diff options
Diffstat (limited to 'Objects/longobject.c')
-rw-r--r-- | Objects/longobject.c | 2027 |
1 files changed, 1299 insertions, 728 deletions
diff --git a/Objects/longobject.c b/Objects/longobject.c index 6f998ce..552f8f0 100644 --- a/Objects/longobject.c +++ b/Objects/longobject.c @@ -4,7 +4,6 @@ #include "Python.h" #include "longintrepr.h" -#include "structseq.h" #include <float.h> #include <ctype.h> @@ -95,14 +94,10 @@ maybe_small_long(PyLongObject *v) #define MAX(x, y) ((x) < (y) ? (y) : (x)) #define MIN(x, y) ((x) > (y) ? (y) : (x)) -#define SIGCHECK(PyTryBlock) \ - if (--_Py_Ticker < 0) { \ - _Py_Ticker = _Py_CheckInterval; \ - if (PyErr_CheckSignals()) PyTryBlock \ - } - -/* forward declaration */ -static int bits_in_digit(digit d); +#define SIGCHECK(PyTryBlock) \ + do { \ + if (PyErr_CheckSignals()) PyTryBlock \ + } while(0) /* Normalize (remove leading zeros from) a long int object. Doesn't attempt to free the storage--in most cases, due to the nature @@ -284,12 +279,12 @@ PyLong_FromDouble(double dval) neg = 0; if (Py_IS_INFINITY(dval)) { PyErr_SetString(PyExc_OverflowError, - "cannot convert float infinity to integer"); + "cannot convert float infinity to integer"); return NULL; } if (Py_IS_NAN(dval)) { PyErr_SetString(PyExc_ValueError, - "cannot convert float NaN to integer"); + "cannot convert float NaN to integer"); return NULL; } if (dval < 0.0) { @@ -349,9 +344,10 @@ PyLong_AsLongAndOverflow(PyObject *vv, int *overflow) if (!PyLong_Check(vv)) { PyNumberMethods *nb; - if ((nb = vv->ob_type->tp_as_number) == NULL || - nb->nb_int == NULL) { - PyErr_SetString(PyExc_TypeError, "an integer is required"); + nb = vv->ob_type->tp_as_number; + if (nb == NULL || nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, + "an integer is required"); return -1; } vv = (*nb->nb_int) (vv); @@ -389,14 +385,14 @@ PyLong_AsLongAndOverflow(PyObject *vv, int *overflow) } while (--i >= 0) { prev = x; - x = (x << PyLong_SHIFT) + v->ob_digit[i]; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; if ((x >> PyLong_SHIFT) != prev) { - *overflow = Py_SIZE(v) > 0 ? 1 : -1; + *overflow = sign; goto exit; } } - /* Haven't lost any bits, but casting to long requires extra care - * (see comment above). + /* Haven't lost any bits, but casting to long requires extra + * care (see comment above). */ if (x <= (unsigned long)LONG_MAX) { res = (long)x * sign; @@ -405,11 +401,11 @@ PyLong_AsLongAndOverflow(PyObject *vv, int *overflow) res = LONG_MIN; } else { - *overflow = Py_SIZE(v) > 0 ? 1 : -1; + *overflow = sign; /* res is already set to -1 */ } } - exit: + exit: if (do_decref) { Py_DECREF(vv); } @@ -464,7 +460,7 @@ PyLong_AsSsize_t(PyObject *vv) { } while (--i >= 0) { prev = x; - x = (x << PyLong_SHIFT) + v->ob_digit[i]; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; if ((x >> PyLong_SHIFT) != prev) goto overflow; } @@ -479,7 +475,7 @@ PyLong_AsSsize_t(PyObject *vv) { } /* else overflow */ - overflow: + overflow: PyErr_SetString(PyExc_OverflowError, "Python int too large to convert to C ssize_t"); return -1; @@ -509,7 +505,7 @@ PyLong_AsUnsignedLong(PyObject *vv) x = 0; if (i < 0) { PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to unsigned int"); + "can't convert negative value to unsigned int"); return (unsigned long) -1; } switch (i) { @@ -518,10 +514,11 @@ PyLong_AsUnsignedLong(PyObject *vv) } while (--i >= 0) { prev = x; - x = (x << PyLong_SHIFT) + v->ob_digit[i]; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; if ((x >> PyLong_SHIFT) != prev) { PyErr_SetString(PyExc_OverflowError, - "python int too large to convert to C unsigned long"); + "python int too large to convert " + "to C unsigned long"); return (unsigned long) -1; } } @@ -561,7 +558,7 @@ PyLong_AsSize_t(PyObject *vv) } while (--i >= 0) { prev = x; - x = (x << PyLong_SHIFT) + v->ob_digit[i]; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; if ((x >> PyLong_SHIFT) != prev) { PyErr_SetString(PyExc_OverflowError, "Python int too large to convert to C size_t"); @@ -599,7 +596,7 @@ _PyLong_AsUnsignedLongMask(PyObject *vv) i = -i; } while (--i >= 0) { - x = (x << PyLong_SHIFT) + v->ob_digit[i]; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; } return x * sign; } @@ -676,7 +673,7 @@ _PyLong_NumBits(PyObject *vv) } return result; -Overflow: + Overflow: PyErr_SetString(PyExc_OverflowError, "int has too many bits " "to express in a platform size_t"); return (size_t)-1; @@ -686,7 +683,7 @@ PyObject * _PyLong_FromByteArray(const unsigned char* bytes, size_t n, int little_endian, int is_signed) { - const unsigned char* pstartbyte;/* LSB of bytes */ + const unsigned char* pstartbyte; /* LSB of bytes */ int incr; /* direction to move pstartbyte */ const unsigned char* pendbyte; /* MSB of bytes */ size_t numsignificantbytes; /* number of bytes that matter */ @@ -774,8 +771,7 @@ _PyLong_FromByteArray(const unsigned char* bytes, size_t n, if (accumbits >= PyLong_SHIFT) { /* There's enough to fill a Python digit. */ assert(idigit < ndigits); - v->ob_digit[idigit] = (digit)(accum & - PyLong_MASK); + v->ob_digit[idigit] = (digit)(accum & PyLong_MASK); ++idigit; accum >>= PyLong_SHIFT; accumbits -= PyLong_SHIFT; @@ -800,9 +796,9 @@ _PyLong_AsByteArray(PyLongObject* v, int little_endian, int is_signed) { Py_ssize_t i; /* index into v->ob_digit */ - Py_ssize_t ndigits; /* |v->ob_size| */ + Py_ssize_t ndigits; /* |v->ob_size| */ twodigits accum; /* sliding register */ - unsigned int accumbits; /* # bits in accum */ + unsigned int accumbits; /* # bits in accum */ int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */ digit carry; /* for computing 2's-comp */ size_t j; /* # bytes filled */ @@ -815,7 +811,7 @@ _PyLong_AsByteArray(PyLongObject* v, ndigits = -(Py_SIZE(v)); if (!is_signed) { PyErr_SetString(PyExc_OverflowError, - "can't convert negative int to unsigned"); + "can't convert negative int to unsigned"); return -1; } do_twos_comp = 1; @@ -861,8 +857,7 @@ _PyLong_AsByteArray(PyLongObject* v, /* Count # of sign bits -- they needn't be stored, * although for signed conversion we need later to * make sure at least one sign bit gets stored. */ - digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : - thisdigit; + digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit; while (s != 0) { s >>= 1; accumbits++; @@ -922,230 +917,12 @@ _PyLong_AsByteArray(PyLongObject* v, return 0; -Overflow: + Overflow: PyErr_SetString(PyExc_OverflowError, "int too big to convert"); return -1; } -double -_PyLong_AsScaledDouble(PyObject *vv, int *exponent) -{ -/* NBITS_WANTED should be > the number of bits in a double's precision, - but small enough so that 2**NBITS_WANTED is within the normal double - range. nbitsneeded is set to 1 less than that because the most-significant - Python digit contains at least 1 significant bit, but we don't want to - bother counting them (catering to the worst case cheaply). - - 57 is one more than VAX-D double precision; I (Tim) don't know of a double - format with more precision than that; it's 1 larger so that we add in at - least one round bit to stand in for the ignored least-significant bits. -*/ -#define NBITS_WANTED 57 - PyLongObject *v; - double x; - const double multiplier = (double)(1L << PyLong_SHIFT); - Py_ssize_t i; - int sign; - int nbitsneeded; - - if (vv == NULL || !PyLong_Check(vv)) { - PyErr_BadInternalCall(); - return -1; - } - v = (PyLongObject *)vv; - i = Py_SIZE(v); - sign = 1; - if (i < 0) { - sign = -1; - i = -(i); - } - else if (i == 0) { - *exponent = 0; - return 0.0; - } - --i; - x = (double)v->ob_digit[i]; - nbitsneeded = NBITS_WANTED - 1; - /* Invariant: i Python digits remain unaccounted for. */ - while (i > 0 && nbitsneeded > 0) { - --i; - x = x * multiplier + (double)v->ob_digit[i]; - nbitsneeded -= PyLong_SHIFT; - } - /* There are i digits we didn't shift in. Pretending they're all - zeroes, the true value is x * 2**(i*PyLong_SHIFT). */ - *exponent = i; - assert(x > 0.0); - return x * sign; -#undef NBITS_WANTED -} - -/* Get a C double from a long int object. Rounds to the nearest double, - using the round-half-to-even rule in the case of a tie. */ - -double -PyLong_AsDouble(PyObject *vv) -{ - PyLongObject *v = (PyLongObject *)vv; - Py_ssize_t rnd_digit, rnd_bit, m, n; - digit lsb, *d; - int round_up = 0; - double x; - - if (vv == NULL || !PyLong_Check(vv)) { - PyErr_BadInternalCall(); - return -1.0; - } - - /* Notes on the method: for simplicity, assume v is positive and >= - 2**DBL_MANT_DIG. (For negative v we just ignore the sign until the - end; for small v no rounding is necessary.) Write n for the number - of bits in v, so that 2**(n-1) <= v < 2**n, and n > DBL_MANT_DIG. - - Some terminology: the *rounding bit* of v is the 1st bit of v that - will be rounded away (bit n - DBL_MANT_DIG - 1); the *parity bit* - is the bit immediately above. The round-half-to-even rule says - that we round up if the rounding bit is set, unless v is exactly - halfway between two floats and the parity bit is zero. - - Write d[0] ... d[m] for the digits of v, least to most significant. - Let rnd_bit be the index of the rounding bit, and rnd_digit the - index of the PyLong digit containing the rounding bit. Then the - bits of the digit d[rnd_digit] look something like: - - rounding bit - | - v - msb -> sssssrttttttttt <- lsb - ^ - | - parity bit - - where 's' represents a 'significant bit' that will be included in - the mantissa of the result, 'r' is the rounding bit, and 