \
-}
+#define MULT(X, Y, result) \
+ do { \
+ temp = (PyLongObject *)long_mul(X, Y); \
+ if (temp == NULL) \
+ goto Error; \
+ Py_XDECREF(result); \
+ result = temp; \
+ temp = NULL; \
+ REDUCE(result); \
+ } while(0)
if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
/* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
@@ -3392,9 +3714,9 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
digit bi = b->ob_digit[i];
for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
- MULT(z, z, z)
+ MULT(z, z, z);
if (bi & j)
- MULT(z, a, z)
+ MULT(z, a, z);
}
}
}
@@ -3403,7 +3725,7 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
Py_INCREF(z); /* still holds 1L */
table[0] = z;
for (i = 1; i < 32; ++i)
- MULT(table[i-1], a, table[i])
+ MULT(table[i-1], a, table[i]);
for (i = Py_SIZE(b) - 1; i >= 0; --i) {
const digit bi = b->ob_digit[i];
@@ -3411,9 +3733,9 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
const int index = (bi >> j) & 0x1f;
for (k = 0; k < 5; ++k)
- MULT(z, z, z)
+ MULT(z, z, z);
if (index)
- MULT(z, table[index], z)
+ MULT(z, table[index], z);
}
}
}
@@ -3428,13 +3750,13 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
}
goto Done;
- Error:
+ Error:
if (z != NULL) {
Py_DECREF(z);
z = NULL;
}
/* fall through */
- Done:
+ Done:
if (Py_SIZE(b) > FIVEARY_CUTOFF) {
for (i = 0; i < 32; ++i)
Py_XDECREF(table[i]);
@@ -3489,15 +3811,14 @@ long_abs(PyLongObject *v)
static int
long_bool(PyLongObject *v)
{
- return ABS(Py_SIZE(v)) != 0;
+ return Py_SIZE(v) != 0;
}
static PyObject *
long_rshift(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z = NULL;
- long shiftby;
- Py_ssize_t newsize, wordshift, loshift, hishift, i, j;
+ Py_ssize_t shiftby, newsize, wordshift, loshift, hishift, i, j;
digit lomask, himask;
CHECK_BINOP(a, b);
@@ -3516,8 +3837,7 @@ long_rshift(PyLongObject *a, PyLongObject *b)
Py_DECREF(a2);
}
else {
-
- shiftby = PyLong_AsLong((PyObject *)b);
+ shiftby = PyLong_AsSsize_t((PyObject *)b);
if (shiftby == -1L && PyErr_Occurred())
goto rshift_error;
if (shiftby < 0) {
@@ -3541,12 +3861,11 @@ long_rshift(PyLongObject *a, PyLongObject *b)
for (i = 0, j = wordshift; i < newsize; i++, j++) {
z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask;
if (i+1 < newsize)
- z->ob_digit[i] |=
- (a->ob_digit[j+1] << hishift) & himask;
+ z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask;
}
z = long_normalize(z);
}
-rshift_error:
+ rshift_error:
return (PyObject *) maybe_small_long(z);
}
@@ -3558,27 +3877,21 @@ long_lshift(PyObject *v, PyObject *w)
PyLongObject *a = (PyLongObject*)v;
PyLongObject *b = (PyLongObject*)w;
PyLongObject *z = NULL;
- long shiftby;
- Py_ssize_t oldsize, newsize, wordshift, remshift, i, j;
+ Py_ssize_t shiftby, oldsize, newsize, wordshift, remshift, i, j;
twodigits accum;
CHECK_BINOP(a, b);
- shiftby = PyLong_AsLong((PyObject *)b);
+ shiftby = PyLong_AsSsize_t((PyObject *)b);
if (shiftby == -1L && PyErr_Occurred())
goto lshift_error;
if (shiftby < 0) {
PyErr_SetString(PyExc_ValueError, "negative shift count");
goto lshift_error;
}
- if ((long)(int)shiftby != shiftby) {
- PyErr_SetString(PyExc_ValueError,
- "outrageous left shift count");
- goto lshift_error;
- }
/* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
- wordshift = (int)shiftby / PyLong_SHIFT;
- remshift = (int)shiftby - wordshift * PyLong_SHIFT;
+ wordshift = shiftby / PyLong_SHIFT;
+ remshift = shiftby - wordshift * PyLong_SHIFT;
oldsize = ABS(Py_SIZE(a));
newsize = oldsize + wordshift;
@@ -3602,116 +3915,150 @@ long_lshift(PyObject *v, PyObject *w)
else
assert(!accum);
