diff options
Diffstat (limited to 'Objects/longobject.c')
-rw-r--r-- | Objects/longobject.c | 7490 |
1 files changed, 3745 insertions, 3745 deletions
diff --git a/Objects/longobject.c b/Objects/longobject.c index 2229aed..d4b26d6 100644 --- a/Objects/longobject.c +++ b/Objects/longobject.c @@ -11,16 +11,16 @@ #include <stddef.h> #ifndef NSMALLPOSINTS -#define NSMALLPOSINTS 257 +#define NSMALLPOSINTS 257 #endif #ifndef NSMALLNEGINTS -#define NSMALLNEGINTS 5 +#define NSMALLNEGINTS 5 #endif /* convert a PyLong of size 1, 0 or -1 to an sdigit */ -#define MEDIUM_VALUE(x) (Py_SIZE(x) < 0 ? -(sdigit)(x)->ob_digit[0] : \ - (Py_SIZE(x) == 0 ? (sdigit)0 : \ - (sdigit)(x)->ob_digit[0])) +#define MEDIUM_VALUE(x) (Py_SIZE(x) < 0 ? -(sdigit)(x)->ob_digit[0] : \ + (Py_SIZE(x) == 0 ? (sdigit)0 : \ + (sdigit)(x)->ob_digit[0])) #define ABS(x) ((x) < 0 ? -(x) : (x)) #if NSMALLNEGINTS + NSMALLPOSINTS > 0 @@ -37,32 +37,32 @@ int quick_int_allocs, quick_neg_int_allocs; static PyObject * get_small_int(sdigit ival) { - PyObject *v = (PyObject*)(small_ints + ival + NSMALLNEGINTS); - Py_INCREF(v); + PyObject *v = (PyObject*)(small_ints + ival + NSMALLNEGINTS); + Py_INCREF(v); #ifdef COUNT_ALLOCS - if (ival >= 0) - quick_int_allocs++; - else - quick_neg_int_allocs++; + if (ival >= 0) + quick_int_allocs++; + else + quick_neg_int_allocs++; #endif - return v; + return v; } #define CHECK_SMALL_INT(ival) \ - do if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { \ - return get_small_int((sdigit)ival); \ - } while(0) + do if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { \ + return get_small_int((sdigit)ival); \ + } while(0) -static PyLongObject * +static PyLongObject * maybe_small_long(PyLongObject *v) { - if (v && ABS(Py_SIZE(v)) <= 1) { - sdigit ival = MEDIUM_VALUE(v); - if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { - Py_DECREF(v); - return (PyLongObject *)get_small_int(ival); - } - } - return v; + if (v && ABS(Py_SIZE(v)) <= 1) { + sdigit ival = MEDIUM_VALUE(v); + if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { + Py_DECREF(v); + return (PyLongObject *)get_small_int(ival); + } + } + return v; } #else #define CHECK_SMALL_INT(ival) @@ -72,10 +72,10 @@ maybe_small_long(PyLongObject *v) /* If a freshly-allocated long is already shared, it must be a small integer, so negating it must go to PyLong_FromLong */ #define NEGATE(x) \ - do if (Py_REFCNT(x) == 1) Py_SIZE(x) = -Py_SIZE(x); \ - else { PyObject* tmp=PyLong_FromLong(-MEDIUM_VALUE(x)); \ - Py_DECREF(x); (x) = (PyLongObject*)tmp; } \ - while(0) + do if (Py_REFCNT(x) == 1) Py_SIZE(x) = -Py_SIZE(x); \ + else { PyObject* tmp=PyLong_FromLong(-MEDIUM_VALUE(x)); \ + Py_DECREF(x); (x) = (PyLongObject*)tmp; } \ + while(0) /* For long multiplication, use the O(N**2) school algorithm unless * both operands contain more than KARATSUBA_CUTOFF digits (this * being an internal Python long digit, in base BASE). @@ -96,7 +96,7 @@ maybe_small_long(PyLongObject *v) #define MIN(x, y) ((x) > (y) ? (y) : (x)) #define SIGCHECK(PyTryBlock) \ - if (PyErr_CheckSignals()) PyTryBlock \ + if (PyErr_CheckSignals()) PyTryBlock \ /* Normalize (remove leading zeros from) a long int object. Doesn't attempt to free the storage--in most cases, due to the nature @@ -105,68 +105,68 @@ maybe_small_long(PyLongObject *v) static PyLongObject * long_normalize(register PyLongObject *v) { - Py_ssize_t j = ABS(Py_SIZE(v)); - Py_ssize_t i = j; - - while (i > 0 && v->ob_digit[i-1] == 0) - --i; - if (i != j) - Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i; - return v; + Py_ssize_t j = ABS(Py_SIZE(v)); + Py_ssize_t i = j; + + while (i > 0 && v->ob_digit[i-1] == 0) + --i; + if (i != j) + Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i; + return v; } /* Allocate a new long int object with size digits. Return NULL and set exception if we run out of memory. */ #define MAX_LONG_DIGITS \ - ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit)) + ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit)) PyLongObject * _PyLong_New(Py_ssize_t size) { - PyLongObject *result; - /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) + - sizeof(digit)*size. Previous incarnations of this code used - sizeof(PyVarObject) instead of the offsetof, but this risks being - incorrect in the presence of padding between the PyVarObject header - and the digits. */ - if (size > (Py_ssize_t)MAX_LONG_DIGITS) { - PyErr_SetString(PyExc_OverflowError, - "too many digits in integer"); - return NULL; - } - result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) + - size*sizeof(digit)); - if (!result) { - PyErr_NoMemory(); - return NULL; - } - return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size); + PyLongObject *result; + /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) + + sizeof(digit)*size. Previous incarnations of this code used + sizeof(PyVarObject) instead of the offsetof, but this risks being + incorrect in the presence of padding between the PyVarObject header + and the digits. */ + if (size > (Py_ssize_t)MAX_LONG_DIGITS) { + PyErr_SetString(PyExc_OverflowError, + "too many digits in integer"); + return NULL; + } + result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) + + size*sizeof(digit)); + if (!result) { + PyErr_NoMemory(); + return NULL; + } + return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size); } PyObject * _PyLong_Copy(PyLongObject *src) { - PyLongObject *result; - Py_ssize_t i; - - assert(src != NULL); - i = Py_SIZE(src); - if (i < 0) - i = -(i); - if (i < 2) { - sdigit ival = src->ob_digit[0]; - if (Py_SIZE(src) < 0) - ival = -ival; - CHECK_SMALL_INT(ival); - } - result = _PyLong_New(i); - if (result != NULL) { - Py_SIZE(result) = Py_SIZE(src); - while (--i >= 0) - result->ob_digit[i] = src->ob_digit[i]; - } - return (PyObject *)result; + PyLongObject *result; + Py_ssize_t i; + + assert(src != NULL); + i = Py_SIZE(src); + if (i < 0) + i = -(i); + if (i < 2) { + sdigit ival = src->ob_digit[0]; + if (Py_SIZE(src) < 0) + ival = -ival; + CHECK_SMALL_INT(ival); + } + result = _PyLong_New(i); + if (result != NULL) { + Py_SIZE(result) = Py_SIZE(src); + while (--i >= 0) + result->ob_digit[i] = src->ob_digit[i]; + } + return (PyObject *)result; } /* Create a new long int object from a C long int */ @@ -174,68 +174,68 @@ _PyLong_Copy(PyLongObject *src) PyObject * PyLong_FromLong(long ival) { - PyLongObject *v; - unsigned long abs_ival; - unsigned long t; /* unsigned so >> doesn't propagate sign bit */ - int ndigits = 0; - int sign = 1; - - CHECK_SMALL_INT(ival); - - if (ival < 0) { - /* negate: can't write this as abs_ival = -ival since that - invokes undefined behaviour when ival is LONG_MIN */ - abs_ival = 0U-(unsigned long)ival; - sign = -1; - } - else { - abs_ival = (unsigned long)ival; - } - - /* Fast path for single-digit ints */ - if (!(abs_ival >> PyLong_SHIFT)) { - v = _PyLong_New(1); - if (v) { - Py_SIZE(v) = sign; - v->ob_digit[0] = Py_SAFE_DOWNCAST( - abs_ival, unsigned long, digit); - } - return (PyObject*)v; - } + PyLongObject *v; + unsigned long abs_ival; + unsigned long t; /* unsigned so >> doesn't propagate sign bit */ + int ndigits = 0; + int sign = 1; + + CHECK_SMALL_INT(ival); + + if (ival < 0) { + /* negate: can't write this as abs_ival = -ival since that + invokes undefined behaviour when ival is LONG_MIN */ + abs_ival = 0U-(unsigned long)ival; + sign = -1; + } + else { + abs_ival = (unsigned long)ival; + } + + /* Fast path for single-digit ints */ + if (!(abs_ival >> PyLong_SHIFT)) { + v = _PyLong_New(1); + if (v) { + Py_SIZE(v) = sign; + v->ob_digit[0] = Py_SAFE_DOWNCAST( + abs_ival, unsigned long, digit); + } + return (PyObject*)v; + } #if PyLong_SHIFT==15 - /* 2 digits */ - if (!(abs_ival >> 2*PyLong_SHIFT)) { - v = _PyLong_New(2); - if (v) { - Py_SIZE(v) = 2*sign; - v->ob_digit[0] = Py_SAFE_DOWNCAST( - abs_ival & PyLong_MASK, unsigned long, digit); - v->ob_digit[1] = Py_SAFE_DOWNCAST( - abs_ival >> PyLong_SHIFT, unsigned long, digit); - } - return (PyObject*)v; - } + /* 2 digits */ + if (!(abs_ival >> 2*PyLong_SHIFT)) { + v = _PyLong_New(2); + if (v) { + Py_SIZE(v) = 2*sign; + v->ob_digit[0] = Py_SAFE_DOWNCAST( + abs_ival & PyLong_MASK, unsigned long, digit); + v->ob_digit[1] = Py_SAFE_DOWNCAST( + abs_ival >> PyLong_SHIFT, unsigned long, digit); + } + return (PyObject*)v; + } #endif - /* Larger numbers: loop to determine number of digits */ - t = abs_ival; - while (t) { - ++ndigits; - t >>= PyLong_SHIFT; - } - v = _PyLong_New(ndigits); - if (v != NULL) { - digit *p = v->ob_digit; - Py_SIZE(v) = ndigits*sign; - t = abs_ival; - while (t) { - *p++ = Py_SAFE_DOWNCAST( - t & PyLong_MASK, unsigned long, digit); - t >>= PyLong_SHIFT; - } - } - return (PyObject *)v; + /* Larger numbers: loop to determine number of digits */ + t = abs_ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = ndigits*sign; + t = abs_ival; + while (t) { + *p++ = Py_SAFE_DOWNCAST( + t & PyLong_MASK, unsigned long, digit); + t >>= PyLong_SHIFT; + } + } + return (PyObject *)v; } /* Create a new long int object from a C unsigned long int */ @@ -243,28 +243,28 @@ PyLong_FromLong(long ival) PyObject * PyLong_FromUnsignedLong(unsigned long ival) { - PyLongObject *v; - unsigned long t; - int ndigits = 0; - - if (ival < PyLong_BASE) - return PyLong_FromLong(ival); - /* Count the number of Python digits. */ - t = (unsigned long)ival; - while (t) { - ++ndigits; - t >>= PyLong_SHIFT; - } - v = _PyLong_New(ndigits); - if (v != NULL) { - digit *p = v->ob_digit; - Py_SIZE(v) = ndigits; - while (ival) { - *p++ = (digit)(ival & PyLong_MASK); - ival >>= PyLong_SHIFT; - } - } - return (PyObject *)v; + PyLongObject *v; + unsigned long t; + int ndigits = 0; + + if (ival < PyLong_BASE) + return PyLong_FromLong(ival); + /* Count the number of Python digits. */ + t = (unsigned long)ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = ndigits; + while (ival) { + *p++ = (digit)(ival & PyLong_MASK); + ival >>= PyLong_SHIFT; + } + } + return (PyObject *)v; } /* Create a new long int object from a C double */ @@ -272,41 +272,41 @@ PyLong_FromUnsignedLong(unsigned long ival) PyObject * PyLong_FromDouble(double dval) { - PyLongObject *v; - double frac; - int i, ndig, expo, neg; - neg = 0; - if (Py_IS_INFINITY(dval)) { - PyErr_SetString(PyExc_OverflowError, - "cannot convert float infinity to integer"); - return NULL; - } - if (Py_IS_NAN(dval)) { - PyErr_SetString(PyExc_ValueError, - "cannot convert float NaN to integer"); - return NULL; - } - if (dval < 0.0) { - neg = 1; - dval = -dval; - } - frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */ - if (expo <= 0) - return PyLong_FromLong(0L); - ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */ - v = _PyLong_New(ndig); - if (v == NULL) - return NULL; - frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1); - for (i = ndig; --i >= 0; ) { - digit bits = (digit)frac; - v->ob_digit[i] = bits; - frac = frac - (double)bits; - frac = ldexp(frac, PyLong_SHIFT); - } - if (neg) - Py_SIZE(v) = -(Py_SIZE(v)); - return (PyObject *)v; + PyLongObject *v; + double frac; + int i, ndig, expo, neg; + neg = 0; + if (Py_IS_INFINITY(dval)) { + PyErr_SetString(PyExc_OverflowError, + "cannot convert float infinity to integer"); + return NULL; + } + if (Py_IS_NAN(dval)) { + PyErr_SetString(PyExc_ValueError, + "cannot convert float NaN to integer"); + return NULL; + } + if (dval < 0.0) { + neg = 1; + dval = -dval; + } + frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */ + if (expo <= 0) + return PyLong_FromLong(0L); + ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */ + v = _PyLong_New(ndig); + if (v == NULL) + return NULL; + frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1); + for (i = ndig; --i >= 0; ) { + digit bits = (digit)frac; + v->ob_digit[i] = bits; + frac = frac - (double)bits; + frac = ldexp(frac, PyLong_SHIFT); + } + if (neg) + Py_SIZE(v) = -(Py_SIZE(v)); + return (PyObject *)v; } /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define @@ -318,8 +318,8 @@ PyLong_FromDouble(double dval) * However, some other compilers warn about applying unary minus to an * unsigned operand. Hence the weird "0-". */ -#define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN) -#define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN) +#define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN) +#define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN) /* Get a C long int from a long int object. Returns -1 and sets an error condition if overflow occurs. */ @@ -327,102 +327,102 @@ PyLong_FromDouble(double dval) long PyLong_AsLongAndOverflow(PyObject *vv, int *overflow) { - /* This version by Tim Peters */ - register PyLongObject *v; - unsigned long x, prev; - long res; - Py_ssize_t i; - int sign; - int do_decref = 0; /* if nb_int was called */ - - *overflow = 0; - if (vv == NULL) { - PyErr_BadInternalCall(); - return -1; - } - - if (!PyLong_Check(vv)) { - PyNumberMethods *nb; - nb = vv->ob_type->tp_as_number; - if (nb == NULL || nb->nb_int == NULL) { - PyErr_SetString(PyExc_TypeError, - "an integer is required"); - return -1; - } - vv = (*nb->nb_int) (vv); - if (vv == NULL) - return -1; - do_decref = 1; - if (!PyLong_Check(vv)) { - Py_DECREF(vv); - PyErr_SetString(PyExc_TypeError, - "nb_int should return int object"); - return -1; - } - } - - res = -1; - v = (PyLongObject *)vv; - i = Py_SIZE(v); - - switch (i) { - case -1: - res = -(sdigit)v->ob_digit[0]; - break; - case 0: - res = 0; - break; - case 1: - res = v->ob_digit[0]; - break; - default: - sign = 1; - x = 0; - if (i < 0) { - sign = -1; - i = -(i); - } - while (--i >= 0) { - prev = x; - x = (x << PyLong_SHIFT) | v->ob_digit[i]; - if ((x >> PyLong_SHIFT) != prev) { - *overflow = sign; - goto exit; - } - } - /* Haven't