't' - represents a 'trailing bit' following the rounding bit. Note that - if the rounding bit is at the top of d[rnd_digit] then the parity - bit will be the lsb of d[rnd_digit+1]. If we set - - lsb = 1 << (rnd_bit % PyLong_SHIFT) - - then d[rnd_digit] & (PyLong_BASE - 2*lsb) selects just the - significant bits of d[rnd_digit], d[rnd_digit] & (lsb-1) gets the - trailing bits, and d[rnd_digit] & lsb gives the rounding bit. - - We initialize the double x to the integer given by digits - d[rnd_digit:m-1], but with the rounding bit and trailing bits of - d[rnd_digit] masked out. So the value of x comes from the top - DBL_MANT_DIG bits of v, multiplied by 2*lsb. Note that in the loop - that produces x, all floating-point operations are exact (assuming - that FLT_RADIX==2). Now if we're rounding down, the value we want - to return is simply - - x * 2**(PyLong_SHIFT * rnd_digit). - - and if we're rounding up, it's - - (x + 2*lsb) * 2**(PyLong_SHIFT * rnd_digit). - - Under the round-half-to-even rule, we round up if, and only - if, the rounding bit is set *and* at least one of the - following three conditions is satisfied: - - (1) the parity bit is set, or - (2) at least one of the trailing bits of d[rnd_digit] is set, or - (3) at least one of the digits d[i], 0 <= i < rnd_digit - is nonzero. - - Finally, we have to worry about overflow. If v >= 2**DBL_MAX_EXP, - or equivalently n > DBL_MAX_EXP, then overflow occurs. If v < - 2**DBL_MAX_EXP then we're usually safe, but there's a corner case - to consider: if v is very close to 2**DBL_MAX_EXP then it's - possible that v is rounded up to exactly 2**DBL_MAX_EXP, and then - again overflow occurs. - */ - - if (Py_SIZE(v) == 0) - return 0.0; - m = ABS(Py_SIZE(v)) - 1; - d = v->ob_digit; - assert(d[m]); /* v should be normalized */ - - /* fast path for case where 0 < abs(v) < 2**DBL_MANT_DIG */ - if (m < DBL_MANT_DIG / PyLong_SHIFT || - (m == DBL_MANT_DIG / PyLong_SHIFT && - d[m] < (digit)1 << DBL_MANT_DIG%PyLong_SHIFT)) { - x = d[m]; - while (--m >= 0) - x = x*PyLong_BASE + d[m]; - return Py_SIZE(v) < 0 ? -x : x; - } - - /* if m is huge then overflow immediately; otherwise, compute the - number of bits n in v. The condition below implies n (= #bits) >= - m * PyLong_SHIFT + 1 > DBL_MAX_EXP, hence v >= 2**DBL_MAX_EXP. */ - if (m > (DBL_MAX_EXP-1)/PyLong_SHIFT) - goto overflow; - n = m * PyLong_SHIFT + bits_in_digit(d[m]); - if (n > DBL_MAX_EXP) - goto overflow; - - /* find location of rounding bit */ - assert(n > DBL_MANT_DIG); /* dealt with |v| < 2**DBL_MANT_DIG above */ - rnd_bit = n - DBL_MANT_DIG - 1; - rnd_digit = rnd_bit/PyLong_SHIFT; - lsb = (digit)1 << (rnd_bit%PyLong_SHIFT); - - /* Get top DBL_MANT_DIG bits of v. Assumes PyLong_SHIFT < - DBL_MANT_DIG, so we'll need bits from at least 2 digits of v. */ - x = d[m]; - assert(m > rnd_digit); - while (--m > rnd_digit) - x = x*PyLong_BASE + d[m]; - x = x*PyLong_BASE + (d[m] & (PyLong_BASE-2*lsb)); - - /* decide whether to round up, using round-half-to-even */ - assert(m == rnd_digit); - if (d[m] & lsb) { /* if (rounding bit is set) */ - digit parity_bit; - if (lsb == PyLong_BASE/2) - parity_bit = d[m+1] & 1; - else - parity_bit = d[m] & 2*lsb; - if (parity_bit) - round_up = 1; - else if (d[m] & (lsb-1)) - round_up = 1; - else { - while (--m >= 0) { - if (d[m]) { - round_up = 1; - break; - } - } - } - } - - /* and round up if necessary */ - if (round_up) { - x += 2*lsb; - if (n == DBL_MAX_EXP && - x == ldexp((double)(2*lsb), DBL_MANT_DIG)) { - /* overflow corner case */ - goto overflow; - } - } - - /* shift, adjust for sign, and return */ - x = ldexp(x, rnd_digit*PyLong_SHIFT); - return Py_SIZE(v) < 0 ? -x : x; - - overflow: - PyErr_SetString(PyExc_OverflowError, - "Python int too large to convert to C double"); - return -1.0; -} - /* Create a new long (or int) object from a C pointer */ PyObject * @@ -1209,6 +986,7 @@ PyLong_AsVoidPtr(PyObject *vv) */ #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one +#define PY_ABS_LLONG_MIN (0-(unsigned PY_LONG_LONG)PY_LLONG_MIN) /* Create a new long int object from a C PY_LONG_LONG int. */ @@ -1394,9 +1172,8 @@ PyLong_AsLongLong(PyObject *vv) case 0: return 0; case 1: return v->ob_digit[0]; } - res = _PyLong_AsByteArray( - (PyLongObject *)vv, (unsigned char *)&bytes, - SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); + res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes, + SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ if (res < 0) @@ -1427,9 +1204,8 @@ PyLong_AsUnsignedLongLong(PyObject *vv) case 1: return v->ob_digit[0]; } - res = _PyLong_AsByteArray( - (PyLongObject *)vv, (unsigned char *)&bytes, - SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); + res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes, + SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ if (res < 0) @@ -1466,7 +1242,7 @@ _PyLong_AsUnsignedLongLongMask(PyObject *vv) i = -i; } while (--i >= 0) { - x = (x << PyLong_SHIFT) + v->ob_digit[i]; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; } return x * sign; } @@ -1507,13 +1283,110 @@ PyLong_AsUnsignedLongLongMask(register PyObject *op) } #undef IS_LITTLE_ENDIAN -#endif /* HAVE_LONG_LONG */ +/* Get a C long long int from a Python long or Python int object. + On overflow, returns -1 and sets *overflow to 1 or -1 depending + on the sign of the result. Otherwise *overflow is 0. + + For other errors (e.g., type error), returns -1 and sets an error + condition. +*/ + +PY_LONG_LONG +PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow) +{ + /* This version by Tim Peters */ + register PyLongObject *v; + unsigned PY_LONG_LONG x, prev; + PY_LONG_LONG res; + Py_ssize_t i; + int sign; + int do_decref = 0; /* if nb_int was called */ + + *overflow = 0; + if (vv == NULL) { + PyErr_BadInternalCall(); + return -1; + } + + if (!PyLong_Check(vv)) { + PyNumberMethods *nb; + nb = vv->ob_type->tp_as_number; + if (nb == NULL || nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, + "an integer is required"); + return -1; + } + vv = (*nb->nb_int) (vv); + if (vv == NULL) + return -1; + do_decref = 1; + if (!PyLong_Check(vv)) { + Py_DECREF(vv); + PyErr_SetString(PyExc_TypeError, + "nb_int should return int object"); + return -1; + } + } -#define CHECK_BINOP(v,w) \ - if (!PyLong_Check(v) || !PyLong_Check(w)) { \ - Py_INCREF(Py_NotImplemented); \ - return Py_NotImplemented; \ + res = -1; + v = (PyLongObject *)vv; + i = Py_SIZE(v); + + switch (i) { + case -1: + res = -(sdigit)v->ob_digit[0]; + break; + case 0: + res = 0; + break; + case 1: + res = v->ob_digit[0]; + break; + default: + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -(i); + } + while (--i >= 0) { + prev = x; + x = (x << PyLong_SHIFT) + v->ob_digit[i]; + if ((x >> PyLong_SHIFT) != prev) { + *overflow = sign; + goto exit; + } + } + /* Haven't lost any bits, but casting to long requires extra + * care (see comment above). + */ + if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) { + res = (PY_LONG_LONG)x * sign; + } + else if (sign < 0 && x == PY_ABS_LLONG_MIN) { + res = PY_LLONG_MIN; + } + else { + *overflow = sign; + /* res is already set to -1 */ + } } + exit: + if (do_decref) { + Py_DECREF(vv); + } + return res; +} + +#endif /* HAVE_LONG_LONG */ + +#define CHECK_BINOP(v,w) \ + do { \ + if (!PyLong_Check(v) || !PyLong_Check(w)) { \ + Py_INCREF(Py_NotImplemented); \ + return Py_NotImplemented; \ + } \ + } while(0) /* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d < 2**k if d is nonzero, else 0. */ @@ -1640,7 +1513,7 @@ inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n) pout += size; while (--size >= 0) { digit hi; - rem = (rem << PyLong_SHIFT) + *--pin; + rem = (rem << PyLong_SHIFT) | *--pin; *--pout = hi = (digit)(rem / n); rem -= (twodigits)hi * n; } @@ -1665,8 +1538,122 @@ divrem1(PyLongObject *a, digit n, digit *prem) return long_normalize(z); } -/* Convert a long int object to a string, using a given conversion base. - Return a string object. +/* Convert a long integer to a base 10 string. Returns a new non-shared + string. (Return value is non-shared so that callers can modify the + returned value if necessary.) */ + +static PyObject * +long_to_decimal_string(PyObject *aa) +{ + PyLongObject *scratch, *a; + PyObject *str; + Py_ssize_t size, strlen, size_a, i, j; + digit *pout, *pin, rem, tenpow; + Py_UNICODE *p; + int negative; + + a = (PyLongObject *)aa; + if (a == NULL || !PyLong_Check(a)) { + PyErr_BadInternalCall(); + return NULL; + } + size_a = ABS(Py_SIZE(a)); + negative = Py_SIZE(a) < 0; + + /* quick and dirty upper bound for the number of digits + required to express a in base _PyLong_DECIMAL_BASE: + + #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE)) + + But log2(a) < size_a * PyLong_SHIFT, and + log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT + > 3 * _PyLong_DECIMAL_SHIFT + */ + if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) { + PyErr_SetString(PyExc_OverflowError, + "long is too large to format"); + return NULL; + } + /* the expression size_a * PyLong_SHIFT is now safe from overflow */ + size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT); + scratch = _PyLong_New(size); + if (scratch == NULL) + return NULL; + + /* convert array of base _PyLong_BASE digits in pin to an array of + base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP, + Volume 2 (3rd edn), section 4.4, Method 1b). */ + pin = a->ob_digit; + pout = scratch->ob_digit; + size = 0; + for (i = size_a; --i >= 0; ) { + digit hi = pin[i]; + for (j = 0; j < size; j++) { + twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi; + hi = (digit)(z / _PyLong_DECIMAL_BASE); + pout[j] = (digit)(z - (twodigits)hi * + _PyLong_DECIMAL_BASE); + } + while (hi) { + pout[size++] = hi % _PyLong_DECIMAL_BASE; + hi /= _PyLong_DECIMAL_BASE; + } + /* check for keyboard interrupt */ + SIGCHECK({ + Py_DECREF(scratch); + return NULL; + }); + } + /* pout should have at least one digit, so that the case when a = 0 + works correctly */ + if (size == 0) + pout[size++] = 0; + + /* calculate exact length of output string, and allocate */ + strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT; + tenpow = 10; + rem = pout[size-1]; + while (rem >= tenpow) { + tenpow *= 10; + strlen++; + } + str = PyUnicode_FromUnicode(NULL, strlen); + if (str == NULL) { + Py_DECREF(scratch); + return NULL; + } + + /* fill the string right-to-left */ + p = PyUnicode_AS_UNICODE(str) + strlen; + *p = '\0'; + /* pout[0] through pout[size-2] contribute exactly + _PyLong_DECIMAL_SHIFT digits each */ + for (i=0; i < size - 1; i++) { + rem = pout[i]; + for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { + *--p = '0' + rem % 10; + rem /= 10; + } + } + /* pout[size-1]: always produce at least one decimal digit */ + rem = pout[i]; + do { + *--p = '0' + rem % 10; + rem /= 10; + } while (rem != 0); + + /* and sign */ + if (negative) + *--p = '-'; + + /* check we've counted correctly */ + assert(p == PyUnicode_AS_UNICODE(str)); + Py_DECREF(scratch); + return (PyObject *)str; +} + +/* Convert a long int object to a string, using a given conversion base, + which should be one of 2, 8, 10 or 16. Return a string object. If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'. */ PyObject * @@ -1676,32 +1663,44 @@ _PyLong_Format(PyObject *aa, int base) PyObject *str; Py_ssize_t i, sz; Py_ssize_t size_a; - Py_UNICODE *p; + Py_UNICODE *p, sign = '\0'; int bits; - char sign = '\0'; + + assert(base == 2 || base == 8 || base == 10 || base == 16); + if (base == 10) + return long_to_decimal_string((PyObject *)a); if (a == NULL || !PyLong_Check(a)) { PyErr_BadInternalCall(); return NULL; } - assert(base >= 2 && base <= 36); size_a = ABS(Py_SIZE(a)); /* Compute a rough upper bound for the length of the string */ - i = base; - bits = 0; - while (i > 1) { - ++bits; - i >>= 1; - } - i = 5; - /* ensure we don't get signed overflow in sz calculation */ - if (size_a > (PY_SSIZE_T_MAX - i) / PyLong_SHIFT) { + switch (base) { + case 16: + bits = 4; + break; + case 8: + bits = 3; + break; + case 2: + bits = 1; + break; + default: + assert(0); /* shouldn't ever get here */ + bits = 0; /* to silence gcc warning */ + } + /* compute length of output string: allow 2 characters for prefix and + 1 for possible '-' sign. */ + if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) { PyErr_SetString(PyExc_OverflowError, "int is too large to format"); return NULL; } - sz = i + 1 + (size_a * PyLong_SHIFT - 1) / bits; + /* now size_a * PyLong_SHIFT + 3 <= PY_SSIZE_T_MAX, so the RHS below + is safe from overflow */ + sz = 3 + (size_a * PyLong_SHIFT + (bits - 1)) / bits; assert(sz >= 0); str = PyUnicode_FromUnicode(NULL, sz); if (str == NULL) @@ -1714,106 +1713,33 @@ _PyLong_Format(PyObject *aa, int base) if (Py_SIZE(a) == 0) { *--p = '0'; } - else if ((base & (base - 1)) == 0) { + else { /* JRH: special case for power-of-2 bases */ twodigits accum = 0; int accumbits = 0; /* # of bits in accum */ - int basebits = 1; /* # of bits in base-1 */ - i = base; - while ((i >>= 1) > 1) - ++basebits; - for (i = 0; i < size_a; ++i) { accum |= (twodigits)a->ob_digit[i] << accumbits; accumbits += PyLong_SHIFT; - assert(accumbits >= basebits); + assert(accumbits >= bits); do { - char cdigit = (char)(accum & (base - 1)); + Py_UNICODE cdigit; + cdigit = (Py_UNICODE)(accum & (base - 1)); cdigit += (cdigit < 10) ? '0' : 'a'-10; assert(p > PyUnicode_AS_UNICODE(str)); *--p = cdigit; - accumbits -= basebits; - accum >>= basebits; - } while (i < size_a-1 ? accumbits >= basebits : - accum > 0); - } - } - else { - /* Not 0, and base not a power of 2. Divide repeatedly by - base, but for speed use the highest power of base that - fits in a digit. */ - Py_ssize_t size = size_a; - digit *pin = a->ob_digit; - PyLongObject *scratch; - /* powbasw <- largest power of base that fits in a digit. */ - digit powbase = base; /* powbase == base ** power */ - int power = 1; - for (;;) { - twodigits newpow = powbase * (twodigits)base; - if (newpow >> PyLong_SHIFT) - /* doesn't fit in a digit */ - break; - powbase = (digit)newpow; - ++power; - } - - /* Get a scratch area for repeated division. */ - scratch = _PyLong_New(size); - if (scratch == NULL) { - Py_DECREF(str); - return NULL; + accumbits -= bits; + accum >>= bits; + } while (i < size_a-1 ? accumbits >= bits : accum > 0); } - - /* Repeatedly divide by powbase. */ - do { - int ntostore = power; - digit rem = inplace_divrem1(scratch->ob_digit, - pin, size, powbase); - pin = scratch->ob_digit; /* no need to use a again */ - if (pin[size - 1] == 0) - --size; - SIGCHECK({ - Py_DECREF(scratch); - Py_DECREF(str); - return NULL; - }) - - /* Break rem into digits. */ - assert(ntostore > 0); - do { - digit nextrem = (digit)(rem / base); - char c = (char)(rem - nextrem * base); - assert(p > PyUnicode_AS_UNICODE(str)); - c += (c < 10) ? '0' : 'a'-10; - *--p = c; - rem = nextrem; - --ntostore; - /* Termination is a bit delicate: must not - store leading zeroes, so must get out if - remaining quotient and rem are both 0. */ - } while (ntostore && (size || rem)); - } while (size != 0); - Py_DECREF(scratch); } - if (base == 16) { + if (base == 16) *--p = 'x'; - *--p = '0'; - } - else if (base == 8) { + else if (base == 8) *--p = 'o'; - *--p = '0'; - } - else if (base == 2) { + else /* (base == 2) */ *--p = 'b'; - *--p = '0'; - } - else if (base != 10) { - *--p = '#'; - *--p = '0' + base%10; - if (base > 10) - *--p = '0' + base/10; - } + *--p = '0'; if (sign) *--p = sign; if (p != PyUnicode_AS_UNICODE(str)) { @@ -2072,8 +1998,8 @@ digit beyond the first. twodigits convmax = base; int i = 1; - log_base_BASE[base] = log((double)base) / - log((double)PyLong_BASE); + log_base_BASE[base] = (log((double)base) / + log((double)PyLong_BASE)); for (;;) { twodigits next = convmax * base; if (next > PyLong_BASE) @@ -2117,7 +2043,7 @@ digit beyond the first. c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)]; for (i = 1; i < convwidth && str != scan; ++i, ++str) { c = (twodigits)(c * base + - (int)_PyLong_DigitValue[Py_CHARMASK(*str)]); + (int)_PyLong_DigitValue[Py_CHARMASK(*str)]); assert(c < PyLong_BASE); } @@ -2190,7 +2116,7 @@ digit beyond the first. long_normalize(z); return (PyObject *) maybe_small_long(z); - onError: + onError: Py_XDECREF(z); slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200; strobj = PyUnicode_FromStringAndSize(orig_str, slen); @@ -2207,17 +2133,34 @@ PyObject * PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base) { PyObject *result; - char *buffer = (char *)PyMem_MALLOC(length+1); + PyObject *asciidig; + char *buffer, *end; + Py_ssize_t i, buflen; + Py_UNICODE *ptr; - if (buffer == NULL) + asciidig = PyUnicode_TransformDecimalToASCII(u, length); + if (asciidig == NULL) return NULL; - - if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) { - PyMem_FREE(buffer); + /* Replace non-ASCII whitespace with ' ' */ + ptr = PyUnicode_AS_UNICODE(asciidig); + for (i = 0; i < length; i++) { + Py_UNICODE ch = ptr[i]; + if (ch > 127 && Py_UNICODE_ISSPACE(ch)) + ptr[i] = ' '; + } + buffer = _PyUnicode_AsStringAndSize(asciidig, &buflen); + if (buffer == NULL) { + Py_DECREF(asciidig); return NULL; } - result = PyLong_FromString(buffer, NULL, base); - PyMem_FREE(buffer); + result = PyLong_FromString(buffer, &end, base); + if (result != NULL && end != buffer + buflen) { + PyErr_SetString(PyExc_ValueError, + "null byte in argument for int()"); + Py_DECREF(result); + result = NULL; + } + Py_DECREF(asciidig); return result; } @@ -2346,12 +2289,12 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) single-digit quotient q, remainder in vk[0:size_w]. */ SIGCHECK({ - Py_DECREF(a); - Py_DECREF(w); - Py_DECREF(v); - *prem = NULL; - return NULL; - }) + Py_DECREF(a); + Py_DECREF(w); + Py_DECREF(v); + *prem = NULL; + return NULL; + }); /* estimate quotient digit q; may overestimate by 1 (rare) */ vtop = vk[size_w]; @@ -2377,7 +2320,7 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) (stwodigits)q * (stwodigits)w0[i]; vk[i] = (digit)z & PyLong_MASK; zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits, - z, PyLong_SHIFT); + z, PyLong_SHIFT); } /* add w back if q was too large (this branch taken rarely) */ @@ -2406,6 +2349,153 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) return long_normalize(a); } +/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <= + abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is + rounded to DBL_MANT_DIG significant bits using round-half-to-even. + If a == 0, return 0.0 and set *e = 0. If the resulting exponent + e is larger than PY_SSIZE_T_MAX, raise OverflowError and return + -1.0. */ + +/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */ +#if DBL_MANT_DIG == 53 +#define EXP2_DBL_MANT_DIG 9007199254740992.0 +#else +#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG)) +#endif + +double +_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e) +{ + Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size; + /* See