z = long_normalize(z);
-lshift_error:
+ lshift_error:
return (PyObject *) maybe_small_long(z);
}
+/* Compute two's complement of digit vector a[0:m], writing result to
+ z[0:m]. The digit vector a need not be normalized, but should not
+ be entirely zero. a and z may point to the same digit vector. */
+
+static void
+v_complement(digit *z, digit *a, Py_ssize_t m)
+{
+ Py_ssize_t i;
+ digit carry = 1;
+ for (i = 0; i < m; ++i) {
+ carry += a[i] ^ PyLong_MASK;
+ z[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ }
+ assert(carry == 0);
+}
/* Bitwise and/xor/or operations */
static PyObject *
long_bitwise(PyLongObject *a,
int op, /* '&', '|', '^' */
- PyLongObject *b)
+ PyLongObject *b)
{
- digit maska, maskb; /* 0 or PyLong_MASK */
- int negz;
+ int nega, negb, negz;
Py_ssize_t size_a, size_b, size_z, i;
PyLongObject *z;
- digit diga, digb;
- PyObject *v;
- if (Py_SIZE(a) < 0) {
- a = (PyLongObject *) long_invert(a);
- if (a == NULL)
+ /* Bitwise operations for negative numbers operate as though
+ on a two's complement representation. So convert arguments
+ from sign-magnitude to two's complement, and convert the
+ result back to sign-magnitude at the end. */
+
+ /* If a is negative, replace it by its two's complement. */
+ size_a = ABS(Py_SIZE(a));
+ nega = Py_SIZE(a) < 0;
+ if (nega) {
+ z = _PyLong_New(size_a);
+ if (z == NULL)
return NULL;
- maska = PyLong_MASK;
+ v_complement(z->ob_digit, a->ob_digit, size_a);
+ a = z;
}
- else {
+ else
+ /* Keep reference count consistent. */
Py_INCREF(a);
- maska = 0;
- }
- if (Py_SIZE(b) < 0) {
- b = (PyLongObject *) long_invert(b);
- if (b == NULL) {
+
+ /* Same for b. */
+ size_b = ABS(Py_SIZE(b));
+ negb = Py_SIZE(b) < 0;
+ if (negb) {
+ z = _PyLong_New(size_b);
+ if (z == NULL) {
Py_DECREF(a);
return NULL;
}
- maskb = PyLong_MASK;
+ v_complement(z->ob_digit, b->ob_digit, size_b);
+ b = z;
}
- else {
+ else
Py_INCREF(b);
- maskb = 0;
+
+ /* Swap a and b if necessary to ensure size_a >= size_b. */
+ if (size_a < size_b) {
+ z = a; a = b; b = z;
+ size_z = size_a; size_a = size_b; size_b = size_z;
+ negz = nega; nega = negb; negb = negz;
}
- negz = 0;
+ /* JRH: The original logic here was to allocate the result value (z)
+ as the longer of the two operands. However, there are some cases
+ where the result is guaranteed to be shorter than that: AND of two
+ positives, OR of two negatives: use the shorter number. AND with
+ mixed signs: use the positive number. OR with mixed signs: use the
+ negative number.
+ */
switch (op) {
case '^':
- if (maska != maskb) {
- maska ^= PyLong_MASK;
- negz = -1;
- }
+ negz = nega ^ negb;
+ size_z = size_a;
break;
case '&':
- if (maska && maskb) {
- op = '|';
- maska ^= PyLong_MASK;
- maskb ^= PyLong_MASK;
- negz = -1;
- }
+ negz = nega & negb;
+ size_z = negb ? size_a : size_b;
break;
case '|':
- if (maska || maskb) {
- op = '&';
- maska ^= PyLong_MASK;
- maskb ^= PyLong_MASK;
- negz = -1;
- }
+ negz = nega | negb;
+ size_z = negb ? size_b : size_a;
break;
+ default:
+ PyErr_BadArgument();
+ return NULL;
}
- /* JRH: The original logic here was to allocate the result value (z)
- as the longer of the two operands. However, there are some cases
- where the result is guaranteed to be shorter than that: AND of two
- positives, OR of two negatives: use the shorter number. AND with
- mixed signs: use the positive number. OR with mixed signs: use the
- negative number. After the transformations above, op will be '&'
- iff one of these cases applies, and mask will be non-0 for operands
- whose length should be ignored.