lost any bits, but casting to long requires extra - * care (see comment above). - */ - if (x <= (unsigned long)LONG_MAX) { - res = (long)x * sign; - } - else if (sign < 0 && x == PY_ABS_LONG_MIN) { - res = LONG_MIN; - } - else { - *overflow = sign; - /* res is already set to -1 */ - } - } + /* This version by Tim Peters */ + register PyLongObject *v; + unsigned long x, prev; + long res; + Py_ssize_t i; + int sign; + int do_decref = 0; /* if nb_int was called */ + + *overflow = 0; + if (vv == NULL) { + PyErr_BadInternalCall(); + return -1; + } + + if (!PyLong_Check(vv)) { + PyNumberMethods *nb; + nb = vv->ob_type->tp_as_number; + if (nb == NULL || nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, + "an integer is required"); + return -1; + } + vv = (*nb->nb_int) (vv); + if (vv == NULL) + return -1; + do_decref = 1; + if (!PyLong_Check(vv)) { + Py_DECREF(vv); + PyErr_SetString(PyExc_TypeError, + "nb_int should return int object"); + return -1; + } + } + + res = -1; + v = (PyLongObject *)vv; + i = Py_SIZE(v); + + switch (i) { + case -1: + res = -(sdigit)v->ob_digit[0]; + break; + case 0: + res = 0; + break; + case 1: + res = v->ob_digit[0]; + break; + default: + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -(i); + } + while (--i >= 0) { + prev = x; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + if ((x >> PyLong_SHIFT) != prev) { + *overflow = sign; + goto exit; + } + } + /* Haven't lost any bits, but casting to long requires extra + * care (see comment above). + */ + if (x <= (unsigned long)LONG_MAX) { + res = (long)x * sign; + } + else if (sign < 0 && x == PY_ABS_LONG_MIN) { + res = LONG_MIN; + } + else { + *overflow = sign; + /* res is already set to -1 */ + } + } exit: - if (do_decref) { - Py_DECREF(vv); - } - return res; + if (do_decref) { + Py_DECREF(vv); + } + return res; } -long +long PyLong_AsLong(PyObject *obj) { - int overflow; - long result = PyLong_AsLongAndOverflow(obj, &overflow); - if (overflow) { - /* XXX: could be cute and give a different - message for overflow == -1 */ - PyErr_SetString(PyExc_OverflowError, - "Python int too large to convert to C long"); - } - return result; + int overflow; + long result = PyLong_AsLongAndOverflow(obj, &overflow); + if (overflow) { + /* XXX: could be cute and give a different + message for overflow == -1 */ + PyErr_SetString(PyExc_OverflowError, + "Python int too large to convert to C long"); + } + return result; } /* Get a Py_ssize_t from a long int object. @@ -430,54 +430,54 @@ PyLong_AsLong(PyObject *obj) Py_ssize_t PyLong_AsSsize_t(PyObject *vv) { - register PyLongObject *v; - size_t x, prev; - Py_ssize_t i; - int sign; - - if (vv == NULL) { - PyErr_BadInternalCall(); - return -1; - } - if (!PyLong_Check(vv)) { - PyErr_SetString(PyExc_TypeError, "an integer is required"); - return -1; - } - - v = (PyLongObject *)vv; - i = Py_SIZE(v); - switch (i) { - case -1: return -(sdigit)v->ob_digit[0]; - case 0: return 0; - case 1: return v->ob_digit[0]; - } - sign = 1; - x = 0; - if (i < 0) { - sign = -1; - i = -(i); - } - while (--i >= 0) { - prev = x; - x = (x << PyLong_SHIFT) | v->ob_digit[i]; - if ((x >> PyLong_SHIFT) != prev) - goto overflow; - } - /* Haven't lost any bits, but casting to a signed type requires - * extra care (see comment above). - */ - if (x <= (size_t)PY_SSIZE_T_MAX) { - return (Py_ssize_t)x * sign; - } - else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) { - return PY_SSIZE_T_MIN; - } - /* else overflow */ + register PyLongObject *v; + size_t x, prev; + Py_ssize_t i; + int sign; + + if (vv == NULL) { + PyErr_BadInternalCall(); + return -1; + } + if (!PyLong_Check(vv)) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return -1; + } + + v = (PyLongObject *)vv; + i = Py_SIZE(v); + switch (i) { + case -1: return -(sdigit)v->ob_digit[0]; + case 0: return 0; + case 1: return v->ob_digit[0]; + } + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -(i); + } + while (--i >= 0) { + prev = x; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + if ((x >> PyLong_SHIFT) != prev) + goto overflow; + } + /* Haven't lost any bits, but casting to a signed type requires + * extra care (see comment above). + */ + if (x <= (size_t)PY_SSIZE_T_MAX) { + return (Py_ssize_t)x * sign; + } + else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) { + return PY_SSIZE_T_MIN; + } + /* else overflow */ overflow: - PyErr_SetString(PyExc_OverflowError, - "Python int too large to convert to C ssize_t"); - return -1; + PyErr_SetString(PyExc_OverflowError, + "Python int too large to convert to C ssize_t"); + return -1; } /* Get a C unsigned long int from a long int object. @@ -486,41 +486,41 @@ PyLong_AsSsize_t(PyObject *vv) { unsigned long PyLong_AsUnsignedLong(PyObject *vv) { - register PyLongObject *v; - unsigned long x, prev; - Py_ssize_t i; - - if (vv == NULL) { - PyErr_BadInternalCall(); - return (unsigned long)-1; - } - if (!PyLong_Check(vv)) { - PyErr_SetString(PyExc_TypeError, "an integer is required"); - return (unsigned long)-1; - } - - v = (PyLongObject *)vv; - i = Py_SIZE(v); - x = 0; - if (i < 0) { - PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to unsigned int"); - return (unsigned long) -1; - } - switch (i) { - case 0: return 0; - case 1: return v->ob_digit[0]; - } - while (--i >= 0) { - prev = x; - x = (x << PyLong_SHIFT) | v->ob_digit[i]; - if ((x >> PyLong_SHIFT) != prev) { - PyErr_SetString(PyExc_OverflowError, - "python int too large to convert to C unsigned long"); - return (unsigned long) -1; - } - } - return x; + register PyLongObject *v; + unsigned long x, prev; + Py_ssize_t i; + + if (vv == NULL) { + PyErr_BadInternalCall(); + return (unsigned long)-1; + } + if (!PyLong_Check(vv)) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return (unsigned long)-1; + } + + v = (PyLongObject *)vv; + i = Py_SIZE(v); + x = 0; + if (i < 0) { + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to unsigned int"); + return (unsigned long) -1; + } + switch (i) { + case 0: return 0; + case 1: return v->ob_digit[0]; + } + while (--i >= 0) { + prev = x; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + if ((x >> PyLong_SHIFT) != prev) { + PyErr_SetString(PyExc_OverflowError, + "python int too large to convert to C unsigned long"); + return (unsigned long) -1; + } + } + return x; } /* Get a C unsigned long int from a long int object. @@ -529,41 +529,41 @@ PyLong_AsUnsignedLong(PyObject *vv) size_t PyLong_AsSize_t(PyObject *vv) { - register PyLongObject *v; - size_t x, prev; - Py_ssize_t i; - - if (vv == NULL) { - PyErr_BadInternalCall(); - return (size_t) -1; - } - if (!PyLong_Check(vv)) { - PyErr_SetString(PyExc_TypeError, "an integer is required"); - return (size_t)-1; - } - - v = (PyLongObject *)vv; - i = Py_SIZE(v); - x = 0; - if (i < 0) { - PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to size_t"); - return (size_t) -1; - } - switch (i) { - case 0: return 0; - case 1: return v->ob_digit[0]; - } - while (--i >= 0) { - prev = x; - x = (x << PyLong_SHIFT) | v->ob_digit[i]; - if ((x >> PyLong_SHIFT) != prev) { - PyErr_SetString(PyExc_OverflowError, - "Python int too large to convert to C size_t"); - return (unsigned long) -1; - } - } - return x; + register PyLongObject *v; + size_t x, prev; + Py_ssize_t i; + + if (vv == NULL) { + PyErr_BadInternalCall(); + return (size_t) -1; + } + if (!PyLong_Check(vv)) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return (size_t)-1; + } + + v = (PyLongObject *)vv; + i = Py_SIZE(v); + x = 0; + if (i < 0) { + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to size_t"); + return (size_t) -1; + } + switch (i) { + case 0: return 0; + case 1: return v->ob_digit[0]; + } + while (--i >= 0) { + prev = x; + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + if ((x >> PyLong_SHIFT) != prev) { + PyErr_SetString(PyExc_OverflowError, + "Python int too large to convert to C size_t"); + return (unsigned long) -1; + } + } + return x; } /* Get a C unsigned long int from a long int object, ignoring the high bits. @@ -572,354 +572,354 @@ PyLong_AsSize_t(PyObject *vv) static unsigned long _PyLong_AsUnsignedLongMask(PyObject *vv) { - register PyLongObject *v; - unsigned long x; - Py_ssize_t i; - int sign; - - if (vv == NULL || !PyLong_Check(vv)) { - PyErr_BadInternalCall(); - return (unsigned long) -1; - } - v = (PyLongObject *)vv; - i = Py_SIZE(v); - switch (i) { - case 0: return 0; - case 1: return v->ob_digit[0]; - } - sign = 1; - x = 0; - if (i < 0) { - sign = -1; - i = -i; - } - while (--i >= 0) { - x = (x << PyLong_SHIFT) | v->ob_digit[i]; - } - return x * sign; + register PyLongObject *v; + unsigned long x; + Py_ssize_t i; + int sign; + + if (vv == NULL || !PyLong_Check(vv)) { + PyErr_BadInternalCall(); + return (unsigned long) -1; + } + v = (PyLongObject *)vv; + i = Py_SIZE(v); + switch (i) { + case 0: return 0; + case 1: return v->ob_digit[0]; + } + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -i; + } + while (--i >= 0) { + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + } + return x * sign; } unsigned long PyLong_AsUnsignedLongMask(register PyObject *op) { - PyNumberMethods *nb; - PyLongObject *lo; - unsigned long val; - - if (op && PyLong_Check(op)) - return _PyLong_AsUnsignedLongMask(op); - - if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || - nb->nb_int == NULL) { - PyErr_SetString(PyExc_TypeError, "an integer is required"); - return (unsigned long)-1; - } - - lo = (PyLongObject*) (*nb->nb_int) (op); - if (lo == NULL) - return (unsigned long)-1; - if (PyLong_Check(lo)) { - val = _PyLong_AsUnsignedLongMask((PyObject *)lo); - Py_DECREF(lo); - if (PyErr_Occurred()) - return (unsigned long)-1; - return val; - } - else - { - Py_DECREF(lo); - PyErr_SetString(PyExc_TypeError, - "nb_int should return int object"); - return (unsigned long)-1; - } + PyNumberMethods *nb; + PyLongObject *lo; + unsigned long val; + + if (op && PyLong_Check(op)) + return _PyLong_AsUnsignedLongMask(op); + + if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || + nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return (unsigned long)-1; + } + + lo = (PyLongObject*) (*nb->nb_int) (op); + if (lo == NULL) + return (unsigned long)-1; + if (PyLong_Check(lo)) { + val = _PyLong_AsUnsignedLongMask((PyObject *)lo); + Py_DECREF(lo); + if (PyErr_Occurred()) + return (unsigned long)-1; + return val; + } + else + { + Py_DECREF(lo); + PyErr_SetString(PyExc_TypeError, + "nb_int should return int object"); + return (unsigned long)-1; + } } int _PyLong_Sign(PyObject *vv) { - PyLongObject *v = (PyLongObject *)vv; + PyLongObject *v = (PyLongObject *)vv; - assert(v != NULL); - assert(PyLong_Check(v)); + assert(v != NULL); + assert(PyLong_Check(v)); - return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1); + return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1); } size_t _PyLong_NumBits(PyObject *vv) { - PyLongObject *v = (PyLongObject *)vv; - size_t result = 0; - Py_ssize_t ndigits; - - assert(v != NULL); - assert(PyLong_Check(v)); - ndigits = ABS(Py_SIZE(v)); - assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); - if (ndigits > 0) { - digit msd = v->ob_digit[ndigits - 1]; - - result = (ndigits - 1) * PyLong_SHIFT; - if (result / PyLong_SHIFT != (size_t)(ndigits - 1)) - goto Overflow; - do { - ++result; - if (result == 0) - goto Overflow; - msd >>= 1; - } while (msd); - } - return result; + PyLongObject *v = (PyLongObject *)vv; + size_t result = 0; + Py_ssize_t ndigits; + + assert(v != NULL); + assert(PyLong_Check(v)); + ndigits = ABS(Py_SIZE(v)); + assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); + if (ndigits > 0) { + digit msd = v->ob_digit[ndigits - 1]; + + result = (ndigits - 1) * PyLong_SHIFT; + if (result / PyLong_SHIFT != (size_t)(ndigits - 1)) + goto Overflow; + do { + ++result; + if (result == 0) + goto Overflow; + msd >>= 1; + } while (msd); + } + return result; Overflow: - PyErr_SetString(PyExc_OverflowError, "int has too many bits " - "to express in a platform size_t"); - return (size_t)-1; + PyErr_SetString(PyExc_OverflowError, "int has too many bits " + "to express in a platform size_t"); + return (size_t)-1; } PyObject * _PyLong_FromByteArray(const unsigned char* bytes, size_t n, - int little_endian, int is_signed) + int little_endian, int is_signed) { - const unsigned char* pstartbyte;/* LSB of bytes */ - int incr; /* direction to move pstartbyte */ - const unsigned char* pendbyte; /* MSB of bytes */ - size_t numsignificantbytes; /* number of bytes that matter */ - Py_ssize_t ndigits; /* number of Python long digits */ - PyLongObject* v; /* result */ - Py_ssize_t idigit = 0; /* next free index in v->ob_digit */ - - if (n == 0) - return PyLong_FromLong(0L); - - if (little_endian) { - pstartbyte = bytes; - pendbyte = bytes + n - 1; - incr = 1; - } - else { - pstartbyte = bytes + n - 1; - pendbyte = bytes; - incr = -1; - } - - if (is_signed) - is_signed = *pendbyte >= 0x80; - - /* Compute numsignificantbytes. This consists of finding the most - significant byte. Leading 0 bytes are insignficant if the number - is positive, and leading 0xff bytes if negative. */ - { - size_t i; - const unsigned char* p = pendbyte; - const int pincr = -incr; /* search MSB to LSB */ - const unsigned char insignficant = is_signed ? 