below for why x_digits is always large enough. */ + digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT]; + double dx; + /* Correction term for round-half-to-even rounding. For a digit x, + "x + half_even_correction[x & 7]" gives x rounded to the nearest + multiple of 4, rounding ties to a multiple of 8. */ + static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1}; + + a_size = ABS(Py_SIZE(a)); + if (a_size == 0) { + /* Special case for 0: significand 0.0, exponent 0. */ + *e = 0; + return 0.0; + } + a_bits = bits_in_digit(a->ob_digit[a_size-1]); + /* The following is an overflow-free version of the check + "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */ + if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 && + (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 || + a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1)) + goto overflow; + a_bits = (a_size - 1) * PyLong_SHIFT + a_bits; + + /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size] + (shifting left if a_bits <= DBL_MANT_DIG + 2). + + Number of digits needed for result: write // for floor division. + Then if shifting left, we end up using + + 1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT + + digits. If shifting right, we use + + a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT + + digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with + the inequalities + + m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT + m // PyLong_SHIFT - n // PyLong_SHIFT <= + 1 + (m - n - 1) // PyLong_SHIFT, + + valid for any integers m and n, we find that x_size satisfies + + x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT + + in both cases. + */ + if (a_bits <= DBL_MANT_DIG + 2) { + shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT; + shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT; + x_size = 0; + while (x_size < shift_digits) + x_digits[x_size++] = 0; + rem = v_lshift(x_digits + x_size, a->ob_digit, a_size, + (int)shift_bits); + x_size += a_size; + x_digits[x_size++] = rem; + } + else { + shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT; + shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT; + rem = v_rshift(x_digits, a->ob_digit + shift_digits, + a_size - shift_digits, (int)shift_bits); + x_size = a_size - shift_digits; + /* For correct rounding below, we need the least significant + bit of x to be 'sticky' for this shift: if any of the bits + shifted out was nonzero, we set the least significant bit + of x. */ + if (rem) + x_digits[0] |= 1; + else + while (shift_digits > 0) + if (a->ob_digit[--shift_digits]) { + x_digits[0] |= 1; + break; + } + } + assert(1 <= x_size && + x_size <= (Py_ssize_t)(sizeof(x_digits)/sizeof(digit))); + + /* Round, and convert to double. */ + x_digits[0] += half_even_correction[x_digits[0] & 7]; + dx = x_digits[--x_size]; + while (x_size > 0) + dx = dx * PyLong_BASE + x_digits[--x_size]; + + /* Rescale; make correction if result is 1.0. */ + dx /= 4.0 * EXP2_DBL_MANT_DIG; + if (dx == 1.0) { + if (a_bits == PY_SSIZE_T_MAX) + goto overflow; + dx = 0.5; + a_bits += 1; + } + + *e = a_bits; + return Py_SIZE(a) < 0 ? -dx : dx; + + overflow: + /* exponent > PY_SSIZE_T_MAX */ + PyErr_SetString(PyExc_OverflowError, + "huge integer: number of bits overflows a Py_ssize_t"); + *e = 0; + return -1.0; +} + +/* Get a C double from a long int object. Rounds to the nearest double, + using the round-half-to-even rule in the case of a tie. */ + +double +PyLong_AsDouble(PyObject *v) +{ + Py_ssize_t exponent; + double x; + + if (v == NULL || !PyLong_Check(v)) { + PyErr_BadInternalCall(); + return -1.0; + } + x = _PyLong_Frexp((PyLongObject *)v, &exponent); + if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) { + PyErr_SetString(PyExc_OverflowError, + "long int too large to convert to float"); + return -1.0; + } + return ldexp(x, (int)exponent); +} + /* Methods */ static void @@ -2414,22 +2504,13 @@ long_dealloc(PyObject *v) Py_TYPE(v)->tp_free(v); } -static PyObject * -long_repr(PyObject *v) -{ - return _PyLong_Format(v, 10); -} - static int long_compare(PyLongObject *a, PyLongObject *b) { Py_ssize_t sign; if (Py_SIZE(a) != Py_SIZE(b)) { - if (ABS(Py_SIZE(a)) == 0 && ABS(Py_SIZE(b)) == 0) - sign = 0; - else - sign = Py_SIZE(a) - Py_SIZE(b); + sign = Py_SIZE(a) - Py_SIZE(b); } else { Py_ssize_t i = ABS(Py_SIZE(a)); @@ -2487,16 +2568,13 @@ long_richcompare(PyObject *self, PyObject *other, int op) return v; } -static long +static Py_hash_t long_hash(PyLongObject *v) { - unsigned long x; + Py_uhash_t x; Py_ssize_t i; int sign; - /* This is designed so that Python ints and longs with the - same value hash to the same value, otherwise comparisons - of mapping keys will turn out weird */ i = Py_SIZE(v); switch(i) { case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0]; @@ -2509,23 +2587,42 @@ long_hash(PyLongObject *v) sign = -1; i = -(i); } - /* The following loop produces a C unsigned long x such that x is - congruent to the absolute value of v modulo ULONG_MAX. The - resulting x is nonzero if and only if v is. */ while (--i >= 0) { - /* Force a native long #-bits (32 or 64) circular shift */ - x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT); + /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we + want to compute x * 2**PyLong_SHIFT + v->ob_digit[i] modulo + _PyHASH_MODULUS. + + The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS + amounts to a rotation of the bits of x. To see this, write + + x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z + + where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top + PyLong_SHIFT bits of x (those that are shifted out of the + original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) & + _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT + bits of x, shifted up. Then since 2**_PyHASH_BITS is + congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is + congruent to y modulo _PyHASH_MODULUS. So + + x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS). + + The right-hand side is just the result of rotating the + _PyHASH_BITS bits of x left by PyLong_SHIFT places; since + not all _PyHASH_BITS bits of x are 1s, the same is true + after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is + the reduction of x*2**PyLong_SHIFT modulo + _PyHASH_MODULUS. */ + x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) | + (x >> (_PyHASH_BITS - PyLong_SHIFT)); x += v->ob_digit[i]; - /* If the addition above overflowed we compensate by - incrementing. This preserves the value modulo - ULONG_MAX. */ - if (x < v->ob_digit[i]) - x++; + if (x >= _PyHASH_MODULUS) + x -= _PyHASH_MODULUS; } x = x * sign; - if (x == (unsigned long)-1) - x = (unsigned long)-2; - return (long)x; + if (x == (Py_uhash_t)-1) + x = (Py_uhash_t)-2; + return (Py_hash_t)x; } @@ -2543,8 +2640,8 @@ x_add(PyLongObject *a, PyLongObject *b) if (size_a < size_b) { { PyLongObject *temp = a; a = b; b = temp; } { Py_ssize_t size_temp = size_a; - size_a = size_b; - size_b = size_temp; } + size_a = size_b; + size_b = size_temp; } } z = _PyLong_New(size_a+1); if (z == NULL) @@ -2579,8 +2676,8 @@ x_sub(PyLongObject *a, PyLongObject *b) sign = -1; { PyLongObject *temp = a; a = b; b = temp; } { Py_ssize_t size_temp = size_a; - size_a = size_b; - size_b = size_temp; } + size_a = size_b; + size_b = size_temp; } } else if (size_a == size_b) { /* Find highest digit where a and b differ: */ @@ -2708,9 +2805,9 @@ x_mul(PyLongObject *a, PyLongObject *b) digit *paend = a->ob_digit + size_a; SIGCHECK({ - Py_DECREF(z); - return NULL; - }) + Py_DECREF(z); + return NULL; + }); carry = *pz + f * f; *pz++ = (digit)(carry & PyLong_MASK); @@ -2746,9 +2843,9 @@ x_mul(PyLongObject *a, PyLongObject *b) digit *pbend = b->ob_digit + size_b; SIGCHECK({ - Py_DECREF(z); - return NULL; - }) + Py_DECREF(z); + return NULL; + }); while (pb < pbend) { carry += *pz + *pb++ * f; @@ -2772,7 +2869,10 @@ x_mul(PyLongObject *a, PyLongObject *b) Returns 0 on success, -1 on failure. */ static int -kmul_split(PyLongObject *n, Py_ssize_t size, PyLongObject **high, PyLongObject **low) +kmul_split(PyLongObject *n, + Py_ssize_t size, + PyLongObject **high, + PyLongObject **low) { PyLongObject *hi, *lo; Py_ssize_t size_lo, size_hi; @@ -2961,7 +3061,7 @@ k_mul(PyLongObject *a, PyLongObject *b) return long_normalize(ret); - fail: + fail: Py_XDECREF(ret); Py_XDECREF(ah); Py_XDECREF(al); @@ -3071,7 +3171,7 @@ k_lopsided_mul(PyLongObject *a, PyLongObject *b) Py_DECREF(bslice); return long_normalize(ret); - fail: + fail: Py_DECREF(ret); Py_XDECREF(bslice); return NULL; @@ -3183,47 +3283,267 @@ long_div(PyObject *a, PyObject *b) return (PyObject *)div; } +/* PyLong/PyLong -> float, with correctly rounded result. */ + +#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT) +#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT) + static PyObject * -long_true_divide(PyObject *a, PyObject *b) +long_true_divide(PyObject *v, PyObject *w) { - double ad, bd; - int failed, aexp = -1, bexp = -1; + PyLongObject *a, *b, *x; + Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits; + digit mask, low; + int inexact, negate, a_is_small, b_is_small; + double dx, result; - CHECK_BINOP(a, b); - ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp); - bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp); - failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred(); - if (failed) - return NULL; - /* 'aexp' and 'bexp' were