- */
-
- size_a = Py_SIZE(a);
- size_b = Py_SIZE(b);
- size_z = op == '&'
- ? (maska
- ? size_b
- : (maskb ? size_a : MIN(size_a, size_b)))
- : MAX(size_a, size_b);
- z = _PyLong_New(size_z);
+ /* We allow an extra digit if z is negative, to make sure that
+ the final two's complement of z doesn't overflow. */
+ z = _PyLong_New(size_z + negz);
if (z == NULL) {
Py_DECREF(a);
Py_DECREF(b);
return NULL;
}
- for (i = 0; i < size_z; ++i) {
- diga = (i < size_a ? a->ob_digit[i] : 0) ^ maska;
- digb = (i < size_b ? b->ob_digit[i] : 0) ^ maskb;
- switch (op) {
- case '&': z->ob_digit[i] = diga & digb; break;
- case '|': z->ob_digit[i] = diga | digb; break;
- case '^': z->ob_digit[i] = diga ^ digb; break;
- }
+ /* Compute digits for overlap of a and b. */
+ switch(op) {
+ case '&':
+ for (i = 0; i < size_b; ++i)
+ z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
+ break;
+ case '|':
+ for (i = 0; i < size_b; ++i)
+ z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
+ break;
+ case '^':
+ for (i = 0; i < size_b; ++i)
+ z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
+ break;
+ default:
+ PyErr_BadArgument();
+ return NULL;
+ }
+
+ /* Copy any remaining digits of a, inverting if necessary. */
+ if (op == '^' && negb)
+ for (; i < size_z; ++i)
+ z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
+ else if (i < size_z)
+ memcpy(&z->ob_digit[i], &a->ob_digit[i],
+ (size_z-i)*sizeof(digit));
+
+ /* Complement result if negative. */
+ if (negz) {
+ Py_SIZE(z) = -(Py_SIZE(z));
+ z->ob_digit[size_z] = PyLong_MASK;
+ v_complement(z->ob_digit, z->ob_digit, size_z+1);
}
Py_DECREF(a);
Py_DECREF(b);
- z = long_normalize(z);
- if (negz == 0)
- return (PyObject *) maybe_small_long(z);
- v = long_invert(z);
- Py_DECREF(z);
- return v;
+ return (PyObject *)maybe_small_long(long_normalize(z));
}
static PyObject *
@@ -3767,23 +4114,34 @@ long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static PyObject *
long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
- PyObject *x = NULL;
- int base = -909; /* unlikely! */
+ PyObject *obase = NULL, *x = NULL;
+ long base;
+ int overflow;
static char *kwlist[] = {"x", "base", 0};
if (type != &PyLong_Type)
return long_subtype_new(type, args, kwds); /* Wimp out */
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist,
- &x, &base))
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:int", kwlist,
+ &x, &obase))
return NULL;
if (x == NULL)
return PyLong_FromLong(0L);
- if (base == -909)
+ if (obase == NULL)
return PyNumber_Long(x);
- else if (PyUnicode_Check(x))
+
+ base = PyLong_AsLongAndOverflow(obase, &overflow);
+ if (base == -1 && PyErr_Occurred())
+ return NULL;
+ if (overflow || (base != 0 && base < 2) || base > 36) {
+ PyErr_SetString(PyExc_ValueError,
+ "int() arg 2 must be >= 2 and <= 36");
+ return NULL;
+ }
+
+ if (PyUnicode_Check(x))
return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x),
PyUnicode_GET_SIZE(x),
- base);
+ (int)base);
else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
/* Since PyLong_FromString doesn't have a length parameter,
* check here for possible NULs in the string. */
@@ -3797,15 +4155,15 @@ long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
/* We only see this if there's a null byte in x,
x is a bytes or buffer, *and* a base is given. */
PyErr_Format(PyExc_ValueError,
- "invalid literal for int() with base %d: %R",
- base, x);
+ "invalid literal for int() with base %d: %R",
+ (int)base, x);
return NULL;
}
- return PyLong_FromString(string, NULL, base);
+ return PyLong_FromString(string, NULL, (int)base);
}
else {
PyErr_SetString(PyExc_TypeError,
- "int() can't convert non-string with explicit base");
+ "int() can't convert non-string with explicit base");
return NULL;
}
}
@@ -3870,140 +4228,169 @@ long__format__(PyObject *self, PyObject *args)
PyUnicode_GET_SIZE(format_spec));
}
-static PyObject *
-long_round(PyObject *self, PyObject *args)
+/* Return a pair (q, r) such that a = b * q + r, and
+ abs(r) <= abs(b)/2, with equality possible only if q is even.