0xff : 0x00; - - for (i = 0; i < n; ++i, p += pincr) { - if (*p != insignficant) - break; - } - numsignificantbytes = n - i; - /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so - actually has 2 significant bytes. OTOH, 0xff0001 == - -0x00ffff, so we wouldn't *need* to bump it there; but we - do for 0xffff = -0x0001. To be safe without bothering to - check every case, bump it regardless. */ - if (is_signed && numsignificantbytes < n) - ++numsignificantbytes; - } - - /* How many Python long digits do we need? We have - 8*numsignificantbytes bits, and each Python long digit has - PyLong_SHIFT bits, so it's the ceiling of the quotient. */ - /* catch overflow before it happens */ - if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) { - PyErr_SetString(PyExc_OverflowError, - "byte array too long to convert to int"); - return NULL; - } - ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT; - v = _PyLong_New(ndigits); - if (v == NULL) - return NULL; - - /* Copy the bits over. The tricky parts are computing 2's-comp on - the fly for signed numbers, and dealing with the mismatch between - 8-bit bytes and (probably) 15-bit Python digits.*/ - { - size_t i; - twodigits carry = 1; /* for 2's-comp calculation */ - twodigits accum = 0; /* sliding register */ - unsigned int accumbits = 0; /* number of bits in accum */ - const unsigned char* p = pstartbyte; - - for (i = 0; i < numsignificantbytes; ++i, p += incr) { - twodigits thisbyte = *p; - /* Compute correction for 2's comp, if needed. */ - if (is_signed) { - thisbyte = (0xff ^ thisbyte) + carry; - carry = thisbyte >> 8; - thisbyte &= 0xff; - } - /* Because we're going LSB to MSB, thisbyte is - more significant than what's already in accum, - so needs to be prepended to accum. */ - accum |= (twodigits)thisbyte << accumbits; - accumbits += 8; - if (accumbits >= PyLong_SHIFT) { - /* There's enough to fill a Python digit. */ - assert(idigit < ndigits); - v->ob_digit[idigit] = (digit)(accum & - PyLong_MASK); - ++idigit; - accum >>= PyLong_SHIFT; - accumbits -= PyLong_SHIFT; - assert(accumbits < PyLong_SHIFT); - } - } - assert(accumbits < PyLong_SHIFT); - if (accumbits) { - assert(idigit < ndigits); - v->ob_digit[idigit] = (digit)accum; - ++idigit; - } - } - - Py_SIZE(v) = is_signed ? -idigit : idigit; - return (PyObject *)long_normalize(v); + const unsigned char* pstartbyte;/* LSB of bytes */ + int incr; /* direction to move pstartbyte */ + const unsigned char* pendbyte; /* MSB of bytes */ + size_t numsignificantbytes; /* number of bytes that matter */ + Py_ssize_t ndigits; /* number of Python long digits */ + PyLongObject* v; /* result */ + Py_ssize_t idigit = 0; /* next free index in v->ob_digit */ + + if (n == 0) + return PyLong_FromLong(0L); + + if (little_endian) { + pstartbyte = bytes; + pendbyte = bytes + n - 1; + incr = 1; + } + else { + pstartbyte = bytes + n - 1; + pendbyte = bytes; + incr = -1; + } + + if (is_signed) + is_signed = *pendbyte >= 0x80; + + /* Compute numsignificantbytes. This consists of finding the most + significant byte. Leading 0 bytes are insignficant if the number + is positive, and leading 0xff bytes if negative. */ + { + size_t i; + const unsigned char* p = pendbyte; + const int pincr = -incr; /* search MSB to LSB */ + const unsigned char insignficant = is_signed ? 0xff : 0x00; + + for (i = 0; i < n; ++i, p += pincr) { + if (*p != insignficant) + break; + } + numsignificantbytes = n - i; + /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so + actually has 2 significant bytes. OTOH, 0xff0001 == + -0x00ffff, so we wouldn't *need* to bump it there; but we + do for 0xffff = -0x0001. To be safe without bothering to + check every case, bump it regardless. */ + if (is_signed && numsignificantbytes < n) + ++numsignificantbytes; + } + + /* How many Python long digits do we need? We have + 8*numsignificantbytes bits, and each Python long digit has + PyLong_SHIFT bits, so it's the ceiling of the quotient. */ + /* catch overflow before it happens */ + if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) { + PyErr_SetString(PyExc_OverflowError, + "byte array too long to convert to int"); + return NULL; + } + ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT; + v = _PyLong_New(ndigits); + if (v == NULL) + return NULL; + + /* Copy the bits over. The tricky parts are computing 2's-comp on + the fly for signed numbers, and dealing with the mismatch between + 8-bit bytes and (probably) 15-bit Python digits.*/ + { + size_t i; + twodigits carry = 1; /* for 2's-comp calculation */ + twodigits accum = 0; /* sliding register */ + unsigned int accumbits = 0; /* number of bits in accum */ + const unsigned char* p = pstartbyte; + + for (i = 0; i < numsignificantbytes; ++i, p += incr) { + twodigits thisbyte = *p; + /* Compute correction for 2's comp, if needed. */ + if (is_signed) { + thisbyte = (0xff ^ thisbyte) + carry; + carry = thisbyte >> 8; + thisbyte &= 0xff; + } + /* Because we're going LSB to MSB, thisbyte is + more significant than what's already in accum, + so needs to be prepended to accum. */ + accum |= (twodigits)thisbyte << accumbits; + accumbits += 8; + if (accumbits >= PyLong_SHIFT) { + /* There's enough to fill a Python digit. */ + assert(idigit < ndigits); + v->ob_digit[idigit] = (digit)(accum & + PyLong_MASK); + ++idigit; + accum >>= PyLong_SHIFT; + accumbits -= PyLong_SHIFT; + assert(accumbits < PyLong_SHIFT); + } + } + assert(accumbits < PyLong_SHIFT); + if (accumbits) { + assert(idigit < ndigits); + v->ob_digit[idigit] = (digit)accum; + ++idigit; + } + } + + Py_SIZE(v) = is_signed ? -idigit : idigit; + return (PyObject *)long_normalize(v); } int _PyLong_AsByteArray(PyLongObject* v, - unsigned char* bytes, size_t n, - int little_endian, int is_signed) + unsigned char* bytes, size_t n, + int little_endian, int is_signed) { - Py_ssize_t i; /* index into v->ob_digit */ - Py_ssize_t ndigits; /* |v->ob_size| */ - twodigits accum; /* sliding register */ - unsigned int accumbits; /* # bits in accum */ - int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */ - digit carry; /* for computing 2's-comp */ - size_t j; /* # bytes filled */ - unsigned char* p; /* pointer to next byte in bytes */ - int pincr; /* direction to move p */ - - assert(v != NULL && PyLong_Check(v)); - - if (Py_SIZE(v) < 0) { - ndigits = -(Py_SIZE(v)); - if (!is_signed) { - PyErr_SetString(PyExc_OverflowError, - "can't convert negative int to unsigned"); - return -1; - } - do_twos_comp = 1; - } - else { - ndigits = Py_SIZE(v); - do_twos_comp = 0; - } - - if (little_endian) { - p = bytes; - pincr = 1; - } - else { - p = bytes + n - 1; - pincr = -1; - } - - /* Copy over all the Python digits. - It's crucial that every Python digit except for the MSD contribute - exactly PyLong_SHIFT bits to the total, so first assert that the long is - normalized. */ - assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); - j = 0; - accum = 0; - accumbits = 0; - carry = do_twos_comp ? 1 : 0; - for (i = 0; i < ndigits; ++i) { - digit thisdigit = v->ob_digit[i]; - if (do_twos_comp) { - thisdigit = (thisdigit ^ PyLong_MASK) + carry; - carry = thisdigit >> PyLong_SHIFT; - thisdigit &= PyLong_MASK; - } - /* Because we're going LSB to MSB, thisdigit is more - significant than what's already in accum, so needs to be - prepended to accum. */ - accum |= (twodigits)thisdigit << accumbits; - - /* The most-significant digit may be (probably is) at least - partly empty. */ - if (i == ndigits - 1) { - /* Count # of sign bits -- they needn't be stored, - * although for signed conversion we need later to - * make sure at least one sign bit gets stored. */ - digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : - thisdigit; - while (s != 0) { - s >>= 1; - accumbits++; - } - } - else - accumbits += PyLong_SHIFT; - - /* Store as many bytes as possible. */ - while (accumbits >= 8) { - if (j >= n) - goto Overflow; - ++j; - *p = (unsigned char)(accum & 0xff); - p += pincr; - accumbits -= 8; - accum >>= 8; - } - } - - /* Store the straggler (if any). */ - assert(accumbits < 8); - assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */ - if (accumbits > 0) { - if (j >= n) - goto Overflow; - ++j; - if (do_twos_comp) { - /* Fill leading bits of the byte with sign bits - (appropriately pretending that the long had an - infinite supply of sign bits). */ - accum |= (~(twodigits)0) << accumbits; - } - *p = (unsigned char)(accum & 0xff); - p += pincr; - } - else if (j == n && n > 0 && is_signed) { - /* The main loop filled the byte array exactly, so the code - just above didn't get to ensure there's a sign bit, and the - loop below wouldn't add one either. Make sure a sign bit - exists. */ - unsigned char msb = *(p - pincr); - int sign_bit_set = msb >= 0x80; - assert(accumbits == 0); - if (sign_bit_set == do_twos_comp) - return 0; - else - goto Overflow; - } - - /* Fill remaining bytes with copies of the sign bit. */ - { - unsigned char signbyte = do_twos_comp ? 0xffU : 0U; - for ( ; j < n; ++j, p += pincr) - *p = signbyte; - } - - return 0; + Py_ssize_t i; /* index into v->ob_digit */ + Py_ssize_t ndigits; /* |v->ob_size| */ + twodigits accum; /* sliding register */ + unsigned int accumbits; /* # bits in accum */ + int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */ + digit carry; /* for computing 2's-comp */ + size_t j; /* # bytes filled */ + unsigned char* p; /* pointer to next byte in bytes */ + int pincr; /* direction to move p */ + + assert(v != NULL && PyLong_Check(v)); + + if (Py_SIZE(v) < 0) { + ndigits = -(Py_SIZE(v)); + if (!is_signed) { + PyErr_SetString(PyExc_OverflowError, + "can't convert negative int to unsigned"); + return -1; + } + do_twos_comp = 1; + } + else { + ndigits = Py_SIZE(v); + do_twos_comp = 0; + } + + if (little_endian) { + p = bytes; + pincr = 1; + } + else { + p = bytes + n - 1; + pincr = -1; + } + + /* Copy over all the Python digits. + It's crucial that every Python digit except for the MSD contribute + exactly PyLong_SHIFT bits to the total, so first assert that the long is + normalized. */ + assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); + j = 0; + accum = 0; + accumbits = 0; + carry = do_twos_comp ? 1 : 0; + for (i = 0; i < ndigits; ++i) { + digit thisdigit = v->ob_digit[i]; + if (do_twos_comp) { + thisdigit = (thisdigit ^ PyLong_MASK) + carry; + carry = thisdigit >> PyLong_SHIFT; + thisdigit &= PyLong_MASK; + } + /* Because we're going LSB to MSB, thisdigit is more + significant than what's already in accum, so needs to be + prepended to accum. */ + accum |= (twodigits)thisdigit << accumbits; + + /* The most-significant digit may be (probably is) at least + partly empty. */ + if (i == ndigits - 1) { + /* Count # of sign bits -- they needn't be stored, + * although for signed conversion we need later to + * make sure at least one sign bit gets stored. */ + digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : + thisdigit; + while (s != 0) { + s >>= 1; + accumbits++; + } + } + else + accumbits += PyLong_SHIFT; + + /* Store as many bytes as possible. */ + while (accumbits >= 8) { + if (j >= n) + goto Overflow; + ++j; + *p = (unsigned char)(accum & 0xff); + p += pincr; + accumbits -= 8; + accum >>= 8; + } + } + + /* Store the straggler (if any). */ + assert(accumbits < 8); + assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */ + if (accumbits > 0) { + if (j >= n) + goto Overflow; + ++j; + if (do_twos_comp) { + /* Fill leading bits of the byte with sign bits + (appropriately pretending that the long had an + infinite supply of sign bits). */ + accum |= (~(twodigits)0) << accumbits; + } + *p = (unsigned char)(accum & 0xff); + p += pincr; + } + else if (j == n && n > 0 && is_signed) { + /* The main loop filled the byte array exactly, so the code + just above didn't get to ensure there's a sign bit, and the + loop below wouldn't add one either. Make sure a sign bit + exists. */ + unsigned char msb = *(p - pincr); + int sign_bit_set = msb >= 0x80; + assert(accumbits == 0); + if (sign_bit_set == do_twos_comp) + return 0; + else + goto Overflow; + } + + /* Fill remaining bytes with copies of the sign bit. */ + { + unsigned char signbyte = do_twos_comp ? 