initialized to -1 to silence gcc-4.0.x, - but should really be set correctly after successful calls to - _PyLong_AsScaledDouble() */ - assert(aexp >= 0 && bexp >= 0); + CHECK_BINOP(v, w); + a = (PyLongObject *)v; + b = (PyLongObject *)w; + + /* + Method in a nutshell: + + 0. reduce to case a, b > 0; filter out obvious underflow/overflow + 1. choose a suitable integer 'shift' + 2. use integer arithmetic to compute x = floor(2**-shift*a/b) + 3. adjust x for correct rounding + 4. convert x to a double dx with the same value + 5. return ldexp(dx, shift). + + In more detail: + + 0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b + returns either 0.0 or -0.0, depending on the sign of b. For a and + b both nonzero, ignore signs of a and b, and add the sign back in + at the end. Now write a_bits and b_bits for the bit lengths of a + and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise + for b). Then + + 2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1). + + So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and + so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP - + DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of + the way, we can assume that + + DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP. + + 1. The integer 'shift' is chosen so that x has the right number of + bits for a double, plus two or three extra bits that will be used + in the rounding decisions. Writing a_bits and b_bits for the + number of significant bits in a and b respectively, a + straightforward formula for shift is: + + shift = a_bits - b_bits - DBL_MANT_DIG - 2 + + This is fine in the usual case, but if a/b is smaller than the + smallest normal float then it can lead to double rounding on an + IEEE 754 platform, giving incorrectly rounded results. So we + adjust the formula slightly. The actual formula used is: + + shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2 + + 2. The quantity x is computed by first shifting a (left -shift bits + if shift <= 0, right shift bits if shift > 0) and then dividing by + b. For both the shift and the division, we keep track of whether + the result is inexact, in a flag 'inexact'; this information is + needed at the rounding stage. + + With the choice of shift above, together with our assumption that + a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows + that x >= 1. + + 3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace + this with an exactly representable float of the form + + round(x/2**extra_bits) * 2**(extra_bits+shift). + + For float representability, we need x/2**extra_bits < + 2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP - + DBL_MANT_DIG. This translates to the condition: + + extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG + + To round, we just modify the bottom digit of x in-place; this can + end up giving a digit with value > PyLONG_MASK, but that's not a + problem since digits can hold values up to 2*PyLONG_MASK+1. + + With the original choices for shift above, extra_bits will always + be 2 or 3. Then rounding under the round-half-to-even rule, we + round up iff the most significant of the extra bits is 1, and + either: (a) the computation of x in step 2 had an inexact result, + or (b) at least one other of the extra bits is 1, or (c) the least + significant bit of x (above those to be rounded) is 1. + + 4. Conversion to a double is straightforward; all floating-point + operations involved in the conversion are exact, so there's no + danger of rounding errors. + + 5. Use ldexp(x, shift) to compute x*2**shift, the final result. + The result will always be exactly representable as a double, except + in the case that it overflows. To avoid dependence on the exact + behaviour of ldexp on overflow, we check for overflow before + applying ldexp. The result of ldexp is adjusted for sign before + returning. + */ - if (bd == 0.0) { + /* Reduce to case where a and b are both positive. */ + a_size = ABS(Py_SIZE(a)); + b_size = ABS(Py_SIZE(b)); + negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0); + if (b_size == 0) { PyErr_SetString(PyExc_ZeroDivisionError, - "int division or modulo by zero"); - return NULL; + "division by zero"); + goto error; } - - /* True value is very close to ad/bd * 2**(PyLong_SHIFT*(aexp-bexp)) */ - ad /= bd; /* overflow/underflow impossible here */ - aexp -= bexp; - if (aexp > INT_MAX / PyLong_SHIFT) + if (a_size == 0) + goto underflow_or_zero; + + /* Fast path for a and b small (exactly representable in a double). + Relies on floating-point division being correctly rounded; results + may be subject to double rounding on x86 machines that operate with + the x87 FPU set to 64-bit precision. */ + a_is_small = a_size <= MANT_DIG_DIGITS || + (a_size == MANT_DIG_DIGITS+1 && + a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); + b_is_small = b_size <= MANT_DIG_DIGITS || + (b_size == MANT_DIG_DIGITS+1 && + b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); + if (a_is_small && b_is_small) { + double da, db; + da = a->ob_digit[--a_size]; + while (a_size > 0) + da = da * PyLong_BASE + a->ob_digit[--a_size]; + db = b->ob_digit[--b_size]; + while (b_size > 0) + db = db * PyLong_BASE + b->ob_digit[--b_size]; + result = da / db; + goto success; + } + + /* Catch obvious cases of underflow and overflow */ + diff = a_size - b_size; + if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1) + /* Extreme overflow */ goto overflow; - else if (aexp < -(INT_MAX / PyLong_SHIFT)) - return PyFloat_FromDouble(0.0); /* underflow to 0 */ - errno = 0; - ad = ldexp(ad, aexp * PyLong_SHIFT); - if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */ + else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT) + /* Extreme underflow */ + goto underflow_or_zero; + /* Next line is now safe from overflowing a Py_ssize_t */ + diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) - + bits_in_digit(b->ob_digit[b_size - 1]); + /* Now diff = a_bits - b_bits. */ + if (diff > DBL_MAX_EXP) goto overflow; - return PyFloat_FromDouble(ad); + else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1) + goto underflow_or_zero; + + /* Choose value for shift; see comments for step 1 above. */ + shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2; + + inexact = 0; + + /* x = abs(a * 2**-shift) */ + if (shift <= 0) { + Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT; + digit rem; + /* x = a << -shift */ + if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) { + /* In practice, it's probably impossible to end up + here. Both a and b would have to be enormous, + using close to SIZE_T_MAX bytes of memory each. */ + PyErr_SetString(PyExc_OverflowError, + "intermediate overflow during division"); + goto error; + } + x = _PyLong_New(a_size + shift_digits + 1); + if (x == NULL) + goto error; + for (i = 0; i < shift_digits; i++) + x->ob_digit[i] = 0; + rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit, + a_size, -shift % PyLong_SHIFT); + x->ob_digit[a_size + shift_digits] = rem; + } + else { + Py_ssize_t shift_digits = shift / PyLong_SHIFT; + digit rem; + /* x = a >> shift */ + assert(a_size >= shift_digits); + x = _PyLong_New(a_size - shift_digits); + if (x == NULL) + goto error; + rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits, + a_size - shift_digits, shift % PyLong_SHIFT); + /* set inexact if any of the bits shifted out is nonzero */ + if (rem) + inexact = 1; + while (!inexact && shift_digits > 0) + if (a->ob_digit[--shift_digits]) + inexact = 1; + } + long_normalize(x); + x_size = Py_SIZE(x); + + /* x //= b. If the remainder is nonzero, set inexact. We own the only + reference to x, so it's safe to modify it in-place. */ + if (b_size == 1) { + digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size, + b->ob_digit[0]); + long_normalize(x); + if (rem) + inexact = 1; + } + else { + PyLongObject *div, *rem; + div = x_divrem(x, b, &rem); + Py_DECREF(x); + x = div; + if (x == NULL) + goto error; + if (Py_SIZE(rem)) + inexact = 1; + Py_DECREF(rem); + } + x_size = ABS(Py_SIZE(x)); + assert(x_size > 0); /* result of division is never zero */ + x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]); + + /* The number of extra bits that have to be rounded away. */ + extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG; + assert(extra_bits == 2 || extra_bits == 3); + + /* Round by directly modifying the low digit of x. */ + mask = (digit)1 << (extra_bits - 1); + low = x->ob_digit[0] | inexact; + if (low & mask && low & (3*mask-1)) + low += mask; + x->ob_digit[0] = low & ~(mask-1U); + + /* Convert x to a double dx; the conversion is exact. */ + dx = x->ob_digit[--x_size]; + while (x_size > 0) + dx = dx * PyLong_BASE + x->ob_digit[--x_size]; + Py_DECREF(x); + + /* Check whether ldexp result will overflow a double. */ + if (shift + x_bits >= DBL_MAX_EXP && + (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits))) + goto overflow; + result = ldexp(dx, (int)shift); + + success: + return PyFloat_FromDouble(negate ? -result : result); -overflow: + underflow_or_zero: + return PyFloat_FromDouble(negate ? -0.0 : 0.0); + + overflow: PyErr_SetString(PyExc_OverflowError, - "int/int too large for a float"); + "integer division result too large for a float"); + error: return NULL; - } static PyObject * @@ -3298,7 +3618,7 @@ long_pow(PyObject *v, PyObject *w, PyObject *x) if (Py_SIZE(b) < 0) { /* if exponent is negative */ if (c) { PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " - "cannot