+ In other words, q == a / b, rounded to the nearest integer using
+ round-half-to-even. */
+
+PyObject *
+_PyLong_DivmodNear(PyObject *a, PyObject *b)
{
- PyObject *o_ndigits=NULL, *temp;
- PyLongObject *pow=NULL, *q=NULL, *r=NULL, *ndigits=NULL, *one;
- int errcode;
- digit q_mod_4;
-
- /* Notes on the algorithm: to round to the nearest 10**n (n positive),
- the straightforward method is:
-
- (1) divide by 10**n
- (2) round to nearest integer (round to even in case of tie)
- (3) multiply result by 10**n.
-
- But the rounding step involves examining the fractional part of the
- quotient to see whether it's greater than 0.5 or not. Since we
- want to do the whole calculation in integer arithmetic, it's
- simpler to do:
-
- (1) divide by (10**n)/2
- (2) round to nearest multiple of 2 (multiple of 4 in case of tie)
- (3) multiply result by (10**n)/2.
-
- Then all we need to know about the fractional part of the quotient
- arising in step (2) is whether it's zero or not.
-
- Doing both a multiplication and division is wasteful, and is easily
- avoided if we just figure out how much to adjust the original input
- by to do the rounding.
-
- Here's the whole algorithm expressed in Python.
-
- def round(self, ndigits = None):
- """round(int, int) -> int"""
- if ndigits is None or ndigits >= 0:
- return self
- pow = 10**-ndigits >> 1
- q, r = divmod(self, pow)
- self -= r
- if (q & 1 != 0):
- if (q & 2 == r == 0):
- self -= pow
- else:
- self += pow
- return self
+ PyLongObject *quo = NULL, *rem = NULL;
+ PyObject *one = NULL, *twice_rem, *result, *temp;
+ int cmp, quo_is_odd, quo_is_neg;
+
+ /* Equivalent Python code:
+
+ def divmod_near(a, b):
+ q, r = divmod(a, b)
+ # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
+ # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
+ # positive, 2 * r < b if b negative.