0xffU : 0U; + for ( ; j < n; ++j, p += pincr) + *p = signbyte; + } + + return 0; Overflow: - PyErr_SetString(PyExc_OverflowError, "int too big to convert"); - return -1; + PyErr_SetString(PyExc_OverflowError, "int too big to convert"); + return -1; } @@ -934,10 +934,10 @@ PyLong_FromVoidPtr(void *p) #if SIZEOF_LONG_LONG < SIZEOF_VOID_P # error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" #endif - /* special-case null pointer */ - if (!p) - return PyLong_FromLong(0); - return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)(Py_uintptr_t)p); + /* special-case null pointer */ + if (!p) + return PyLong_FromLong(0); + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)(Py_uintptr_t)p); } @@ -946,17 +946,17 @@ PyLong_FromVoidPtr(void *p) void * PyLong_AsVoidPtr(PyObject *vv) { - /* This function will allow int or long objects. If vv is neither, - then the PyLong_AsLong*() functions will raise the exception: - PyExc_SystemError, "bad argument to internal function" - */ + /* This function will allow int or long objects. If vv is neither, + then the PyLong_AsLong*() functions will raise the exception: + PyExc_SystemError, "bad argument to internal function" + */ #if SIZEOF_VOID_P <= SIZEOF_LONG - long x; + long x; - if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) - x = PyLong_AsLong(vv); - else - x = PyLong_AsUnsignedLong(vv); + if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) + x = PyLong_AsLong(vv); + else + x = PyLong_AsUnsignedLong(vv); #else #ifndef HAVE_LONG_LONG @@ -965,18 +965,18 @@ PyLong_AsVoidPtr(PyObject *vv) #if SIZEOF_LONG_LONG < SIZEOF_VOID_P # error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)" #endif - PY_LONG_LONG x; + PY_LONG_LONG x; - if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) - x = PyLong_AsLongLong(vv); - else - x = PyLong_AsUnsignedLongLong(vv); + if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) + x = PyLong_AsLongLong(vv); + else + x = PyLong_AsUnsignedLongLong(vv); #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ - if (x == -1 && PyErr_Occurred()) - return NULL; - return (void *)x; + if (x == -1 && PyErr_Occurred()) + return NULL; + return (void *)x; } #ifdef HAVE_LONG_LONG @@ -986,50 +986,50 @@ PyLong_AsVoidPtr(PyObject *vv) */ #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one -#define PY_ABS_LLONG_MIN (0-(unsigned PY_LONG_LONG)PY_LLONG_MIN) +#define PY_ABS_LLONG_MIN (0-(unsigned PY_LONG_LONG)PY_LLONG_MIN) /* Create a new long int object from a C PY_LONG_LONG int. */ PyObject * PyLong_FromLongLong(PY_LONG_LONG ival) { - PyLongObject *v; - unsigned PY_LONG_LONG abs_ival; - unsigned PY_LONG_LONG t; /* unsigned so >> doesn't propagate sign bit */ - int ndigits = 0; - int negative = 0; - - CHECK_SMALL_INT(ival); - if (ival < 0) { - /* avoid signed overflow on negation; see comments - in PyLong_FromLong above. */ - abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1; - negative = 1; - } - else { - abs_ival = (unsigned PY_LONG_LONG)ival; - } - - /* Count the number of Python digits. - We used to pick 5 ("big enough for anything"), but that's a - waste of time and space given that 5*15 = 75 bits are rarely - needed. */ - t = abs_ival; - while (t) { - ++ndigits; - t >>= PyLong_SHIFT; - } - v = _PyLong_New(ndigits); - if (v != NULL) { - digit *p = v->ob_digit; - Py_SIZE(v) = negative ? -ndigits : ndigits; - t = abs_ival; - while (t) { - *p++ = (digit)(t & PyLong_MASK); - t >>= PyLong_SHIFT; - } - } - return (PyObject *)v; + PyLongObject *v; + unsigned PY_LONG_LONG abs_ival; + unsigned PY_LONG_LONG t; /* unsigned so >> doesn't propagate sign bit */ + int ndigits = 0; + int negative = 0; + + CHECK_SMALL_INT(ival); + if (ival < 0) { + /* avoid signed overflow on negation; see comments + in PyLong_FromLong above. */ + abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1; + negative = 1; + } + else { + abs_ival = (unsigned PY_LONG_LONG)ival; + } + + /* Count the number of Python digits. + We used to pick 5 ("big enough for anything"), but that's a + waste of time and space given that 5*15 = 75 bits are rarely + needed. */ + t = abs_ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = negative ? -ndigits : ndigits; + t = abs_ival; + while (t) { + *p++ = (digit)(t & PyLong_MASK); + t >>= PyLong_SHIFT; + } + } + return (PyObject *)v; } /* Create a new long int object from a C unsigned PY_LONG_LONG int. */ @@ -1037,28 +1037,28 @@ PyLong_FromLongLong(PY_LONG_LONG ival) PyObject * PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival) { - PyLongObject *v; - unsigned PY_LONG_LONG t; - int ndigits = 0; - - if (ival < PyLong_BASE) - return PyLong_FromLong((long)ival); - /* Count the number of Python digits. */ - t = (unsigned PY_LONG_LONG)ival; - while (t) { - ++ndigits; - t >>= PyLong_SHIFT; - } - v = _PyLong_New(ndigits); - if (v != NULL) { - digit *p = v->ob_digit; - Py_SIZE(v) = ndigits; - while (ival) { - *p++ = (digit)(ival & PyLong_MASK); - ival >>= PyLong_SHIFT; - } - } - return (PyObject *)v; + PyLongObject *v; + unsigned PY_LONG_LONG t; + int ndigits = 0; + + if (ival < PyLong_BASE) + return PyLong_FromLong((long)ival); + /* Count the number of Python digits. */ + t = (unsigned PY_LONG_LONG)ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = ndigits; + while (ival) { + *p++ = (digit)(ival & PyLong_MASK); + ival >>= PyLong_SHIFT; + } + } + return (PyObject *)v; } /* Create a new long int object from a C Py_ssize_t. */ @@ -1066,39 +1066,39 @@ PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival) PyObject * PyLong_FromSsize_t(Py_ssize_t ival) { - PyLongObject *v; - size_t abs_ival; - size_t t; /* unsigned so >> doesn't propagate sign bit */ - int ndigits = 0; - int negative = 0; - - CHECK_SMALL_INT(ival); - if (ival < 0) { - /* avoid signed overflow when ival = SIZE_T_MIN */ - abs_ival = (size_t)(-1-ival)+1; - negative = 1; - } - else { - abs_ival = (size_t)ival; - } - - /* Count the number of Python digits. */ - t = abs_ival; - while (t) { - ++ndigits; - t >>= PyLong_SHIFT; - } - v = _PyLong_New(ndigits); - if (v != NULL) { - digit *p = v->ob_digit; - Py_SIZE(v) = negative ? -ndigits : ndigits; - t = abs_ival; - while (t) { - *p++ = (digit)(t & PyLong_MASK); - t >>= PyLong_SHIFT; - } - } - return (PyObject *)v; + PyLongObject *v; + size_t abs_ival; + size_t t; /* unsigned so >> doesn't propagate sign bit */ + int ndigits = 0; + int negative = 0; + + CHECK_SMALL_INT(ival); + if (ival < 0) { + /* avoid signed overflow when ival = SIZE_T_MIN */ + abs_ival = (size_t)(-1-ival)+1; + negative = 1; + } + else { + abs_ival = (size_t)ival; + } + + /* Count the number of Python digits. */ + t = abs_ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = negative ? -ndigits : ndigits; + t = abs_ival; + while (t) { + *p++ = (digit)(t & PyLong_MASK); + t >>= PyLong_SHIFT; + } + } + return (PyObject *)v; } /* Create a new long int object from a C size_t. */ @@ -1106,28 +1106,28 @@ PyLong_FromSsize_t(Py_ssize_t ival) PyObject * PyLong_FromSize_t(size_t ival) { - PyLongObject *v; - size_t t; - int ndigits = 0; - - if (ival < PyLong_BASE) - return PyLong_FromLong((long)ival); - /* Count the number of Python digits. */ - t = ival; - while (t) { - ++ndigits; - t >>= PyLong_SHIFT; - } - v = _PyLong_New(ndigits); - if (v != NULL) { - digit *p = v->ob_digit; - Py_SIZE(v) = ndigits; - while (ival) { - *p++ = (digit)(ival & PyLong_MASK); - ival >>= PyLong_SHIFT; - } - } - return (PyObject *)v; + PyLongObject *v; + size_t t; + int ndigits = 0; + + if (ival < PyLong_BASE) + return PyLong_FromLong((long)ival); + /* Count the number of Python digits. */ + t = ival; + while (t) { + ++ndigits; + t >>= PyLong_SHIFT; + } + v = _PyLong_New(ndigits); + if (v != NULL) { + digit *p = v->ob_digit; + Py_SIZE(v) = ndigits; + while (ival) { + *p++ = (digit)(ival & PyLong_MASK); + ival >>= PyLong_SHIFT; + } + } + return (PyObject *)v; } /* Get a C PY_LONG_LONG int from a long int object. @@ -1136,51 +1136,51 @@ PyLong_FromSize_t(size_t ival) PY_LONG_LONG PyLong_AsLongLong(PyObject *vv) { - PyLongObject *v; - PY_LONG_LONG bytes; - int one = 1; - int res; - - if (vv == NULL) { - PyErr_BadInternalCall(); - return -1; - } - if (!PyLong_Check(vv)) { - PyNumberMethods *nb; - PyObject *io; - if ((nb = vv->ob_type->tp_as_number) == NULL || - nb->nb_int == NULL) { - PyErr_SetString(PyExc_TypeError, "an integer is required"); - return -1; - } - io = (*nb->nb_int) (vv); - if (io == NULL) - return -1; - if (PyLong_Check(io)) { - bytes = PyLong_AsLongLong(io); - Py_DECREF(io); - return bytes; - } - Py_DECREF(io); - PyErr_SetString(PyExc_TypeError, "integer conversion failed"); - return -1; - } - - v = (PyLongObject*)vv; - switch(Py_SIZE(v)) { - case -1: return -(sdigit)v->ob_digit[0]; - case 0: return 0; - case 1: return v->ob_digit[0]; - } - res = _PyLong_AsByteArray( - (PyLongObject *)vv, (unsigned char *)&bytes, - SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); - - /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ - if (res < 0) - return (PY_LONG_LONG)-1; - else - return bytes; + PyLongObject *v; + PY_LONG_LONG bytes; + int one = 1; + int res; + + if (vv == NULL) { + PyErr_BadInternalCall(); + return -1; + } + if (!PyLong_Check(vv)) { + PyNumberMethods *nb; + PyObject *io; + if ((nb = vv->ob_type->tp_as_number) == NULL || + nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return -1; + } + io = (*nb->nb_int) (vv); + if (io == NULL) + return -1; + if (PyLong_Check(io)) { + bytes = PyLong_AsLongLong(io); + Py_DECREF(io); + return bytes; + } + Py_DECREF(io); + PyErr_SetString(PyExc_TypeError, "integer conversion failed"); + return -1; + } + + v = (PyLongObject*)vv; + switch(Py_SIZE(v)) { + case -1: return -(sdigit)v->ob_digit[0]; + case 0: return 0; + case 1: return v->ob_digit[0]; + } + res = _PyLong_AsByteArray( + (PyLongObject *)vv, (unsigned char *)&bytes, + SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1); + + /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ + if (res < 0) + return (PY_LONG_LONG)-1; + else + return bytes; } /* Get a C unsigned PY_LONG_LONG int from a long int object. @@ -1189,31 +1189,31 @@ PyLong_AsLongLong(PyObject *vv) unsigned PY_LONG_LONG PyLong_AsUnsignedLongLong(PyObject *vv) { - PyLongObject *v; - unsigned PY_LONG_LONG bytes; - int one = 1; - int res; - - if (vv == NULL || !PyLong_Check(vv)) { - PyErr_BadInternalCall(); - return (unsigned PY_LONG_LONG)-1; - } - - v = (PyLongObject*)vv; - switch(Py_SIZE(v)) { - case 0: return 0; - case 1: return v->ob_digit[0]; - } - - res = _PyLong_AsByteArray( - (PyLongObject *)vv, (unsigned char *)&bytes, - SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); - - /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ - if (res < 0) - return (unsigned PY_LONG_LONG)res; - else - return bytes; + PyLongObject *v; + unsigned PY_LONG_LONG bytes; + int one = 1; + int res; + + if (vv == NULL || !PyLong_Check(vv)) { + PyErr_BadInternalCall(); + return (unsigned PY_LONG_LONG)-1; + } + + v = (PyLongObject*)vv; + switch(Py_SIZE(v)) { + case 0: return 0; + case 1: return v->ob_digit[0]; + } + + res = _PyLong_AsByteArray( + (PyLongObject *)vv, (unsigned char *)&bytes, + SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0); + + /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */ + if (res < 0) + return (unsigned PY_LONG_LONG)res; + else + return bytes; } /* Get a C unsigned long int from a long int object, ignoring the high bits. @@ -1222,66 +1222,66 @@ PyLong_AsUnsignedLongLong(PyObject *vv) static unsigned PY_LONG_LONG _PyLong_AsUnsignedLongLongMask(PyObject *vv) { - register PyLongObject *v; - unsigned PY_LONG_LONG x; - Py_ssize_t i; - int sign; - - if (vv == NULL || !PyLong_Check(vv)) { - PyErr_BadInternalCall(); - return (unsigned long) -1; - } - v = (PyLongObject *)vv; - switch(Py_SIZE(v)) { - case 0: return 0; - case 1: return v->ob_digit[0]; - } - i = Py_SIZE(v); - sign = 1; - x = 0; - if (i < 0) { - sign = -1; - i = -i; - } - while (--i >= 0) { - x = (x << PyLong_SHIFT) | v->ob_digit[i]; - } - return x * sign; + register PyLongObject *v; + unsigned PY_LONG_LONG x; + Py_ssize_t i; + int sign; + + if (vv == NULL || !PyLong_Check(vv)) { + PyErr_BadInternalCall(); + return (unsigned long) -1; + } + v = (PyLongObject *)vv; + switch(Py_SIZE(v)) { + case 0: return 0; + case 1: return v->ob_digit[0]; + } + i = Py_SIZE(v); + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -i; + } + while (--i >= 0) { + x = (x << PyLong_SHIFT) | v->ob_digit[i]; + } + return x * sign; } unsigned PY_LONG_LONG PyLong_AsUnsignedLongLongMask(register PyObject *op) { - PyNumberMethods *nb; - PyLongObject *lo; - unsigned PY_LONG_LONG val; - - if (op && PyLong_Check(op)) - return _PyLong_AsUnsignedLongLongMask(op); - - if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || - nb->nb_int == NULL) { - PyErr_SetString(PyExc_TypeError, "an integer is required"); - return (unsigned PY_LONG_LONG)-1; - } - - lo = (PyLongObject*) (*nb->nb_int) (op); - if (lo == NULL) - return (unsigned PY_LONG_LONG)-1; - if (PyLong_Check(lo)) { - val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo); - Py_DECREF(lo); - if (PyErr_Occurred()) - return (unsigned PY_LONG_LONG)-1; - return val; - } - else - { - Py_DECREF(lo); - PyErr_SetString(PyExc_TypeError, - "nb_int should return int object"); - return (unsigned PY_LONG_LONG)-1; - } + PyNumberMethods *nb; + PyLongObject *lo; + unsigned PY_LONG_LONG val; + + if (op && PyLong_Check(op)) + return _PyLong_AsUnsignedLongLongMask(op); + + if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL || + nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, "an integer is required"); + return (unsigned PY_LONG_LONG)-1; + } + + lo = (PyLongObject*) (*nb->nb_int) (op); + if (lo == NULL) + return (unsigned PY_LONG_LONG)-1; + if (PyLong_Check(lo)) { + val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo); + Py_DECREF(lo); + if (PyErr_Occurred()) + return (unsigned PY_LONG_LONG)-1; + return val; + } + else + { + Py_DECREF(lo); + PyErr_SetString(PyExc_TypeError, + "nb_int should return int object"); + return (unsigned PY_LONG_LONG)-1; + } } #undef IS_LITTLE_ENDIAN @@ -1296,116 +1296,116 @@ PyLong_AsUnsignedLongLongMask(register PyObject *op) PY_LONG_LONG PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow) { - /* This version by Tim Peters */ - register PyLongObject *v; - unsigned PY_LONG_LONG x, prev; - PY_LONG_LONG res; - Py_ssize_t i; - int sign; - int do_decref = 0; /* if nb_int was called */ - - *overflow = 0; - if (vv == NULL) { - PyErr_BadInternalCall(); - return -1; - } - - if (!PyLong_Check(vv)) { - PyNumberMethods *nb; - nb = vv->ob_type->tp_as_number; - if (nb == NULL || nb->nb_int == NULL) { - PyErr_SetString(PyExc_TypeError, - "an integer is required"); - return -1; - } - vv = (*nb->nb_int) (vv); - if (vv == NULL) - return -1; - do_decref = 1; - if (!PyLong_Check(vv)) { - Py_DECREF(vv); - PyErr_SetString(PyExc_TypeError, - "nb_int should return int object"); - return -1; - } - } - - res = -1; - v = (PyLongObject *)vv; - i = Py_SIZE(v); - - switch (i) { - case -1: - res = -(sdigit)v->ob_digit[0]; - break; - case 0: - res = 0; - break; - case 1: - res = v->ob_digit[0]; - break; - default: - sign = 1; - x = 0; - if (i < 0) { - sign = -1; - i = -(i); - } - while (--i >= 0) { - prev = x; - x = (x << PyLong_SHIFT) + v->ob_digit[i]; - if ((x >> PyLong_SHIFT) != prev) { - *overflow = sign; - goto exit; - } - } - /* Haven't lost any bits, but casting to long requires extra - * care (see comment above). - */ - if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) { - res = (PY_LONG_LONG)x * sign; - } - else if (sign < 0 && x == PY_ABS_LLONG_MIN) { - res = PY_LLONG_MIN; - } - else { - *overflow = sign; - /* res is already set to -1 */ - } - } + /* This version by