be negative when 3rd argument specified"); + "cannot be negative when 3rd argument specified"); goto Error; } else { @@ -3364,26 +3684,28 @@ long_pow(PyObject *v, PyObject *w, PyObject *x) * is NULL. */ #define REDUCE(X) \ - if (c != NULL) { \ - if (l_divmod(X, c, NULL, &temp) < 0) \ - goto Error; \ - Py_XDECREF(X); \ - X = temp; \ - temp = NULL; \ - } + do { \ + if (c != NULL) { \ + if (l_divmod(X, c, NULL, &temp) < 0) \ + goto Error; \ + Py_XDECREF(X); \ + X = temp; \ + temp = NULL; \ + } \ + } while(0) /* Multiply two values, then reduce the result: result = X*Y % c. If c is NULL, skip the mod. */ -#define MULT(X, Y, result) \ -{ \ - temp = (PyLongObject *)long_mul(X, Y); \ - if (temp == NULL) \ - goto Error; \ - Py_XDECREF(result); \ - result = temp; \ - temp = NULL; \ - REDUCE(result) \ -} +#define MULT(X, Y, result) \ + do { \ + temp = (PyLongObject *)long_mul(X, Y); \ + if (temp == NULL) \ + goto Error; \ + Py_XDECREF(result); \ + result = temp; \ + temp = NULL; \ + REDUCE(result); \ + } while(0) if (Py_SIZE(b) <= FIVEARY_CUTOFF) { /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */ @@ -3392,9 +3714,9 @@ long_pow(PyObject *v, PyObject *w, PyObject *x) digit bi = b->ob_digit[i]; for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) { - MULT(z, z, z) + MULT(z, z, z); if (bi & j) - MULT(z, a, z) + MULT(z, a, z); } } } @@ -3403,7 +3725,7 @@ long_pow(PyObject *v, PyObject *w, PyObject *x) Py_INCREF(z); /* still holds 1L */ table[0] = z; for (i = 1; i < 32; ++i) - MULT(table[i-1], a, table[i]) + MULT(table[i-1], a, table[i]); for (i = Py_SIZE(b) - 1; i >= 0; --i) { const digit bi = b->ob_digit[i]; @@ -3411,9 +3733,9 @@ long_pow(PyObject *v, PyObject *w, PyObject *x) for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) { const int index = (bi >> j) & 0x1f; for (k = 0; k < 5; ++k) - MULT(z, z, z) + MULT(z, z, z); if (index) - MULT(z, table[index], z) + MULT(z, table[index], z); } } } @@ -3428,13 +3750,13 @@ long_pow(PyObject *v, PyObject *w, PyObject *x) } goto Done; - Error: + Error: if (z != NULL) { Py_DECREF(z); z = NULL; } /* fall through */ - Done: + Done: if (Py_SIZE(b) > FIVEARY_CUTOFF) { for (i = 0; i < 32; ++i) Py_XDECREF(table[i]); @@ -3489,15 +3811,14 @@ long_abs(PyLongObject *v) static int long_bool(PyLongObject *v) { - return ABS(Py_SIZE(v)) != 0; + return Py_SIZE(v) != 0; } static PyObject * long_rshift(PyLongObject *a, PyLongObject *b) { PyLongObject *z = NULL; - long shiftby; - Py_ssize_t newsize, wordshift, loshift, hishift, i, j; + Py_ssize_t shiftby, newsize, wordshift, loshift, hishift, i, j; digit lomask, himask; CHECK_BINOP(a, b); @@ -3516,8 +3837,7 @@ long_rshift(PyLongObject *a, PyLongObject *b) Py_DECREF(a2); } else { - - shiftby = PyLong_AsLong((PyObject *)b); + shiftby = PyLong_AsSsize_t((PyObject *)b); if (shiftby == -1L && PyErr_Occurred()) goto rshift_error; if (shiftby < 0) { @@ -3541,12 +3861,11 @@ long_rshift(PyLongObject *a, PyLongObject *b) for (i = 0, j = wordshift; i < newsize; i++, j++) { z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask; if (i+1 < newsize) - z->ob_digit[i] |= - (a->ob_digit[j+1] << hishift) & himask; + z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask; } z = long_normalize(z); } -rshift_error: + rshift_error: return (PyObject *) maybe_small_long(z); } @@ -3558,27 +3877,21 @@ long_lshift(PyObject *v, PyObject *w) PyLongObject *a = (PyLongObject*)v; PyLongObject *b = (PyLongObject*)w; PyLongObject *z = NULL; - long shiftby; - Py_ssize_t oldsize, newsize, wordshift, remshift, i, j; + Py_ssize_t shiftby, oldsize, newsize, wordshift, remshift, i, j; twodigits accum; CHECK_BINOP(a, b); - shiftby = PyLong_AsLong((PyObject *)b); + shiftby = PyLong_AsSsize_t((PyObject *)b); if (shiftby == -1L && PyErr_Occurred()) goto lshift_error; if (shiftby < 0) { PyErr_SetString(PyExc_ValueError, "negative shift count"); goto lshift_error; } - if ((long)(int)shiftby != shiftby) { - PyErr_SetString(PyExc_ValueError, - "outrageous left shift count"); - goto lshift_error; - } /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */ - wordshift = (int)shiftby / PyLong_SHIFT; - remshift = (int)shiftby - wordshift * PyLong_SHIFT; + wordshift = shiftby / PyLong_SHIFT; + remshift = shiftby - wordshift * PyLong_SHIFT; oldsize = ABS(Py_SIZE(a)); newsize = oldsize + wordshift; @@ -3602,116 +3915,150 @@ long_lshift(PyObject *v, PyObject *w) else assert(!accum); z = long_normalize(z); -lshift_error: + lshift_error: return (PyObject *) maybe_small_long(z); } +/* Compute two's complement of digit vector a[0:m], writing result to + z[0:m]. The digit vector a need not be normalized, but should not + be entirely zero. a and z may point to the same digit vector. */ + +static void +v_complement(digit *z, digit *a, Py_ssize_t m) +{ + Py_ssize_t i; + digit carry = 1; + for (i = 0; i < m; ++i) { + carry += a[i] ^ PyLong_MASK; + z[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + } + assert(carry == 0); +} /* Bitwise and/xor/or operations */ static PyObject * long_bitwise(PyLongObject *a, int op, /* '&', '|', '^' */ - PyLongObject *b) + PyLongObject *b) { - digit maska, maskb; /* 0 or PyLong_MASK */ - int negz; + int nega, negb, negz; Py_ssize_t size_a, size_b, size_z, i; PyLongObject *z; - digit diga, digb; - PyObject *v; - if (Py_SIZE(a) < 0) { - a = (PyLongObject *) long_invert(a); - if (a == NULL) + /* Bitwise operations for negative numbers operate as though + on a two's complement representation. So convert arguments + from sign-magnitude to two's complement, and convert the + result back to sign-magnitude at the end. */ + + /* If a is negative, replace it by its two's complement. */ + size_a = ABS(Py_SIZE(a)); + nega = Py_SIZE(a) < 0; + if (nega) { + z = _PyLong_New(size_a); + if (z == NULL) return NULL; - maska = PyLong_MASK; + v_complement(z->ob_digit, a->ob_digit, size_a); + a = z; } - else { + else + /* Keep reference count consistent. */ Py_INCREF(a); - maska = 0; - } - if (Py_SIZE(b) < 0) { - b = (PyLongObject *) long_invert(b); - if (b == NULL) { + + /* Same for b. */ + size_b = ABS(Py_SIZE(b)); + negb = Py_SIZE(b) < 0; + if (negb) { + z = _PyLong_New(size_b); + if (z == NULL) { Py_DECREF(a); return NULL; } - maskb = PyLong_MASK; + v_complement(z->ob_digit, b->ob_digit, size_b); + b = z; } - else { + else Py_INCREF(b); - maskb = 0; + + /* Swap a and b if necessary to ensure size_a >= size_b. */ + if (size_a < size_b) { + z = a; a = b; b = z; + size_z = size_a; size_a = size_b; size_b = size_z; + negz = nega; nega = negb; negb = negz; } - negz = 0; + /* JRH: The original logic here was to allocate the result value (z) + as the longer of the two operands. However, there are some cases + where the result is guaranteed to be shorter than that: AND of two + positives, OR of two negatives: use the shorter number. AND with + mixed signs: use the positive number. OR with mixed signs: use the + negative number. + */ switch (op) { case '^': - if (maska != maskb) { - maska ^= PyLong_MASK; - negz = -1; - } + negz = nega ^ negb; + size_z = size_a; break; case '&': - if (maska && maskb) { - op = '|'; - maska ^= PyLong_MASK; - maskb ^= PyLong_MASK; - negz = -1; - } + negz = nega & negb; + size_z = negb ? size_a : size_b; break; case '|': - if (maska || maskb) { - op = '&'; - maska ^= PyLong_MASK; - maskb ^= PyLong_MASK; - negz = -1; - } + negz = nega | negb; + size_z = negb ? size_b : size_a; break; + default: + PyErr_BadArgument(); + return NULL; } - /* JRH: The original logic here was to allocate the result value (z) - as the longer of the two operands. However, there are some cases - where the result is guaranteed to be shorter than that: AND of two - positives, OR of two negatives: use the shorter number. AND with - mixed signs: use the positive number. OR with mixed signs: use the - negative number. After the transformations above, op will be '&' - iff one of these cases applies, and mask will be non-0 for operands - whose length should be ignored. - */ - - size_a = Py_SIZE(a); - size_b = Py_SIZE(b); - size_z = op == '&' - ? (maska - ? size_b - : (maskb ? size_a : MIN(size_a, size_b))) - : MAX(size_a, size_b); - z = _PyLong_New(size_z); + /* We allow an extra digit if z is negative, to make sure that + the final two's complement of z doesn't overflow. */ + z = _PyLong_New(size_z + negz); if (z == NULL) { Py_DECREF(a); Py_DECREF(b); return NULL; } - for (i = 0; i < size_z; ++i) { - diga = (i < size_a ? a->ob_digit[i] : 0) ^ maska; - digb = (i < size_b ? b->ob_digit[i] : 0) ^ maskb; - switch (op) { - case '&': z->ob_digit[i] = diga & digb; break; - case '|': z->ob_digit[i] = diga | digb; break; - case '^': z->ob_digit[i] = diga ^ digb; break; - } + /* Compute digits for overlap of a and b. */ + switch(op) { + case '&': + for (i = 0; i < size_b; ++i) + z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i]; + break; + case '|': + for (i = 0; i < size_b; ++i) + z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i]; + break; + case '^': + for (i = 0; i < size_b; ++i) + z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i]; + break; + default: + PyErr_BadArgument(); + return NULL; + } + + /* Copy any remaining digits of a, inverting if necessary. */ + if (op == '^' && negb) + for (; i < size_z; ++i) + z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK; + else if (i < size_z) + memcpy(&z->ob_digit[i], &a->ob_digit[i], + (size_z-i)*sizeof(digit)); + + /* Complement result if negative. */ + if (negz) { + Py_SIZE(z) = -(Py_SIZE(z)); + z->ob_digit[size_z] = PyLong_MASK; + v_complement(z->ob_digit, z->ob_digit, size_z+1); } Py_DECREF(a); Py_DECREF(b); - z = long_normalize(z); - if (negz == 0) - return (PyObject *) maybe_small_long(z); - v = long_invert(z); - Py_DECREF(z); - return v; + return (PyObject *)maybe_small_long(long_normalize(z)); } static PyObject * @@ -3767,23 +4114,34 @@ long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); static PyObject * long_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { - PyObject *x = NULL; - int base = -909; /* unlikely! */ + PyObject *obase = NULL, *x = NULL; + long base; + int overflow; static char *kwlist[] = {"x", "base", 0}; if (type != &PyLong_Type) return long_subtype_new(type, args, kwds); /* Wimp out */ - if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist, - &x, &base)) + if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:int", kwlist, + &x, &obase)) return NULL; if (x == NULL) return PyLong_FromLong(0L); - if (base == -909) + if (obase == NULL) return PyNumber_Long(x); - else if (PyUnicode_Check(x)) + + base = PyLong_AsLongAndOverflow(obase, &overflow); + if (base == -1 && PyErr_Occurred()) + return NULL; + if (overflow || (base != 0 && base < 2) || base > 36) { + PyErr_SetString(PyExc_ValueError, + "int() arg 2 must be >= 2 and <= 36"); + return NULL; + } + + if (PyUnicode_Check(x)) return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x), PyUnicode_GET_SIZE(x), - base); + (int)base); else if (PyByteArray_Check(x) || PyBytes_Check(x)) { /* Since PyLong_FromString doesn't have a length parameter, * check here for possible NULs in the string. */ @@ -3797,15 +4155,15 @@ long_new(PyTypeObject *type, PyObject *args, PyObject *kwds) /* We only see this if there's a null byte in x, x is a bytes or buffer, *and* a base is given. */ PyErr_Format(PyExc_ValueError, - "invalid literal for int() with base %d: %R", - base, x); + "invalid literal for int() with base %d: %R", + (int)base, x); return NULL; } - return PyLong_FromString(string, NULL, base); + return PyLong_FromString(string, NULL, (int)base); } else { PyErr_SetString(PyExc_TypeError, - "int() can't convert non-string with explicit base"); + "int() can't convert non-string with explicit base"); return NULL; } } @@ -3870,140 +4228,169 @@ long__format__(PyObject *self, PyObject *args) PyUnicode_GET_SIZE(format_spec)); } -static PyObject * -long_round(PyObject *self, PyObject *args) +/* Return a pair (q, r) such that a = b * q + r, and + abs(r) <= abs(b)/2, with equality possible only if q is even. + In other words, q == a / b, rounded to the nearest integer using + round-half-to-even. */ + +PyObject * +_PyLong_DivmodNear(PyObject *a, PyObject *b) { - PyObject *o_ndigits=NULL, *temp; - PyLongObject *pow=NULL, *q=NULL, *r=NULL, *ndigits=NULL, *one; - int errcode; - digit q_mod_4; - - /* Notes on the algorithm: to round to the nearest 10**n (n positive), - the straightforward method is: - - (1) divide by 10**n - (2) round to nearest integer (round to even in case of tie) - (3) multiply result by 10**n. - - But the rounding step involves examining the fractional part of the - quotient to see whether it's greater than 0.5 or not. Since we - want to do the whole calculation in integer arithmetic, it's - simpler to do: - - (1) divide by (10**n)/2 - (2) round to nearest multiple of 2 (multiple of 4 in case of tie) - (3) multiply result by (10**n)/2. - - Then all we need to know about the fractional part of the quotient - arising in step (2) is whether it's zero or not. - - Doing both a multiplication and division is wasteful, and is easily - avoided if we just figure out how much to adjust the original input - by to do the rounding. - - Here's the whole algorithm expressed in Python. - - def round(self, ndigits = None): - """round(int, int) -> int""" - if ndigits is None or ndigits >= 0: - return self - pow = 10**-ndigits >> 1 - q, r = divmod(self, pow) - self -= r - if (q & 1 != 0): - if (q & 2 == r == 0): - self -= pow - else: - self += pow - return self + PyLongObject *quo = NULL, *rem = NULL; + PyObject *one = NULL, *twice_rem, *result, *temp; + int cmp, quo_is_odd, quo_is_neg; + + /* Equivalent Python code: + + def divmod_near(a, b): + q, r = divmod(a, b) + # round up if either r / b > 0.5, or r / b == 0.5 and q is odd. + # The expression r / b > 0.5 is equivalent to 2 * r > b if b is + # positive, 2 * r < b if b negative. + greater_than_half = 2*r > b if b > 0 else 2*r < b + exactly_half = 2*r == b + if greater_than_half or exactly_half and q % 2 == 1: + q += 1 + r -= b + return q, r */ + if (!PyLong_Check(a) || !PyLong_Check(b)) { + PyErr_SetString(PyExc_TypeError, + "non-integer arguments in division"); + return NULL; + } + + /* Do a and b have different signs? If so, quotient is negative. */ + quo_is_neg = (Py_SIZE(a) < 0) != (Py_SIZE(b) < 0); + + one = PyLong_FromLong(1L); + if (one == NULL) + return NULL; + + if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0) + goto error; + + /* compare twice the remainder with the divisor, to see + if we need to adjust the quotient and remainder */ + twice_rem = long_lshift((PyObject *)rem, one); + if (twice_rem == NULL) + goto error; + if (quo_is_neg) { + temp = long_neg((PyLongObject*)twice_rem); + Py_DECREF(twice_rem); + twice_rem = temp; + if (twice_rem == NULL) + goto error; + } + cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b); + Py_DECREF(twice_rem); + + quo_is_odd = Py_SIZE(quo) != 0 && ((quo->ob_digit[0] & 1) != 0); + if ((Py_SIZE(b) < 0 ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) { + /* fix up quotient */ + if (quo_is_neg) + temp = long_sub(quo, (PyLongObject *)one); + else + temp = long_add(quo, (PyLongObject *)one); + Py_DECREF(quo); + quo = (PyLongObject *)temp; + if (quo == NULL) + goto error; + /* and remainder */ + if (quo_is_neg) + temp = long_add(rem, (PyLongObject *)b); + else + temp = long_sub(rem, (PyLongObject *)b); + Py_DECREF(rem); + rem = (PyLongObject *)temp; + if (rem == NULL) + goto error; + } + + result = PyTuple_New(2); + if (result == NULL) + goto error; + + /* PyTuple_SET_ITEM steals references */ + PyTuple_SET_ITEM(result, 0, (PyObject *)quo); + PyTuple_SET_ITEM(result, 1, (PyObject *)rem); + Py_DECREF(one); + return result; + + error: + Py_XDECREF(quo); + Py_XDECREF(rem); + Py_XDECREF(one); + return NULL; +} + +static PyObject * +long_round(PyObject *self, PyObject *args) +{ + PyObject *o_ndigits=NULL, *temp, *result, *ndigits; + + /* To round an integer m to the nearest 10**n (n positive), we make use of + * the divmod_near operation, defined by: + * + * divmod_near(a, b) = (q, r) + * + * where q is the nearest integer to the quotient a / b (the + * nearest even integer in the case of a tie) and r == a - q * b. + * Hence q * b = a - r is the nearest multiple of b to a, + * preferring even multiples in the case of a tie. + * + * So the nearest multiple of 10**n to m is: + * + * m - divmod_near(m, 10**n)[1]. + */ if (!PyArg_ParseTuple(args, "|O", &o_ndigits)) return NULL; if (o_ndigits == NULL) return long_long(self); - ndigits = (PyLongObject *)PyNumber_Index(o_ndigits); + ndigits = PyNumber_Index(o_ndigits); if (ndigits == NULL) return NULL; + /* if ndigits >= 0 then no rounding is necessary; return self unchanged */ if (Py_SIZE(ndigits) >= 0) { Py_DECREF(ndigits); return long_long(self); } - Py_INCREF(self); /* to keep refcounting simple */ - /* we now own references to self, ndigits */ - - /* pow = 10 ** -ndigits >> 1 */ - pow = (PyLongObject *)PyLong_FromLong(10L); - if (pow == NULL) - goto error; - temp = long_neg(ndigits); + /* result = self - divmod_near(self, 10 ** -ndigits)[1] */ + temp = long_neg((PyLongObject*)ndigits); Py_DECREF(ndigits); - ndigits = (PyLongObject *)temp; + ndigits = temp; if (ndigits == NULL) - goto error; - temp = long_pow((PyObject *)pow, (PyObject *)ndigits, Py_None); - Py_DECREF(pow); - pow = (PyLongObject *)temp; - if (pow == NULL) - goto error; - assert(PyLong_Check(pow)); /* check long_pow returned a long */ - one = (PyLongObject *)PyLong_FromLong(1L); - if (one == NULL) - goto error; - temp = long_rshift(pow, one); - Py_DECREF(one); - Py_DECREF(pow); - pow = (PyLongObject *)temp; - if (pow == NULL) - goto error; + return NULL; - /* q, r = divmod(self, pow) */ - errcode = l_divmod((PyLongObject *)self, pow, &q, &r); - if (errcode == -1) - goto error; + result = PyLong_FromLong(10L); + if (result == NULL) { + Py_DECREF(ndigits); + return NULL; + } - /* self -= r */ - temp = long_sub((PyLongObject *)self, r); - Py_DECREF(self); - self = temp; - if (self == NULL) - goto error; + temp = long_pow(result, ndigits, Py_None); + Py_DECREF(ndigits); + Py_DECREF(result); + result = temp; + if (result == NULL) + return NULL; - /* get value of quotient modulo 4 */ - if (Py_SIZE(q) == 0) - q_mod_4 = 0; - else if (Py_SIZE(q) > 0) - q_mod_4 = q->ob_digit[0] & 3; - else - q_mod_4 = (PyLong_BASE-q->ob_digit[0]) & 3; + temp = _PyLong_DivmodNear(self, result); + Py_DECREF(result); + result = temp; + if (result == NULL) + return NULL; - if ((q_mod_4 & 1) == 1) { - /* q is odd; round self up or down by adding or subtracting pow */ - if (q_mod_4 == 1 && Py_SIZE(r) == 0) - temp = (PyObject *)long_sub((PyLongObject *)self, pow); - else - temp = (PyObject *)long_add((PyLongObject *)self, pow); - Py_DECREF(self); - self = temp; - if (self == NULL) - goto error; - } - Py_DECREF(q); - Py_DECREF(r); - Py_DECREF(pow); - Py_DECREF(ndigits); - return