+ greater_than_half = 2*r > b if b > 0 else 2*r < b
+ exactly_half = 2*r == b
+ if greater_than_half or exactly_half and q % 2 == 1:
+ q += 1
+ r -= b
+ return q, r
*/
+ if (!PyLong_Check(a) || !PyLong_Check(b)) {
+ PyErr_SetString(PyExc_TypeError,
+ "non-integer arguments in division");
+ return NULL;
+ }
+
+ /* Do a and b have different signs? If so, quotient is negative. */
+ quo_is_neg = (Py_SIZE(a) < 0) != (Py_SIZE(b) < 0);
+
+ one = PyLong_FromLong(1L);
+ if (one == NULL)
+ return NULL;
+
+ if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
+ goto error;
+
+ /* compare twice the remainder with the divisor, to see
+ if we need to adjust the quotient and remainder */
+ twice_rem = long_lshift((PyObject *)rem, one);
+ if (twice_rem == NULL)
+ goto error;
+ if (quo_is_neg) {
+ temp = long_neg((PyLongObject*)twice_rem);
+ Py_DECREF(twice_rem);
+ twice_rem = temp;
+ if (twice_rem == NULL)
+ goto error;
+ }
+ cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
+ Py_DECREF(twice_rem);
+
+ quo_is_odd = Py_SIZE(quo) != 0 && ((quo->ob_digit[0] & 1) != 0);
+ if ((Py_SIZE(b) < 0 ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
+ /* fix up quotient */
+ if (quo_is_neg)
+ temp = long_sub(quo, (PyLongObject *)one);
+ else
+ temp = long_add(quo, (PyLongObject *)one);
+ Py_DECREF(quo);
+ quo = (PyLongObject *)temp;
+ if (quo == NULL)
+ goto error;
+ /* and remainder */
+ if (quo_is_neg)
+ temp = long_add(rem, (PyLongObject *)b);
+ else
+ temp = long_sub(rem, (PyLongObject *)b);
+ Py_DECREF(rem);
+ rem = (PyLongObject *)temp;
+ if (rem == NULL)
+ goto error;
+ }
+
+ result = PyTuple_New(2);
+ if (result == NULL)
+ goto error;
+
+ /* PyTuple_SET_ITEM steals references */
+ PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
+ PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
+ Py_DECREF(one);
+ return result;
+
+ error:
+ Py_XDECREF(quo);
+ Py_XDECREF(rem);
+ Py_XDECREF(one);
+ return NULL;
+}
+
+static PyObject *
+long_round(PyObject *self, PyObject *args)
+{
+ PyObject *o_ndigits=NULL, *temp, *result, *ndigits;
+
+ /* To round an integer m to the nearest 10**n (n positive), we make use of
+ * the divmod_near operation, defined by:
+ *
+ * divmod_near(a, b) = (q, r)
+ *
+ * where q is the nearest integer to the quotient a / b (the
+ * nearest even integer in the case of a tie) and r == a - q * b.
+ * Hence q * b = a - r is the nearest multiple of b to a,
+ * preferring even multiples in the case of a tie.
+ *
+ * So the nearest multiple of 10**n to m is:
+ *
+ * m - divmod_near(m, 10**n)[1].
+ */
if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
return NULL;
if (o_ndigits == NULL)
return long_long(self);
- ndigits = (PyLongObject *)PyNumber_Index(o_ndigits);
+ ndigits = PyNumber_Index(o_ndigits);
if (ndigits == NULL)
return NULL;
+ /* if ndigits >= 0 then no rounding is necessary; return self unchanged */
if (Py_SIZE(ndigits) >= 0) {
Py_DECREF(ndigits);
return long_long(self);
}
- Py_INCREF(self); /* to keep refcounting simple */
- /* we now own references to self, ndigits */
-
- /* pow = 10 ** -ndigits >> 1 */
- pow = (PyLongObject *)PyLong_FromLong(10L);
- if (pow == NULL)
- goto error;
- temp = long_neg(ndigits);
+ /* result = self - divmod_near(self, 10 ** -ndigits)[1] */
+ temp = long_neg((PyLongObject*)ndigits);
Py_DECREF(ndigits);
- ndigits = (PyLongObject *)temp;
+ ndigits = temp;
if (ndigits == NULL)
- goto error;
- temp = long_pow((PyObject *)pow, (PyObject *)ndigits, Py_None);
- Py_DECREF(pow);
- pow = (PyLongObject *)temp;
- if (pow == NULL)
- goto error;