Tim Peters */ + register PyLongObject *v; + unsigned PY_LONG_LONG x, prev; + PY_LONG_LONG res; + Py_ssize_t i; + int sign; + int do_decref = 0; /* if nb_int was called */ + + *overflow = 0; + if (vv == NULL) { + PyErr_BadInternalCall(); + return -1; + } + + if (!PyLong_Check(vv)) { + PyNumberMethods *nb; + nb = vv->ob_type->tp_as_number; + if (nb == NULL || nb->nb_int == NULL) { + PyErr_SetString(PyExc_TypeError, + "an integer is required"); + return -1; + } + vv = (*nb->nb_int) (vv); + if (vv == NULL) + return -1; + do_decref = 1; + if (!PyLong_Check(vv)) { + Py_DECREF(vv); + PyErr_SetString(PyExc_TypeError, + "nb_int should return int object"); + return -1; + } + } + + res = -1; + v = (PyLongObject *)vv; + i = Py_SIZE(v); + + switch (i) { + case -1: + res = -(sdigit)v->ob_digit[0]; + break; + case 0: + res = 0; + break; + case 1: + res = v->ob_digit[0]; + break; + default: + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -(i); + } + while (--i >= 0) { + prev = x; + x = (x << PyLong_SHIFT) + v->ob_digit[i]; + if ((x >> PyLong_SHIFT) != prev) { + *overflow = sign; + goto exit; + } + } + /* Haven't lost any bits, but casting to long requires extra + * care (see comment above). + */ + if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) { + res = (PY_LONG_LONG)x * sign; + } + else if (sign < 0 && x == PY_ABS_LLONG_MIN) { + res = PY_LLONG_MIN; + } + else { + *overflow = sign; + /* res is already set to -1 */ + } + } exit: - if (do_decref) { - Py_DECREF(vv); - } - return res; + if (do_decref) { + Py_DECREF(vv); + } + return res; } #endif /* HAVE_LONG_LONG */ #define CHECK_BINOP(v,w) \ - if (!PyLong_Check(v) || !PyLong_Check(w)) { \ - Py_INCREF(Py_NotImplemented); \ - return Py_NotImplemented; \ - } + if (!PyLong_Check(v) || !PyLong_Check(w)) { \ + Py_INCREF(Py_NotImplemented); \ + return Py_NotImplemented; \ + } /* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d < 2**k if d is nonzero, else 0. */ static const unsigned char BitLengthTable[32] = { - 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, - 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 + 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 }; static int bits_in_digit(digit d) { - int d_bits = 0; - while (d >= 32) { - d_bits += 6; - d >>= 6; - } - d_bits += (int)BitLengthTable[d]; - return d_bits; + int d_bits = 0; + while (d >= 32) { + d_bits += 6; + d >>= 6; + } + d_bits += (int)BitLengthTable[d]; + return d_bits; } /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] @@ -1415,23 +1415,23 @@ bits_in_digit(digit d) static digit v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) { - Py_ssize_t i; - digit carry = 0; - - assert(m >= n); - for (i = 0; i < n; ++i) { - carry += x[i] + y[i]; - x[i] = carry & PyLong_MASK; - carry >>= PyLong_SHIFT; - assert((carry & 1) == carry); - } - for (; carry && i < m; ++i) { - carry += x[i]; - x[i] = carry & PyLong_MASK; - carry >>= PyLong_SHIFT; - assert((carry & 1) == carry); - } - return carry; + Py_ssize_t i; + digit carry = 0; + + assert(m >= n); + for (i = 0; i < n; ++i) { + carry += x[i] + y[i]; + x[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + assert((carry & 1) == carry); + } + for (; carry && i < m; ++i) { + carry += x[i]; + x[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + assert((carry & 1) == carry); + } + return carry; } /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] @@ -1441,23 +1441,23 @@ v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) static digit v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) { - Py_ssize_t i; - digit borrow = 0; - - assert(m >= n); - for (i = 0; i < n; ++i) { - borrow = x[i] - y[i] - borrow; - x[i] = borrow & PyLong_MASK; - borrow >>= PyLong_SHIFT; - borrow &= 1; /* keep only 1 sign bit */ - } - for (; borrow && i < m; ++i) { - borrow = x[i] - borrow; - x[i] = borrow & PyLong_MASK; - borrow >>= PyLong_SHIFT; - borrow &= 1; - } - return borrow; + Py_ssize_t i; + digit borrow = 0; + + assert(m >= n); + for (i = 0; i < n; ++i) { + borrow = x[i] - y[i] - borrow; + x[i] = borrow & PyLong_MASK; + borrow >>= PyLong_SHIFT; + borrow &= 1; /* keep only 1 sign bit */ + } + for (; borrow && i < m; ++i) { + borrow = x[i] - borrow; + x[i] = borrow & PyLong_MASK; + borrow >>= PyLong_SHIFT; + borrow &= 1; + } + return borrow; } /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put @@ -1466,16 +1466,16 @@ v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) static digit v_lshift(digit *z, digit *a, Py_ssize_t m, int d) { - Py_ssize_t i; - digit carry = 0; - - assert(0 <= d && d < PyLong_SHIFT); - for (i=0; i < m; i++) { - twodigits acc = (twodigits)a[i] << d | carry; - z[i] = (digit)acc & PyLong_MASK; - carry = (digit)(acc >> PyLong_SHIFT); - } - return carry; + Py_ssize_t i; + digit carry = 0; + + assert(0 <= d && d < PyLong_SHIFT); + for (i=0; i < m; i++) { + twodigits acc = (twodigits)a[i] << d | carry; + z[i] = (digit)acc & PyLong_MASK; + carry = (digit)(acc >> PyLong_SHIFT); + } + return carry; } /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put @@ -1484,17 +1484,17 @@ v_lshift(digit *z, digit *a, Py_ssize_t m, int d) static digit v_rshift(digit *z, digit *a, Py_ssize_t m, int d) { - Py_ssize_t i; - digit carry = 0; - digit mask = ((digit)1 << d) - 1U; - - assert(0 <= d && d < PyLong_SHIFT); - for (i=m; i-- > 0;) { - twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i]; - carry = (digit)acc & mask; - z[i] = (digit)(acc >> d); - } - return carry; + Py_ssize_t i; + digit carry = 0; + digit mask = ((digit)1 << d) - 1U; + + assert(0 <= d && d < PyLong_SHIFT); + for (i=m; i-- > 0;) { + twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i]; + carry = (digit)acc & mask; + z[i] = (digit)(acc >> d); + } + return carry; } /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient @@ -1506,18 +1506,18 @@ v_rshift(digit *z, digit *a, Py_ssize_t m, int d) static digit inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n) { - twodigits rem = 0; - - assert(n > 0 && n <= PyLong_MASK); - pin += size; - pout += size; - while (--size >= 0) { - digit hi; - rem = (rem << PyLong_SHIFT) | *--pin; - *--pout = hi = (digit)(rem / n); - rem -= (twodigits)hi * n; - } - return (digit)rem; + twodigits rem = 0; + + assert(n > 0 && n <= PyLong_MASK); + pin += size; + pout += size; + while (--size >= 0) { + digit hi; + rem = (rem << PyLong_SHIFT) | *--pin; + *--pout = hi = (digit)(rem / n); + rem -= (twodigits)hi * n; + } + return (digit)rem; } /* Divide a long integer by a digit, returning both the quotient @@ -1527,15 +1527,15 @@ inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n) static PyLongObject * divrem1(PyLongObject *a, digit n, digit *prem) { - const Py_ssize_t size = ABS(Py_SIZE(a)); - PyLongObject *z; - - assert(n > 0 && n <= PyLong_MASK); - z = _PyLong_New(size); - if (z == NULL) - return NULL; - *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n); - return long_normalize(z); + const Py_ssize_t size = ABS(Py_SIZE(a)); + PyLongObject *z; + + assert(n > 0 && n <= PyLong_MASK); + z = _PyLong_New(size); + if (z == NULL) + return NULL; + *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n); + return long_normalize(z); } /* Convert a long integer to a base 10 string. Returns a new non-shared @@ -1545,111 +1545,111 @@ divrem1(PyLongObject *a, digit n, digit *prem) static PyObject * long_to_decimal_string(PyObject *aa) { - PyLongObject *scratch, *a; - PyObject *str; - Py_ssize_t size, strlen, size_a, i, j; - digit *pout, *pin, rem, tenpow; - Py_UNICODE *p; - int negative; - - a = (PyLongObject *)aa; - if (a == NULL || !PyLong_Check(a)) { - PyErr_BadInternalCall(); - return NULL; - } - size_a = ABS(Py_SIZE(a)); - negative = Py_SIZE(a) < 0; - - /* quick and dirty upper bound for the number of digits - required to express a in base _PyLong_DECIMAL_BASE: - - #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE)) - - But log2(a) < size_a * PyLong_SHIFT, and - log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT - > 3 * _PyLong_DECIMAL_SHIFT - */ - if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) { - PyErr_SetString(PyExc_OverflowError, - "long is too large to format"); - return NULL; - } - /* the expression size_a * PyLong_SHIFT is now safe from overflow */ - size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT); - scratch = _PyLong_New(size); - if (scratch == NULL) - return NULL; - - /* convert array of base _PyLong_BASE digits in pin to an array of - base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP, - Volume 2 (3rd edn), section 4.4, Method 1b). */ - pin = a->ob_digit; - pout = scratch->ob_digit; - size = 0; - for (i = size_a; --i >= 0; ) { - digit hi = pin[i]; - for (j = 0; j < size; j++) { - twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi; - hi = (digit)(z / _PyLong_DECIMAL_BASE); - pout[j] = (digit)(z - (twodigits)hi * - _PyLong_DECIMAL_BASE); - } - while (hi) { - pout[size++] = hi % _PyLong_DECIMAL_BASE; - hi /= _PyLong_DECIMAL_BASE; - } - /* check for keyboard interrupt */ - SIGCHECK({ - Py_DECREF(scratch); - return NULL; - }) - } - /* pout should have at least one digit, so that the case when a = 0 - works correctly */ - if (size == 0) - pout[size++] = 0; - - /* calculate exact length of output string, and allocate */ - strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT; - tenpow = 10; - rem = pout[size-1]; - while (rem >= tenpow) { - tenpow *= 10; - strlen++; - } - str = PyUnicode_FromUnicode(NULL, strlen); - if (str == NULL) { - Py_DECREF(scratch); - return NULL; - } - - /* fill the string right-to-left */ - p = PyUnicode_AS_UNICODE(str) + strlen; - *p = '\0'; - /* pout[0] through pout[size-2] contribute exactly - _PyLong_DECIMAL_SHIFT digits each */ - for (i=0; i < size - 1; i++) { - rem = pout[i]; - for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { - *--p = '0' + rem % 10; - rem /= 10; - } - } - /* pout[size-1]: always produce at least one decimal digit */ - rem = pout[i]; - do { - *--p = '0' + rem % 10; - rem /= 10; - } while (rem != 0); - - /* and sign */ - if (negative) - *--p = '-'; - - /* check we've counted correctly */ - assert(p == PyUnicode_AS_UNICODE(str)); - Py_DECREF(scratch); - return (PyObject *)str; + PyLongObject *scratch, *a; + PyObject *str; + Py_ssize_t size, strlen, size_a, i, j; + digit *pout, *pin, rem, tenpow; + Py_UNICODE *p; + int negative; + + a = (PyLongObject *)aa; + if (a == NULL || !PyLong_Check(a)) { + PyErr_BadInternalCall(); + return NULL; + } + size_a = ABS(Py_SIZE(a)); + negative = Py_SIZE(a) < 0; + + /* quick and dirty upper bound for the number of digits + required to express a in base _PyLong_DECIMAL_BASE: + + #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE)) + + But log2(a) < size_a * PyLong_SHIFT, and + log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT + > 3 * _PyLong_DECIMAL_SHIFT + */ + if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) { + PyErr_SetString(PyExc_OverflowError, + "long is too large to format"); + return NULL; + } + /* the expression size_a * PyLong_SHIFT is now safe from overflow */ + size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT); + scratch = _PyLong_New(size); + if (scratch == NULL) + return NULL; + + /* convert array of base _PyLong_BASE digits in pin to an array of + base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP, + Volume 2 (3rd edn), section 4.4, Method 1b). */ + pin = a->ob_digit; + pout = scratch->ob_digit; + size = 0; + for (i = size_a; --i >= 0; ) { + digit hi = pin[i]; + for (j = 0; j < size; j++) { + twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi; + hi = (digit)(z / _PyLong_DECIMAL_BASE); + pout[j] = (digit)(z - (twodigits)hi * + _PyLong_DECIMAL_BASE); + } + while (hi) { + pout[size++] = hi % _PyLong_DECIMAL_BASE; + hi /= _PyLong_DECIMAL_BASE; + } + /* check for keyboard interrupt */ + SIGCHECK({ + Py_DECREF(scratch); + return NULL; + }) + } + /* pout should have at least one digit, so that the case when a = 0 + works correctly */ + if (size == 0) + pout[size++] = 0; + + /* calculate exact length of output string, and allocate */ + strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT; + tenpow = 10; + rem = pout[size-1]; + while (rem >= tenpow) { + tenpow *= 10; + strlen++; + } + str = PyUnicode_FromUnicode(NULL, strlen); + if (str == NULL) { + Py_DECREF(scratch); + return NULL; + } + + /* fill the string right-to-left */ + p = PyUnicode_AS_UNICODE(str) + strlen; + *p = '\0'; + /* pout[0] through pout[size-2] contribute exactly + _PyLong_DECIMAL_SHIFT digits each */ + for (i=0; i < size - 1; i++) { + rem = pout[i]; + for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { + *--p = '0' + rem % 10; + rem /= 10; + } + } + /* pout[size-1]: always produce at least one decimal digit */ + rem = pout[i]; + do { + *--p = '0' + rem % 10; + rem /= 10; + } while (rem != 0); + + /* and sign */ + if (negative) + *--p = '-'; + + /* check we've counted correctly */ + assert(p == PyUnicode_AS_UNICODE(str)); + Py_DECREF(scratch); + return (PyObject *)str; } /* Convert a long int object to a string, using a given conversion base, @@ -1659,102 +1659,102 @@ long_to_decimal_string(PyObject *aa) PyObject * _PyLong_Format(PyObject *aa, int base) { - register PyLongObject *a = (PyLongObject *)aa; - PyObject *str; - Py_ssize_t i, sz; - Py_ssize_t size_a; - Py_UNICODE *p, sign = '\0'; - int bits; - - assert(base == 2 || base == 8 || base == 10 || base == 16); - if (base == 10) - return long_to_decimal_string((PyObject *)a); - - if (a == NULL || !PyLong_Check(a)) { - PyErr_BadInternalCall(); - return NULL; - } - size_a = ABS(Py_SIZE(a)); - - /* Compute a rough upper bound for the length of the string */ - switch (base) { - case 16: - bits = 4; - break; - case 8: - bits = 