self; + temp = long_sub((PyLongObject *)self, + (PyLongObject *)PyTuple_GET_ITEM(result, 1)); + Py_DECREF(result); + result = temp; - error: - Py_XDECREF(q); - Py_XDECREF(r); - Py_XDECREF(pow); - Py_XDECREF(self); - Py_XDECREF(ndigits); - return NULL; + return result; } static PyObject * @@ -4065,7 +4452,7 @@ long_bit_length(PyLongObject *v) return (PyObject *)result; -error: + error: Py_DECREF(result); return NULL; } @@ -4087,6 +4474,187 @@ long_is_finite(PyObject *v) } #endif + +static PyObject * +long_to_bytes(PyLongObject *v, PyObject *args, PyObject *kwds) +{ + PyObject *byteorder_str; + PyObject *is_signed_obj = NULL; + Py_ssize_t length; + int little_endian; + int is_signed; + PyObject *bytes; + static char *kwlist[] = {"length", "byteorder", "signed", NULL}; + + if (!PyArg_ParseTupleAndKeywords(args, kwds, "nU|O:to_bytes", kwlist, + &length, &byteorder_str, + &is_signed_obj)) + return NULL; + + if (args != NULL && Py_SIZE(args) > 2) { + PyErr_SetString(PyExc_TypeError, + "'signed' is a keyword-only argument"); + return NULL; + } + + if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little")) + little_endian = 1; + else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big")) + little_endian = 0; + else { + PyErr_SetString(PyExc_ValueError, + "byteorder must be either 'little' or 'big'"); + return NULL; + } + + if (is_signed_obj != NULL) { + int cmp = PyObject_IsTrue(is_signed_obj); + if (cmp < 0) + return NULL; + is_signed = cmp ? 1 : 0; + } + else { + /* If the signed argument was omitted, use False as the + default. */ + is_signed = 0; + } + + if (length < 0) { + PyErr_SetString(PyExc_ValueError, + "length argument must be non-negative"); + return NULL; + } + + bytes = PyBytes_FromStringAndSize(NULL, length); + if (bytes == NULL) + return NULL; + + if (_PyLong_AsByteArray(v, (unsigned char *)PyBytes_AS_STRING(bytes), + length, little_endian, is_signed) < 0) { + Py_DECREF(bytes); + return NULL; + } + + return bytes; +} + +PyDoc_STRVAR(long_to_bytes_doc, +"int.to_bytes(length, byteorder, *, signed=False) -> bytes\n\ +\n\ +Return an array of bytes representing an integer.\n\ +\n\ +The integer is represented using length bytes. An OverflowError is\n\ +raised if the integer is not representable with the given number of\n\ +bytes.\n\ +\n\ +The byteorder argument determines the byte order used to represent the\n\ +integer. If byteorder is 'big', the most significant byte is at the\n\ +beginning of the byte array. If byteorder is 'little', the most\n\ +significant byte is at the end of the byte array. To request the native\n\ +byte order of the host system, use `sys.byteorder' as the byte order value.\n\ +\n\ +The signed keyword-only argument determines whether two's complement is\n\ +used to represent the integer. If signed is False and a negative integer\n\ +is given, an OverflowError is raised."); + +static PyObject * +long_from_bytes(PyTypeObject *type, PyObject *args, PyObject *kwds) +{ + PyObject *byteorder_str; + PyObject *is_signed_obj = NULL; + int little_endian; + int is_signed; + PyObject *obj; + PyObject *bytes; + PyObject *long_obj; + static char *kwlist[] = {"bytes", "byteorder", "signed", NULL}; + + if (!PyArg_ParseTupleAndKeywords(args, kwds, "OU|O:from_bytes", kwlist, + &obj, &byteorder_str, + &is_signed_obj)) + return NULL; + + if (args != NULL && Py_SIZE(args) > 2) { + PyErr_SetString(PyExc_TypeError, + "'signed' is a keyword-only argument"); + return NULL; + } + + if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little")) + little_endian = 1; + else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big")) + little_endian = 0; + else { + PyErr_SetString(PyExc_ValueError, + "byteorder must be either 'little' or 'big'"); + return NULL; + } + + if (is_signed_obj != NULL) { + int cmp = PyObject_IsTrue(is_signed_obj); + if (cmp < 0) + return NULL; + is_signed = cmp ? 1 : 0; + } + else { + /* If the signed argument was omitted, use False as the + default. */ + is_signed = 0; + } + + bytes = PyObject_Bytes(obj); + if (bytes == NULL) + return NULL; + + long_obj = _PyLong_FromByteArray( + (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes), + little_endian, is_signed); + Py_DECREF(bytes); + + /* If from_bytes() was used on subclass, allocate new subclass + * instance, initialize it with decoded long value and return it. + */ + if (type != &PyLong_Type && PyType_IsSubtype(type, &PyLong_Type)) { + PyLongObject *newobj; + int i; + Py_ssize_t n = ABS(Py_SIZE(long_obj)); + + newobj = (PyLongObject *)type->tp_alloc(type, n); + if (newobj == NULL) { + Py_DECREF(long_obj); + return NULL; + } + assert(PyLong_Check(newobj)); + Py_SIZE(newobj) = Py_SIZE(long_obj); + for (i = 0; i < n; i++) { + newobj->ob_digit[i] = + ((PyLongObject *)long_obj)->ob_digit[i]; + } + Py_DECREF(long_obj); + return (PyObject *)newobj; + } + + return long_obj; +} + +PyDoc_STRVAR(long_from_bytes_doc, +"int.from_bytes(bytes, byteorder, *, signed=False) -> int\n\ +\n\ +Return the integer represented by the given array of bytes.\n\ +\n\ +The bytes argument must either support the buffer protocol or be an\n\ +iterable object producing bytes. Bytes and bytearray are examples of\n\ +built-in objects that support the buffer protocol.\n\ +\n\ +The byteorder argument determines the byte order used to represent the\n\ +integer. If byteorder is 'big', the most significant byte is at the\n\ +beginning of the byte array. If byteorder is 'little', the most\n\ +significant byte is at the end of the byte array. To request the native\n\ +byte order of the host system, use `sys.byteorder' as the byte order value.\n\ +\n\ +The signed keyword-only argument indicates whether two's complement is\n\ +used to represent the integer."); + static PyMethodDef long_methods[] = { {"conjugate", (PyCFunction)long_long, METH_NOARGS, "Returns self, the complex conjugate of any int."}, @@ -4096,6 +4664,10 @@ static PyMethodDef long_methods[] = { {"is_finite", (PyCFunction)long_is_finite, METH_NOARGS, "Returns always True."}, #endif + {"to_bytes", (PyCFunction)long_to_bytes, + METH_VARARGS|METH_KEYWORDS, long_to_bytes_doc}, + {"from_bytes", (PyCFunction)long_from_bytes, + METH_VARARGS|METH_KEYWORDS|METH_CLASS, long_from_bytes_doc}, {"__trunc__", (PyCFunction)long_long, METH_NOARGS, "Truncating an Integral returns itself."}, {"__floor__", (PyCFunction)long_long, METH_NOARGS, @@ -4142,40 +4714,40 @@ string, use the optional base. It is an error to supply a base when\n\ converting a non-string."); static PyNumberMethods long_as_number = { - (binaryfunc) long_add, /*nb_add*/ - (binaryfunc) long_sub, /*nb_subtract*/ - (binaryfunc) long_mul, /*nb_multiply*/ - long_mod, /*nb_remainder*/ - long_divmod, /*nb_divmod*/ - long_pow, /*nb_power*/ - (unaryfunc) long_neg, /*nb_negative*/ - (unaryfunc) long_long, /*tp_positive*/ - (unaryfunc) long_abs, /*tp_absolute*/ - (inquiry) long_bool, /*tp_bool*/ - (unaryfunc) long_invert, /*nb_invert*/ - long_lshift, /*nb_lshift*/ - (binaryfunc) long_rshift, /*nb_rshift*/ - long_and, /*nb_and*/ - long_xor, /*nb_xor*/ - long_or, /*nb_or*/ - long_long, /*nb_int*/ - 0, /*nb_reserved*/ - long_float, /*nb_float*/ - 0, /* nb_inplace_add */ - 0, /* nb_inplace_subtract */ - 0, /* nb_inplace_multiply */ - 0, /* nb_inplace_remainder */ - 0, /* nb_inplace_power */ - 0, /* nb_inplace_lshift */ - 0, /* nb_inplace_rshift */ - 0, /* nb_inplace_and */ - 0, /* nb_inplace_xor */ - 0, /* nb_inplace_or */ - long_div, /* nb_floor_divide */ - long_true_divide, /* nb_true_divide */ - 0, /* nb_inplace_floor_divide */ - 0, /* nb_inplace_true_divide */ - long_long, /* nb_index */ + (binaryfunc)long_add, /*nb_add*/ + (binaryfunc)long_sub, /*nb_subtract*/ + (binaryfunc)long_mul, /*nb_multiply*/ + long_mod, /*nb_remainder*/ + long_divmod, /*nb_divmod*/ + long_pow, /*nb_power*/ + (unaryfunc)long_neg, /*nb_negative*/ + (unaryfunc)long_long, /*tp_positive*/ + (unaryfunc)long_abs, /*tp_absolute*/ + (inquiry)long_bool, /*tp_bool*/ + (unaryfunc)long_invert, /*nb_invert*/ + long_lshift, /*nb_lshift*/ + (binaryfunc)long_rshift, /*nb_rshift*/ + long_and, /*nb_and*/ + long_xor, /*nb_xor*/ + long_or, /*nb_or*/ + long_long, /*nb_int*/ + 0, /*nb_reserved*/ + long_float, /*nb_float*/ + 0, /* nb_inplace_add */ + 0, /* nb_inplace_subtract */ + 0, /* nb_inplace_multiply */ + 0, /* nb_inplace_remainder */ + 0, /* nb_inplace_power */ + 0, /* nb_inplace_lshift */ + 0, /* nb_inplace_rshift */ + 0, /* nb_inplace_and */ + 0, /* nb_inplace_xor */ + 0, /* nb_inplace_or */ + long_div, /* nb_floor_divide */ + long_true_divide, /* nb_true_divide */ + 0, /* nb_inplace_floor_divide */ + 0, /* nb_inplace_true_divide */ + long_long, /* nb_index */ }; PyTypeObject PyLong_Type = { @@ -4188,13 +4760,13 @@ PyTypeObject PyLong_Type = { 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_reserved */ - long_repr, /* tp_repr */ + long_to_decimal_string, /* tp_repr */ &long_as_number, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ (hashfunc)long_hash, /* tp_hash */ 0, /* tp_call */ - long_repr, /* tp_str */ + long_to_decimal_string, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ @@ -4231,8 +4803,7 @@ internal representation of integers. The attributes are read only."); static PyStructSequence_Field int_info_fields[] = { {"bits_per_digit", "size of a digit in bits"}, - {"sizeof_digit", "size in bytes of the C type used to " - "represent a digit"}, + {"sizeof_digit", "size in bytes of the C type used to represent a digit"}, {NULL, NULL} }; |