- assert(PyLong_Check(pow)); /* check long_pow returned a long */
- one = (PyLongObject *)PyLong_FromLong(1L);
- if (one == NULL)
- goto error;
- temp = long_rshift(pow, one);
- Py_DECREF(one);
- Py_DECREF(pow);
- pow = (PyLongObject *)temp;
- if (pow == NULL)
- goto error;
+ return NULL;
- /* q, r = divmod(self, pow) */
- errcode = l_divmod((PyLongObject *)self, pow, &q, &r);
- if (errcode == -1)
- goto error;
+ result = PyLong_FromLong(10L);
+ if (result == NULL) {
+ Py_DECREF(ndigits);
+ return NULL;
+ }
- /* self -= r */
- temp = long_sub((PyLongObject *)self, r);
- Py_DECREF(self);
- self = temp;
- if (self == NULL)
- goto error;
+ temp = long_pow(result, ndigits, Py_None);
+ Py_DECREF(ndigits);
+ Py_DECREF(result);
+ result = temp;
+ if (result == NULL)
+ return NULL;
- /* get value of quotient modulo 4 */
- if (Py_SIZE(q) == 0)
- q_mod_4 = 0;
- else if (Py_SIZE(q) > 0)
- q_mod_4 = q->ob_digit[0] & 3;
- else
- q_mod_4 = (PyLong_BASE-q->ob_digit[0]) & 3;
+ temp = _PyLong_DivmodNear(self, result);
+ Py_DECREF(result);
+ result = temp;
+ if (result == NULL)
+ return NULL;
- if ((q_mod_4 & 1) == 1) {
- /* q is odd; round self up or down by adding or subtracting pow */
- if (q_mod_4 == 1 && Py_SIZE(r) == 0)
- temp = (PyObject *)long_sub((PyLongObject *)self, pow);
- else
- temp = (PyObject *)long_add((PyLongObject *)self, pow);
- Py_DECREF(self);
- self = temp;
- if (self == NULL)
- goto error;
- }
- Py_DECREF(q);
- Py_DECREF(r);
- Py_DECREF(pow);
- Py_DECREF(ndigits);
- return self;
+ temp = long_sub((PyLongObject *)self,
+ (PyLongObject *)PyTuple_GET_ITEM(result, 1));
+ Py_DECREF(result);
+ result = temp;
- error:
- Py_XDECREF(q);
- Py_XDECREF(r);
- Py_XDECREF(pow);
- Py_XDECREF(self);
- Py_XDECREF(ndigits);
- return NULL;
+ return result;
}
static PyObject *
@@ -4065,7 +4452,7 @@ long_bit_length(PyLongObject *v)
return (PyObject *)result;
-error:
+ error:
Py_DECREF(result);
return NULL;
}
@@ -4087,6 +4474,187 @@ long_is_finite(PyObject *v)
}
#endif
+
+static PyObject *
+long_to_bytes(PyLongObject *v, PyObject *args, PyObject *kwds)
+{
+ PyObject *byteorder_str;
+ PyObject *is_signed_obj = NULL;
+ Py_ssize_t length;
+ int little_endian;
+ int is_signed;
+ PyObject *bytes;
+ static char *kwlist[] = {"length", "byteorder", "signed", NULL};
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "nU|O:to_bytes", kwlist,
+ &length, &byteorder_str,
+ &is_signed_obj))
+ return NULL;
+
+ if (args != NULL && Py_SIZE(args) > 2) {
+ PyErr_SetString(PyExc_TypeError,
+ "'signed' is a keyword-only argument");
+ return NULL;
+ }
+
+ if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little"))
+ little_endian = 1;
+ else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big"))
+ little_endian = 0;
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "byteorder must be either 'little' or 'big'");
+ return NULL;
+ }
+
+ if (is_signed_obj != NULL) {
+ int cmp = PyObject_IsTrue(is_signed_obj);
+ if (cmp < 0)
+ return NULL;
+ is_signed = cmp ? 1 : 0;
+ }
+ else {
+ /* If the signed argument was omitted, use False as the
+ default. */
+ is_signed = 0;
+ }
+
+ if (length < 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "length argument must be non-negative");
+ return NULL;
+ }
+
+ bytes = PyBytes_FromStringAndSize(NULL, length);
+ if (bytes == NULL)
+ return NULL;
+
+ if (_PyLong_AsByteArray(v, (unsigned char *)PyBytes_AS_STRING(bytes),
+ length, little_endian, is_signed) < 0) {
+ Py_DECREF(bytes);
+ return NULL;
+ }
+
+ return bytes;
+}
+
+PyDoc_STRVAR(long_to_bytes_doc,
+"int.to_bytes(length, byteorder, *, signed=False) -> bytes\n\
+\n\
+Return an array of bytes representing an integer.\n\
+\n\
+The integer is represented using length bytes. An OverflowError is\n\
+raised if the integer is not representable with the given number of\n\
+bytes.\n\
+\n\
+The byteorder argument determines the byte order used to represent the\n\
+integer. If byteorder is 'big', the most significant byte is at the\n\
+beginning of the byte array. If byteorder is 'little', the most\n\
+significant byte is at the end of the byte array. To request the native\n\
+byte order of the host system, use `sys.byteorder' as the byte order value.\n\
+\n\
+The signed keyword-only argument determines whether two's complement is\n\
+used to represent the integer. If signed is False and a negative integer\n\
+is given, an OverflowError is raised.");
+
+static PyObject *
+long_from_bytes(PyTypeObject *type, PyObject *args, PyObject *kwds)
+{
+ PyObject *byteorder_str;
+ PyObject *is_signed_obj = NULL;
+ int little_endian;
+ int is_signed;
+ PyObject *obj;
+ PyObject *bytes;
+ PyObject *long_obj;
+ static char *kwlist[] = {"bytes", "byteorder", "signed", NULL};
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "OU|O:from_bytes", kwlist,
+ &obj, &byteorder_str,
+ &is_signed_obj))
+ return NULL;
+
+ if (args != NULL && Py_SIZE(args) > 2) {
+ PyErr_SetString(PyExc_TypeError,
+ "'signed' is a keyword-only argument");
+ return NULL;
+ }
+
+ if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little"))
+ little_endian = 1;
+ else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big"))
+ little_endian = 0;
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "byteorder must be either 'little' or 'big'");
+ return NULL;
+ }
+
+ if (is_signed_obj != NULL) {
+ int cmp = PyObject_IsTrue(is_signed_obj);
+ if (cmp < 0)
+ return NULL;
+ is_signed = cmp ? 1 : 0;
+ }
+ else {
+ /* If the signed argument was omitted, use False as the
+ default. */
+ is_signed = 0;
+ }
+
+ bytes = PyObject_Bytes(obj);
+ if (bytes == NULL)
+ return NULL;
+
+ long_obj = _PyLong_FromByteArray(
+ (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
+ little_endian, is_signed);
+ Py_DECREF(bytes);
+
+ /* If from_bytes() was used on subclass, allocate new subclass
+ * instance, initialize it with decoded long value and return it.
+ */
+ if (type != &PyLong_Type && PyType_IsSubtype(type, &PyLong_Type)) {
+ PyLongObject *newobj;
+ int i;
+ Py_ssize_t n = ABS(Py_SIZE(long_obj));
+
+ newobj = (PyLongObject *)type->tp_alloc(type, n);
+ if (newobj == NULL) {
+ Py_DECREF(long_obj);
+ return NULL;
+ }
+ assert(PyLong_Check(newobj));
+ Py_SIZE(newobj) = Py_SIZE(long_obj);
+ for (i = 0; i < n; i++) {
+ newobj->ob_digit[i] =
+ ((PyLongObject *)long_obj)->ob_digit[i];
+ }
+ Py_DECREF(long_obj);
+ return (PyObject *)newobj;
+ }
+
+ return long_obj;
+}
+
+PyDoc_STRVAR(long_from_bytes_doc,
+"int.from_bytes(bytes, byteorder, *, signed=False) -> int\n\
+\n\
+Return the integer represented by the given array of bytes.\n\
+\n\
+The bytes argument must either support the buffer protocol or be an\n\
+iterable object producing bytes. Bytes and bytearray are examples of\n\
+built-in objects that support the buffer protocol.\n\
+\n\
+The byteorder argument determines the byte order used to represent the\n\
+integer. If byteorder is 'big', the most significant byte is at the\n\
+beginning of the byte array. If byteorder is 'little', the most\n\
+significant byte is at the end of the byte array. To request the native\n\
+byte order of the host system, use `sys.byteorder' as the byte order value.\n\
+\n\
+The signed keyword-only argument indicates whether two's complement is\n\
+used to represent the integer.");
+
static PyMethodDef long_methods[] = {
{"conjugate", (PyCFunction)long_long, METH_NOARGS,
"Returns self, the complex conjugate of any int."},
@@ -4096,6 +4664,10 @@ static PyMethodDef long_methods[] = {
{"is_finite", (PyCFunction)long_is_finite, METH_NOARGS,
"Returns always True."},
#endif
+ {"to_bytes", (PyCFunction)long_to_bytes,
+ METH_VARARGS|METH_KEYWORDS, long_to_bytes_doc},
+ {"from_bytes", (PyCFunction)long_from_bytes,
+ METH_VARARGS|METH_KEYWORDS|METH_CLASS, long_from_bytes_doc},
{"__trunc__", (PyCFunction)long_long, METH_NOARGS,
"Truncating an Integral returns itself."},
{"__floor__", (PyCFunction)long_long, METH_NOARGS,
@@ -4142,40 +4714,40 @@ string, use the optional base. It is an error to supply a base when\n\
converting a non-string.");
static PyNumberMethods long_as_number = {
- (binaryfunc) long_add, /*nb_add*/
- (binaryfunc) long_sub, /*nb_subtract*/
- (binaryfunc) long_mul, /*nb_multiply*/
- long_mod, /*nb_remainder*/
- long_divmod, /*nb_divmod*/
- long_pow, /*nb_power*/
- (unaryfunc) long_neg, /*nb_negative*/
- (unaryfunc) long_long, /*tp_positive*/
- (unaryfunc) long_abs, /*tp_absolute*/
- (inquiry) long_bool, /*tp_bool*/
- (unaryfunc) long_invert, /*nb_invert*/
- long_lshift, /*nb_lshift*/
- (binaryfunc) long_rshift, /*nb_rshift*/
- long_and, /*nb_and*/
- long_xor, /*nb_xor*/
- long_or, /*nb_or*/
- long_long, /*nb_int*/
- 0, /*nb_reserved*/
- long_float, /*nb_float*/
- 0, /* nb_inplace_add */
- 0, /* nb_inplace_subtract */
- 0, /* nb_inplace_multiply */
- 0, /* nb_inplace_remainder */
- 0, /* nb_inplace_power */
- 0, /* nb_inplace_lshift */
- 0, /* nb_inplace_rshift */
- 0, /* nb_inplace_and */
- 0, /* nb_inplace_xor */
- 0, /* nb_inplace_or */
- long_div, /* nb_floor_divide */
- long_true_divide, /* nb_true_divide */
- 0, /* nb_inplace_floor_divide */
- 0, /* nb_inplace_true_divide */
- long_long, /* nb_index */
+ (binaryfunc)long_add, /*nb_add*/
+ (binaryfunc)long_sub, /*nb_subtract*/
+ (binaryfunc)long_mul, /*nb_multiply*/
+ long_mod, /*nb_remainder*/
+ long_divmod, /*nb_divmod*/
+ long_pow, /*nb_power*/
+ (unaryfunc)long_neg, /*nb_negative*/
+ (unaryfunc)long_long, /*tp_positive*/
+ (unaryfunc)long_abs, /*tp_absolute*/
+ (inquiry)long_bool, /*tp_bool*/
+ (unaryfunc)long_invert, /*nb_invert*/
+ long_lshift, /*nb_lshift*/
+ (binaryfunc)long_rshift, /*nb_rshift*/
+ long_and, /*nb_and*/
+ long_xor, /*nb_xor*/
+ long_or, /*nb_or*/
+ long_long, /*nb_int*/
+ 0, /*nb_reserved*/
+ long_float, /*nb_float*/
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply */
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ long_div, /* nb_floor_divide */
+ long_true_divide, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
+ long_long, /* nb_index */
};
PyTypeObject PyLong_Type = {
@@ -4188,13 +4760,13 @@ PyTypeObject PyLong_Type = {
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
- long_repr, /* tp_repr */
+ long_to_decimal_string, /* tp_repr */
&long_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)long_hash, /* tp_hash */
0, /* tp_call */
- long_repr, /* tp_str */
+ long_to_decimal_string, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
@@ -4231,8 +4803,7 @@ internal representation of integers. The attributes are read only.");
static PyStructSequence_Field int_info_fields[] = {
{"bits_per_digit", "size of a digit in bits"},
- {"sizeof_digit", "size in bytes of the C type used to "
- "represent a digit"},
+ {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
{NULL, NULL}
};