3; - break; - case 2: - bits = 1; - break; - default: - assert(0); /* shouldn't ever get here */ - bits = 0; /* to silence gcc warning */ - } - /* compute length of output string: allow 2 characters for prefix and - 1 for possible '-' sign. */ - if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) { - PyErr_SetString(PyExc_OverflowError, - "int is too large to format"); - return NULL; - } - /* now size_a * PyLong_SHIFT + 3 <= PY_SSIZE_T_MAX, so the RHS below - is safe from overflow */ - sz = 3 + (size_a * PyLong_SHIFT + (bits - 1)) / bits; - assert(sz >= 0); - str = PyUnicode_FromUnicode(NULL, sz); - if (str == NULL) - return NULL; - p = PyUnicode_AS_UNICODE(str) + sz; - *p = '\0'; - if (Py_SIZE(a) < 0) - sign = '-'; - - if (Py_SIZE(a) == 0) { - *--p = '0'; - } - else { - /* JRH: special case for power-of-2 bases */ - twodigits accum = 0; - int accumbits = 0; /* # of bits in accum */ - for (i = 0; i < size_a; ++i) { - accum |= (twodigits)a->ob_digit[i] << accumbits; - accumbits += PyLong_SHIFT; - assert(accumbits >= bits); - do { - Py_UNICODE cdigit; - cdigit = (Py_UNICODE)(accum & (base - 1)); - cdigit += (cdigit < 10) ? '0' : 'a'-10; - assert(p > PyUnicode_AS_UNICODE(str)); - *--p = cdigit; - accumbits -= bits; - accum >>= bits; - } while (i < size_a-1 ? accumbits >= bits : accum > 0); - } - } - - if (base == 16) - *--p = 'x'; - else if (base == 8) - *--p = 'o'; - else /* (base == 2) */ - *--p = 'b'; - *--p = '0'; - if (sign) - *--p = sign; - if (p != PyUnicode_AS_UNICODE(str)) { - Py_UNICODE *q = PyUnicode_AS_UNICODE(str); - assert(p > q); - do { - } while ((*q++ = *p++) != '\0'); - q--; - if (PyUnicode_Resize(&str,(Py_ssize_t) (q - - PyUnicode_AS_UNICODE(str)))) { - Py_DECREF(str); - return NULL; - } - } - return (PyObject *)str; + register PyLongObject *a = (PyLongObject *)aa; + PyObject *str; + Py_ssize_t i, sz; + Py_ssize_t size_a; + Py_UNICODE *p, sign = '\0'; + int bits; + + assert(base == 2 || base == 8 || base == 10 || base == 16); + if (base == 10) + return long_to_decimal_string((PyObject *)a); + + if (a == NULL || !PyLong_Check(a)) { + PyErr_BadInternalCall(); + return NULL; + } + size_a = ABS(Py_SIZE(a)); + + /* Compute a rough upper bound for the length of the string */ + switch (base) { + case 16: + bits = 4; + break; + case 8: + bits = 3; + break; + case 2: + bits = 1; + break; + default: + assert(0); /* shouldn't ever get here */ + bits = 0; /* to silence gcc warning */ + } + /* compute length of output string: allow 2 characters for prefix and + 1 for possible '-' sign. */ + if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) { + PyErr_SetString(PyExc_OverflowError, + "int is too large to format"); + return NULL; + } + /* now size_a * PyLong_SHIFT + 3 <= PY_SSIZE_T_MAX, so the RHS below + is safe from overflow */ + sz = 3 + (size_a * PyLong_SHIFT + (bits - 1)) / bits; + assert(sz >= 0); + str = PyUnicode_FromUnicode(NULL, sz); + if (str == NULL) + return NULL; + p = PyUnicode_AS_UNICODE(str) + sz; + *p = '\0'; + if (Py_SIZE(a) < 0) + sign = '-'; + + if (Py_SIZE(a) == 0) { + *--p = '0'; + } + else { + /* JRH: special case for power-of-2 bases */ + twodigits accum = 0; + int accumbits = 0; /* # of bits in accum */ + for (i = 0; i < size_a; ++i) { + accum |= (twodigits)a->ob_digit[i] << accumbits; + accumbits += PyLong_SHIFT; + assert(accumbits >= bits); + do { + Py_UNICODE cdigit; + cdigit = (Py_UNICODE)(accum & (base - 1)); + cdigit += (cdigit < 10) ? '0' : 'a'-10; + assert(p > PyUnicode_AS_UNICODE(str)); + *--p = cdigit; + accumbits -= bits; + accum >>= bits; + } while (i < size_a-1 ? accumbits >= bits : accum > 0); + } + } + + if (base == 16) + *--p = 'x'; + else if (base == 8) + *--p = 'o'; + else /* (base == 2) */ + *--p = 'b'; + *--p = '0'; + if (sign) + *--p = sign; + if (p != PyUnicode_AS_UNICODE(str)) { + Py_UNICODE *q = PyUnicode_AS_UNICODE(str); + assert(p > q); + do { + } while ((*q++ = *p++) != '\0'); + q--; + if (PyUnicode_Resize(&str,(Py_ssize_t) (q - + PyUnicode_AS_UNICODE(str)))) { + Py_DECREF(str); + return NULL; + } + } + return (PyObject *)str; } /* Table of digit values for 8-bit string -> integer conversion. @@ -1765,22 +1765,22 @@ _PyLong_Format(PyObject *aa, int base) * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B. */ unsigned char _PyLong_DigitValue[256] = { - 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, - 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, - 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37, - 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, - 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, - 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, - 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, - 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, - 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, - 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, - 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, - 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, - 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, - 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, - 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37, + 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, + 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, + 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, }; /* *str points to the first digit in a string of base `base` digits. base @@ -1792,111 +1792,111 @@ unsigned char _PyLong_DigitValue[256] = { static PyLongObject * long_from_binary_base(char **str, int base) { - char *p = *str; - char *start = p; - int bits_per_char; - Py_ssize_t n; - PyLongObject *z; - twodigits accum; - int bits_in_accum; - digit *pdigit; - - assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0); - n = base; - for (bits_per_char = -1; n; ++bits_per_char) - n >>= 1; - /* n <- total # of bits needed, while setting p to end-of-string */ - while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base) - ++p; - *str = p; - /* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */ - n = (p - start) * bits_per_char + PyLong_SHIFT - 1; - if (n / bits_per_char < p - start) { - PyErr_SetString(PyExc_ValueError, - "int string too large to convert"); - return NULL; - } - n = n / PyLong_SHIFT; - z = _PyLong_New(n); - if (z == NULL) - return NULL; - /* Read string from right, and fill in long from left; i.e., - * from least to most significant in both. - */ - accum = 0; - bits_in_accum = 0; - pdigit = z->ob_digit; - while (--p >= start) { - int k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)]; - assert(k >= 0 && k < base); - accum |= (twodigits)k << bits_in_accum; - bits_in_accum += bits_per_char; - if (bits_in_accum >= PyLong_SHIFT) { - *pdigit++ = (digit)(accum & PyLong_MASK); - assert(pdigit - z->ob_digit <= n); - accum >>= PyLong_SHIFT; - bits_in_accum -= PyLong_SHIFT; - assert(bits_in_accum < PyLong_SHIFT); - } - } - if (bits_in_accum) { - assert(bits_in_accum <= PyLong_SHIFT); - *pdigit++ = (digit)accum; - assert(pdigit - z->ob_digit <= n); - } - while (pdigit - z->ob_digit < n) - *pdigit++ = 0; - return long_normalize(z); + char *p = *str; + char *start = p; + int bits_per_char; + Py_ssize_t n; + PyLongObject *z; + twodigits accum; + int bits_in_accum; + digit *pdigit; + + assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0); + n = base; + for (bits_per_char = -1; n; ++bits_per_char) + n >>= 1; + /* n <- total # of bits needed, while setting p to end-of-string */ + while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base) + ++p; + *str = p; + /* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */ + n = (p - start) * bits_per_char + PyLong_SHIFT - 1; + if (n / bits_per_char < p - start) { + PyErr_SetString(PyExc_ValueError, + "int string too large to convert"); + return NULL; + } + n = n / PyLong_SHIFT; + z = _PyLong_New(n); + if (z == NULL) + return NULL; + /* Read string from right, and fill in long from left; i.e., + * from least to most significant in both. + */ + accum = 0; + bits_in_accum = 0; + pdigit = z->ob_digit; + while (--p >= start) { + int k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)]; + assert(k >= 0 && k < base); + accum |= (twodigits)k << bits_in_accum; + bits_in_accum += bits_per_char; + if (bits_in_accum >= PyLong_SHIFT) { + *pdigit++ = (digit)(accum & PyLong_MASK); + assert(pdigit - z->ob_digit <= n); + accum >>= PyLong_SHIFT; + bits_in_accum -= PyLong_SHIFT; + assert(bits_in_accum < PyLong_SHIFT); + } + } + if (bits_in_accum) { + assert(bits_in_accum <= PyLong_SHIFT); + *pdigit++ = (digit)accum; + assert(pdigit - z->ob_digit <= n); + } + while (pdigit - z->ob_digit < n) + *pdigit++ = 0; + return long_normalize(z); } PyObject * PyLong_FromString(char *str, char **pend, int base) { - int sign = 1, error_if_nonzero = 0; - char *start, *orig_str = str; - PyLongObject *z = NULL; - PyObject *strobj; - Py_ssize_t slen; - - if ((base != 0 && base < 2) || base > 36) { - PyErr_SetString(PyExc_ValueError, - "int() arg 2 must be >= 2 and <= 36"); - return NULL; - } - while (*str != '\0' && isspace(Py_CHARMASK(*str))) - str++; - if (*str == '+') - ++str; - else if (*str == '-') { - ++str; - sign = -1; - } - if (base == 0) { - if (str[0] != '0') - base = 10; - else if (str[1] == 'x' || str[1] == 'X') - base = 16; - else if (str[1] == 'o' || str[1] == 'O') - base = 8; - else if (str[1] == 'b' || str[1] == 'B') - base = 2; - else { - /* "old" (C-style) octal literal, now invalid. - it might still be zero though */ - error_if_nonzero = 1; - base = 10; - } - } - if (str[0] == '0' && - ((base == 16 && (str[1] == 'x' || str[1] == 'X')) || - (base == 8 && (str[1] == 'o' || str[1] == 'O')) || - (base == 2 && (str[1] == 'b' || str[1] == 'B')))) - str += 2; - - start = str; - if ((base & (base - 1)) == 0) - z = long_from_binary_base(&str, base); - else { + int sign = 1, error_if_nonzero = 0; + char *start, *orig_str = str; + PyLongObject *z = NULL; + PyObject *strobj; + Py_ssize_t slen; + + if ((base != 0 && base < 2) || base > 36) { + PyErr_SetString(PyExc_ValueError, + "int() arg 2 must be >= 2 and <= 36"); + return NULL; + } + while (*str != '\0' && isspace(Py_CHARMASK(*str))) + str++; + if (*str == '+') + ++str; + else if (*str == '-') { + ++str; + sign = -1; + } + if (base == 0) { + if (str[0] != '0') + base = 10; + else if (str[1] == 'x' || str[1] == 'X') + base = 16; + else if (str[1] == 'o' || str[1] == 'O') + base = 8; + else if (str[1] == 'b' || str[1] == 'B') + base = 2; + else { + /* "old" (C-style) octal literal, now invalid. + it might still be zero though */ + error_if_nonzero = 1; + base = 10; + } + } + if (str[0] == '0' && + ((base == 16 && (str[1] == 'x' || str[1] == 'X')) || + (base == 8 && (str[1] == 'o' || str[1] == 'O')) || + (base == 2 && (str[1] == 'b' || str[1] == 'B')))) + str += 2; + + start = str; + if ((base & (base - 1)) == 0) + z = long_from_binary_base(&str, base); + else { /*** Binary bases can be converted in time linear in the number of digits, because Python's representation base is binary. Other bases (including decimal!) use @@ -1982,227 +1982,227 @@ that triggers it(!). Instead the code was tested by artificially allocating just 1 digit at the start, so that the copying code was exercised for every digit beyond the first. ***/ - register twodigits c; /* current input character */ - Py_ssize_t size_z; - int i; - int convwidth; - twodigits convmultmax, convmult; - digit *pz, *pzstop; - char* scan; - - static double log_base_BASE[37] = {0.0e0,}; - static int convwidth_base[37] = {0,}; - static twodigits convmultmax_base[37] = {0,}; - - if (log_base_BASE[base] == 0.0) { - twodigits convmax = base; - int i = 1; - - log_base_BASE[base] = log((double)base) / - log((double)PyLong_BASE); - for (;;) { - twodigits next = convmax * base; - if (next > PyLong_BASE) - break; - convmax = next; - ++i; - } - convmultmax_base[base] = convmax; - assert(i > 0); - convwidth_base[base] = i; - } - - /* Find length of the string of numeric characters. */ - scan = str; - while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base) - ++scan; - - /* Create a long object that can contain the largest possible - * integer with this base and length. Note that there's no - * need to initialize z->ob_digit -- no slot is read up before - * being stored into. - */ - size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1; - /* Uncomment next line to test exceedingly rare copy code */ - /* size_z = 1; */ - assert(size_z > 0); - z = _PyLong_New(size_z); - if (z == NULL) - return NULL; - Py_SIZE(z) = 0; - - /* `convwidth` consecutive input digits are treated as a single - * digit in base `convmultmax`. - */ - convwidth = convwidth_base[base]; - convmultmax = convmultmax_base[base]; - - /* Work ;-) */ - while (str < scan) { - /* grab up to convwidth digits from the input string */ - c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)]; - for (i = 1; i < convwidth && str != scan; ++i, ++str) { - c = (twodigits)(c * base + - (int)_PyLong_DigitValue[Py_CHARMASK(*str)]); - assert(c < PyLong_BASE); - } - - convmult = convmultmax; - /* Calculate the shift only if we couldn't get - * convwidth digits. - */ - if (i != convwidth) { - convmult = base; - for ( ; i > 1; --i) - convmult *= base; - } - - /* Multiply z by convmult, and add c. */ - pz = z->ob_digit; - pzstop = pz + Py_SIZE(z); - for (; pz < pzstop; ++pz) { - c += (twodigits)*pz * convmult; - *pz = (digit)(c & PyLong_MASK); - c >>= PyLong_SHIFT; - } - /* carry off the current end? */ - if (c) { - assert(c < PyLong_BASE); - if (Py_SIZE(z) < size_z) { - *pz = (digit)c; - ++Py_SIZE(z); - } - else { - PyLongObject *tmp; - /* Extremely rare. Get more space. */ - assert(Py_SIZE(z) == size_z); - tmp = _PyLong_New(size_z + 1); - if (tmp == NULL) { - Py_DECREF(z); - return NULL; - } - memcpy(tmp->ob_digit, - z->ob_digit, - sizeof(digit) * size_z); - Py_DECREF(z); - z = tmp; - z->ob_digit[size_z] = (digit)c; - ++size_z; - } - } - } - } - if (z == NULL) - return NULL; - if (error_if_nonzero) { - /* reset the base to 0, else the exception message - doesn't make too much sense */ - base = 0; - if (Py_SIZE(z) != 0) - goto onError; - /* there might still be other problems, therefore base - remains zero here for the same reason */ - } - if (str == start) - goto onError; - if (sign < 0) - Py_SIZE(z) = -(Py_SIZE(z)); - while (*str && isspace(Py_CHARMASK(*str))) - str++; - if (*str != '\0') - goto onError; - if (pend) - *pend = str; - long_normalize(z); - return (PyObject *) maybe_small_long(z); + register twodigits c; /* current input character */ + Py_ssize_t size_z; + int i; + int convwidth; + twodigits convmultmax, convmult; + digit *pz, *pzstop; + char* scan; + + static double log_base_BASE[37] = {0.0e0,}; + static int convwidth_base[37] = {0,}; + static twodigits convmultmax_base[37] = {0,}; + + if (log_base_BASE[base] == 0.0) { + twodigits convmax = base; + int i = 1; + + log_base_BASE[base] = log((double)base) / + log((double)PyLong_BASE); + for (;;) { + twodigits next = convmax * base; + if (next > PyLong_BASE) + break; + convmax = next; + ++i; + } + convmultmax_base[base] = convmax; + assert(i > 0); + convwidth_base[base] = i; + } + + /* Find length of the string of numeric characters. */ + scan = str; + while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base) + ++scan; + + /* Create a long object that can contain the largest possible + * integer with this base and length. Note that there's no + * need to initialize z->ob_digit -- no slot is read up before + * being stored into. + */ + size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1; + /* Uncomment next line to test exceedingly rare copy code */ + /* size_z = 1; */ + assert(size_z > 0); + z = _PyLong_New(size_z); + if (z == NULL) + return NULL; + Py_SIZE(z) = 0; + + /* `convwidth` consecutive input digits are treated as a single + * digit in base `convmultmax`. + */ + convwidth = convwidth_base[base]; + convmultmax = convmultmax_base[base]; + + /* Work ;-) */ + while (str < scan) { + /* grab up to convwidth digits from the input string */ + c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)]; + for (i = 1; i < convwidth && str != scan; ++i, ++str) { + c = (twodigits)(c * base + + (int)_PyLong_DigitValue[Py_CHARMASK(*str)]); + assert(c < PyLong_BASE); + } + + convmult = convmultmax; + /* Calculate the shift only if we couldn't get + * convwidth digits. + */ + if (i != convwidth) { + convmult = base; + for ( ; i > 1; --i) + convmult *= base; + } + + /* Multiply z by convmult, and add c. */ + pz = z->ob_digit; + pzstop = pz + Py_SIZE(z); + for (; pz < pzstop; ++pz) { + c += (twodigits)*pz * convmult; + *pz = (digit)(c & PyLong_MASK); + c >>= PyLong_SHIFT; + } + /* carry off the current end? */ + if (c) { + assert(c < PyLong_BASE); + if (Py_SIZE(z) < size_z) { + *pz = (digit)c; + ++Py_SIZE(z); + } + else { + PyLongObject *tmp; + /* Extremely rare. Get more space. */ + assert(Py_SIZE(z) == size_z); + tmp = _PyLong_New(size_z + 1); + if (tmp == NULL) { + Py_DECREF(z); + return NULL; + } + memcpy(tmp->ob_digit, + z->ob_digit, + sizeof(digit) * size_z); + Py_DECREF(z); + z = tmp; + z->ob_digit[size_z] = (digit)c; + ++size_z; + } + } + } + } + if (z == NULL) + return NULL; + if (error_if_nonzero) { + /* reset the base to 0, else the exception message + doesn't make too much sense */ + base = 0; + if (Py_SIZE(z) != 0) + goto onError; + /* there might still be other problems, therefore base + remains zero here for the same reason */ + } + if (str == start) + goto onError; + if (sign < 0) + Py_SIZE(z) = -(Py_SIZE(z)); + while (*str && isspace(Py_CHARMASK(*str))) + str++; + if (*str != '\0') + goto onError; + if (pend) + *pend = str; + long_normalize(z); + return (PyObject *) maybe_small_long(z); onError: - Py_XDECREF(z); - slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200; - strobj = PyUnicode_FromStringAndSize(orig_str, slen); - if (strobj == NULL) - return NULL; - PyErr_Format(PyExc_ValueError, - "invalid literal for int() with base %d: %R", - base, strobj); - Py_DECREF(strobj); - return NULL; + Py_XDECREF(z); + slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200; + strobj = PyUnicode_FromStringAndSize(orig_str, slen); + if (strobj == NULL) + return NULL; + PyErr_Format(PyExc_ValueError, + "invalid literal for int() with base %d: %R", + base, strobj); + Py_DECREF(strobj); + return NULL; } PyObject * PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base) { - PyObject *result; - char *buffer = (char *)PyMem_MALLOC(length+1); - - if (buffer == NULL) - return NULL; - - if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) { - PyMem_FREE(buffer); - return NULL; - } - result = PyLong_FromString(buffer, NULL, base); - PyMem_FREE(buffer); - return result; + PyObject *result; + char *buffer = (char *)PyMem_MALLOC(length+1); + + if (buffer == NULL) + return NULL; + + if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) { + PyMem_FREE(buffer); + return NULL; + } + result = PyLong_FromString(buffer, NULL, base); + PyMem_FREE(buffer); + return result; } /* forward */ static PyLongObject *x_divrem - (PyLongObject *, PyLongObject *, PyLongObject **); + (PyLongObject *, PyLongObject *, PyLongObject **); static PyObject *long_long(PyObject *v); /* Long division with remainder, top-level routine */ static int long_divrem(PyLongObject *a, PyLongObject *b, - PyLongObject **pdiv, PyLongObject **prem) + PyLongObject **pdiv, PyLongObject **prem) { - Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); - PyLongObject *z; - - if (size_b == 0) { - PyErr_SetString(PyExc_ZeroDivisionError, - "integer division or modulo by zero"); - return -1; - } - if (size_a < size_b || - (size_a == size_b && - a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) { - /* |a| < |b|. */ - *pdiv = (PyLongObject*)PyLong_FromLong(0); - if (*pdiv == NULL) - return -1; - Py_INCREF(a); - *prem = (PyLongObject *) a; - return 0; - } - if (size_b == 1) { - digit rem = 0; - z = divrem1(a, b->ob_digit[0], &rem); - if (z == NULL) - return -1; - *prem = (PyLongObject *) PyLong_FromLong((long)rem); - if (*prem == NULL) { - Py_DECREF(z); - return -1; - } - } - else { - z = x_divrem(a, b, prem); - if (z == NULL) - return -1; - } - /* Set the signs. - The quotient z has the sign of a*b; - the remainder r has the sign of a, - so a = b*z + r. */ - if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0)) - NEGATE(z); - if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) - NEGATE(*prem); - *pdiv = maybe_small_long(z); - return 0; + Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); + PyLongObject *z; + + if (size_b == 0) { + PyErr_SetString(PyExc_ZeroDivisionError, + "integer division or modulo by zero"); + return -1; + } + if (size_a < size_b || + (size_a == size_b && + a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) { + /* |a| < |b|. */ + *pdiv = (PyLongObject*)PyLong_FromLong(0); + if (*pdiv == NULL) + return -1; + Py_INCREF(a); + *prem = (PyLongObject *) a; + return 0; + } + if (size_b == 1) { + digit rem = 0; + z = divrem1(a, b->ob_digit[0], &rem); + if (z == NULL) + return -1; + *prem = (PyLongObject *) PyLong_FromLong((long)rem); + if (*prem == NULL) { + Py_DECREF(z); + return -1; + } + } + else { + z = x_divrem(a, b, prem); + if (z == NULL) + return -1; + } + /* Set the signs. + The quotient z has the sign of a*b; + the remainder r has the sign of a, + so a = b*z + r. */ + if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0)) + NEGATE(z); + if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) + NEGATE(*prem); + *pdiv = maybe_small_long(z); + return 0; } /* Unsigned long division with remainder -- the algorithm. The arguments v1 @@ -2211,125 +2211,125 @@ long_divrem(PyLongObject *a, PyLongObject *b, static PyLongObject * x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) { - PyLongObject *v, *w, *a; - Py_ssize_t i, k, size_v, size_w; - int d; - digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak; - twodigits vv; - sdigit zhi; - stwodigits z; - - /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd - edn.), section 4.3.1, Algorithm D], except that we don't explicitly - handle the special case when the initial estimate q for a quotient - digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and - that won't overflow a digit. */ - - /* allocate space; w will also be used to hold the final remainder */ - size_v = ABS(Py_SIZE(v1)); - size_w = ABS(Py_SIZE(w1)); - assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */ - v = _PyLong_New(size_v+1); - if (v == NULL) { - *prem = NULL; - return NULL; - } - w = _PyLong_New(size_w); - if (w == NULL) { - Py_DECREF(v); - *prem = NULL; - return NULL; - } - - /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2. - shift v1 left by the same amount. Results go into w and v. */ - d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]); - carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d); - assert(carry == 0); - carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d); - if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) { - v->ob_digit[size_v] = carry; - size_v++; - } - - /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has - at most (and usually exactly) k = size_v - size_w digits. */ - k = size_v - size_w; - assert(k >= 0); - a = _PyLong_New(k); - if (a == NULL) { - Py_DECREF(w); - Py_DECREF(v); - *prem = NULL; - return NULL; - } - v0 = v->ob_digit; - w0 = w->ob_digit; - wm1 = w0[size_w-1]; - wm2 = w0[size_w-2]; - for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) { - /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving - single-digit quotient q, remainder in vk[0:size_w]. */ - - SIGCHECK({ - Py_DECREF(a); - Py_DECREF(w); - Py_DECREF(v); - *prem = NULL; - return NULL; - }) - - /* estimate quotient digit q; may overestimate by 1 (rare) */ - vtop = vk[size_w]; - assert(vtop <= wm1); - vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1]; - q = (digit)(vv / wm1); - r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */ - while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT) - | vk[size_w-2])) { - --q; - r += wm1; - if (r >= PyLong_BASE) - break; - } - assert(q <= PyLong_BASE); - - /* subtract q*w0[0:size_w] from vk[0:size_w+1] */ - zhi = 0; - for (i = 0; i < size_w; ++i) { - /* invariants: -PyLong_BASE <= -q <= zhi <= 0; - -PyLong_BASE * q <= z < PyLong_BASE */ - z = (sdigit)vk[i] + zhi - - (stwodigits)q * (stwodigits)w0[i]; - vk[i] = (digit)z & PyLong_MASK; - zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits, - z, PyLong_SHIFT); - } - - /* add w back if q was too large (this branch taken rarely) */ - assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0); - if ((sdigit)vtop + zhi < 0) { - carry = 0; - for (i = 0; i < size_w; ++i) { - carry += vk[i] + w0[i]; - vk[i] = carry & PyLong_MASK; - carry >>= PyLong_SHIFT; - } - --q; - } - - /* store quotient digit */ - assert(q < PyLong_BASE); - *--ak = q; - } - - /* unshift remainder; we reuse w to store the result */ - carry = v_rshift(w0, v0, size_w, d); - assert(carry==0); - Py_DECREF(v); - - *prem = long_normalize(w); - return long_normalize(a); + PyLongObject *v, *w, *a; + Py_ssize_t i, k, size_v, size_w; + int d; + digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak; + twodigits vv; + sdigit zhi; + stwodigits z; + + /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd + edn.), section 4.3.1, Algorithm D], except that we don't explicitly + handle the special case when the initial estimate q for a quotient + digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and + that won't overflow a digit. */ + + /* allocate space; w will also be used to hold the final remainder */ + size_v = ABS(Py_SIZE(v1)); + size_w = ABS(Py_SIZE(w1)); + assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */ + v = _PyLong_New(size_v+1); + if (v == NULL) { + *prem = NULL; + return NULL; + } + w = _PyLong_New(size_w); + if (w == NULL) { + Py_DECREF(v); + *prem = NULL; + return NULL; + } + + /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2. + shift v1 left by the same amount. Results go into w and v. */ + d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]); + carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d); + assert(carry == 0); + carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d); + if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) { + v->ob_digit[size_v] = carry; + size_v++; + } + + /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has + at most (and usually exactly) k = size_v - size_w digits. */ + k = size_v - size_w; + assert(k >= 0); + a = _PyLong_New(k); + if (a == NULL) { + Py_DECREF(w); + Py_DECREF(v); + *prem = NULL; + return NULL; + } + v0 = v->ob_digit; + w0 = w->ob_digit; + wm1 = w0[size_w-1]; + wm2 = w0[size_w-2]; + for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) { + /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving + single-digit quotient q, remainder in vk[0:size_w]. */ + + SIGCHECK({ + Py_DECREF(a); + Py_DECREF(w); + Py_DECREF(v); + *prem = NULL; + return NULL; + }) + + /* estimate quotient digit q; may overestimate by 1 (rare) */ + vtop = vk[size_w]; + assert(vtop <= wm1); + vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1]; + q = (digit)(vv / wm1); + r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */ + while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT) + | vk[size_w-2])) { + --q; + r += wm1; + if (r >= PyLong_BASE) + break; + } + assert(q <= PyLong_BASE); + + /* subtract q*w0[0:size_w] from vk[0:size_w+1] */ + zhi = 0; + for (i = 0; i < size_w; ++i) { + /* invariants: -PyLong_BASE <= -q <= zhi <= 0; + -PyLong_BASE * q <= z < PyLong_BASE */ + z = (sdigit)vk[i] + zhi - + (stwodigits)q * (stwodigits)w0[i]; + vk[i] = (digit)z & PyLong_MASK; + zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits, + z, PyLong_SHIFT); + } + + /* add w back if q was too large (this branch taken rarely) */ + assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0); + if ((sdigit)vtop + zhi < 0) { + carry = 0; + for (i = 0; i < size_w; ++i) { + carry += vk[i] + w0[i]; + vk[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + } + --q; + } + + /* store quotient digit */ + assert(q < PyLong_BASE); + *--ak = q; + } + + /* unshift remainder; we reuse w to store the result */ + carry = v_rshift(w0, v0, size_w, d); + assert(carry==0); + Py_DECREF(v); + + *prem = long_normalize(w); + return long_normalize(a); } /* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <= @@ -2349,111 +2349,111 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) double _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e) { - Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size; - /* See below for why x_digits is always large enough. */ - digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT]; - double dx; - /* Correction term for round-half-to-even rounding. For a digit x, - "x + half_even_correction[x & 7]" gives x rounded to the nearest - multiple of 4, rounding ties to a multiple of 8. */ - static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1}; - - a_size = ABS(Py_SIZE(a)); - if (a_size == 0) { - /* Special case for 0: significand 0.0, exponent 0. */ - *e = 0; - return 0.0; - } - a_bits = bits_in_digit(a->ob_digit[a_size-1]); - /* The following is an overflow-free version of the check - "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */ - if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 && - (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 || - a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1)) - goto overflow; - a_bits = (a_size - 1) * PyLong_SHIFT + a_bits; - - /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size] - (shifting left if a_bits <= DBL_MANT_DIG + 2). - - Number of digits needed for result: write // for floor division. - Then if shifting left, we end up using - - 1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT - - digits. If shifting right, we use - - a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT - - digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with - the inequalities - - m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT - m // PyLong_SHIFT - n // PyLong_SHIFT <= - 1 + (m - n - 1) // PyLong_SHIFT, - - valid for any integers m and n, we find that x_size satisfies - - x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT - - in both cases. - */ - if (a_bits <= DBL_MANT_DIG + 2) { - shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT; - shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT; - x_size = 0; - while (x_size < shift_digits) - x_digits[x_size++] = 0; - rem = v_lshift(x_digits + x_size, a->ob_digit, a_size, - (int)shift_bits); - x_size += a_size; - x_digits[x_size++] = rem; - } - else { - shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT; - shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT; - rem = v_rshift(x_digits, a->ob_digit + shift_digits, - a_size - shift_digits, (int)shift_bits); - x_size = a_size - shift_digits; - /* For correct rounding below, we need the least significant - bit of x to be 'sticky' for this shift: if any of the bits - shifted out was nonzero, we set the least significant bit - of x. */ - if (rem) - x_digits[0] |= 1; - else - while (shift_digits > 0) - if (a->ob_digit[--shift_digits]) { - x_digits[0] |= 1; - break; - } - } - assert(1 <= x_size && x_size <= (Py_ssize_t)(sizeof(x_digits)/sizeof(digit))); - - /* Round, and convert to double. */ - x_digits[0] += half_even_correction[x_digits[0] & 7]; - dx = x_digits[--x_size]; - while (x_size > 0) - dx = dx * PyLong_BASE + x_digits[--x_size]; - - /* Rescale; make correction if result is 1.0. */ - dx /= 4.0 * EXP2_DBL_MANT_DIG; - if (dx == 1.0) { - if (a_bits == PY_SSIZE_T_MAX) - goto overflow; - dx = 0.5; - a_bits += 1; - } - - *e = a_bits; - return Py_SIZE(a) < 0 ? -dx : dx; + Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size; + /* See below for why x_digits is always large enough. */ + digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT]; + double dx; + /* Correction term for round-half-to-even rounding. For a digit x, + "x + half_even_correction[x & 7]" gives x rounded to the nearest + multiple of 4, rounding ties to a multiple of 8. */ + static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1}; + + a_size = ABS(Py_SIZE(a)); + if (a_size == 0) { + /* Special case for 0: significand 0.0, exponent 0. */ + *e = 0; + return 0.0; + } + a_bits = bits_in_digit(a->ob_digit[a_size-1]); + /* The following is an overflow-free version of the check + "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */ + if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 && + (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 || + a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1)) + goto overflow; + a_bits = (a_size - 1) * PyLong_SHIFT + a_bits; + + /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size] + (shifting left if a_bits <= DBL_MANT_DIG + 2). + + Number of digits needed for result: write // for floor division. + Then if shifting left, we end up using + + 1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT + + digits. If shifting right, we use + + a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT + + digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with + the inequalities + + m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT + m // PyLong_SHIFT - n // PyLong_SHIFT <= + 1 + (m - n - 1) // PyLong_SHIFT, + + valid for any integers m and n, we find that x_size satisfies + + x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT + + in both cases. + */ + if (a_bits <= DBL_MANT_DIG + 2) { + shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT; + shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT; + x_size = 0; + while (x_size < shift_digits) + x_digits[x_size++] = 0; + rem = v_lshift(x_digits + x_size, a->ob_digit, a_size, + (int)shift_bits); + x_size += a_size; + x_digits[x_size++] = rem; + } + else { + shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT; + shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT; + rem = v_rshift(x_digits, a->ob_digit + shift_digits, + a_size - shift_digits, (int)shift_bits); + x_size = a_size - shift_digits; + /* For correct rounding below, we need the least significant + bit of x to be 'sticky' for this shift: if any of the bits + shifted out was nonzero, we set the least significant bit + of x. */ + if (rem) + x_digits[0] |= 1; + else + while (shift_digits > 0) + if (a->ob_digit[--shift_digits]) { + x_digits[0] |= 1; + break; + } + } + assert(1 <= x_size && x_size <= (Py_ssize_t)(sizeof(x_digits)/sizeof(digit))); + + /* Round, and convert to double. */ + x_digits[0] += half_even_correction[x_digits[0] & 7]; + dx = x_digits[--x_size]; + while (x_size > 0) + dx = dx * PyLong_BASE + x_digits[--x_size]; + + /* Rescale; make correction if result is 1.0. */ + dx /= 4.0 * EXP2_DBL_MANT_DIG; + if (dx == 1.0) { + if (a_bits == PY_SSIZE_T_MAX) + goto overflow; + dx = 0.5; + a_bits += 1; + } + + *e = a_bits; + return Py_SIZE(a) < 0 ? -dx : dx; overflow: - /* exponent > PY_SSIZE_T_MAX */ - PyErr_SetString(PyExc_OverflowError, - "huge integer: number of bits overflows a Py_ssize_t"); - *e = 0; - return -1.0; + /* exponent > PY_SSIZE_T_MAX */ + PyErr_SetString(PyExc_OverflowError, + "huge integer: number of bits overflows a Py_ssize_t"); + *e = 0; + return -1.0; } /* Get a C double from a long int object. Rounds to the nearest double, @@ -2462,20 +2462,20 @@ _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e) double PyLong_AsDouble(PyObject *v) { - Py_ssize_t exponent; - double x; - - if (v == NULL || !PyLong_Check(v)) { - PyErr_BadInternalCall(); - return -1.0; - } - x = _PyLong_Frexp((PyLongObject *)v, &exponent); - if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) { - PyErr_SetString(PyExc_OverflowError, - "long int too large to convert to float"); - return -1.0; - } - return ldexp(x, (int)exponent); + Py_ssize_t exponent; + double x; + + if (v == NULL || !PyLong_Check(v)) { + PyErr_BadInternalCall(); + return -1.0; + } + x = _PyLong_Frexp((PyLongObject *)v, &exponent); + if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) { + PyErr_SetString(PyExc_OverflowError, + "long int too large to convert to float"); + return -1.0; + } + return ldexp(x, (int)exponent); } /* Methods */ @@ -2483,109 +2483,109 @@ PyLong_AsDouble(PyObject *v) static void long_dealloc(PyObject *v) { - Py_TYPE(v)->tp_free(v); + Py_TYPE(v)->tp_free(v); } static int long_compare(PyLongObject *a, PyLongObject *b) { - Py_ssize_t sign; - - if (Py_SIZE(a) != Py_SIZE(b)) { - sign = Py_SIZE(a) - Py_SIZE(b); - } - else { - Py_ssize_t i = ABS(Py_SIZE(a)); - while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) - ; - if (i < 0) - sign = 0; - else { - sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i]; - if (Py_SIZE(a) < 0) - sign = -sign; - } - } - return sign < 0 ? -1 : sign > 0 ? 1 : 0; + Py_ssize_t sign; + + if (Py_SIZE(a) != Py_SIZE(b)) { + sign = Py_SIZE(a) - Py_SIZE(b); + } + else { + Py_ssize_t i = ABS(Py_SIZE(a)); + while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) + ; + if (i < 0) + sign = 0; + else { + sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i]; + if (Py_SIZE(a) < 0) + sign = -sign; + } + } + return sign < 0 ? -1 : sign > 0 ? 1 : 0; } #define TEST_COND(cond) \ - ((cond) ? Py_True : Py_False) + ((cond) ? Py_True : Py_False) static PyObject * long_richcompare(PyObject *self, PyObject *other, int op) { - int result; - PyObject *v; - CHECK_BINOP(self, other); - if (self == other) - result = 0; - else - result = long_compare((PyLongObject*)self, (PyLongObject*)other); - /* Convert the return value to a Boolean */ - switch (op) { - case Py_EQ: - v = TEST_COND(result == 0); - break; - case Py_NE: - v = TEST_COND(result != 0); - break; - case Py_LE: - v = TEST_COND(result <= 0); - break; - case Py_GE: - v = TEST_COND(result >= 0); - break; - case Py_LT: - v = TEST_COND(result == -1); - break; - case Py_GT: - v = TEST_COND(result == 1); - break; - default: - PyErr_BadArgument(); - return NULL; - } - Py_INCREF(v); - return v; + int result; + PyObject *v; + CHECK_BINOP(self, other); + if (self == other) + result = 0; + else + result = long_compare((PyLongObject*)self, (PyLongObject*)other); + /* Convert the return value to a Boolean */ + switch (op) { + case Py_EQ: + v = TEST_COND(result == 0); + break; + case Py_NE: + v = TEST_COND(result != 0); + break; + case Py_LE: + v = TEST_COND(result <= 0); + break; + case Py_GE: + v = TEST_COND(result >= 0); + break; + case Py_LT: + v = TEST_COND(result == -1); + break; + case Py_GT: + v = TEST_COND(result == 1); + break; + default: + PyErr_BadArgument(); + return NULL; + } + Py_INCREF(v); + return v; } static long long_hash(PyLongObject *v) { - unsigned long x; - Py_ssize_t i; - int sign; - - i = Py_SIZE(v); - switch(i) { - case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0]; - case 0: return 0; - case 1: return v->ob_digit[0]; - } - sign = 1; - x = 0; - if (i < 0) { - sign = -1; - i = -(i); - } - /* The following loop produces a C unsigned long x such that x is - congruent to the absolute value of v modulo ULONG_MAX. The - resulting x is nonzero if and only if v is. */ - while (--i >= 0) { - /* Force a native long #-bits (32 or 64) circular shift */ - x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT); - x += v->ob_digit[i]; - /* If the addition above overflowed we compensate by - incrementing. This preserves the value modulo - ULONG_MAX. */ - if (x < v->ob_digit[i]) - x++; - } - x = x * sign; - if (x == (unsigned long)-1) - x = (unsigned long)-2; - return (long)x; + unsigned long x; + Py_ssize_t i; + int sign; + + i = Py_SIZE(v); + switch(i) { + case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0]; + case 0: return 0; + case 1: return v->ob_digit[0]; + } + sign = 1; + x = 0; + if (i < 0) { + sign = -1; + i = -(i); + } + /* The following loop produces a C unsigned long x such that x is + congruent to the absolute value of v modulo ULONG_MAX. The + resulting x is nonzero if and only if v is. */ + while (--i >= 0) { + /* Force a native long #-bits (32 or 64) circular shift */ + x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT); + x += v->ob_digit[i]; + /* If the addition above overflowed we compensate by + incrementing. This preserves the value modulo + ULONG_MAX. */ + if (x < v->ob_digit[i]) + x++; + } + x = x * sign; + if (x == (unsigned long)-1) + x = (unsigned long)-2; + return (long)x; } @@ -2594,33 +2594,33 @@ long_hash(PyLongObject *v) static PyLongObject * x_add(PyLongObject *a, PyLongObject *b) { - Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); - PyLongObject *z; - Py_ssize_t i; - digit carry = 0; - - /* Ensure a is the larger of the two: */ - if (size_a < size_b) { - { PyLongObject *temp = a; a = b; b = temp; } - { Py_ssize_t size_temp = size_a; - size_a = size_b; - size_b = size_temp; } - } - z = _PyLong_New(size_a+1); - if (z == NULL) - return NULL; - for (i = 0; i < size_b; ++i) { - carry += a->ob_digit[i] + b->ob_digit[i]; - z->ob_digit[i] = carry & PyLong_MASK; - carry >>= PyLong_SHIFT; - } - for (; i < size_a; ++i) { - carry += a->ob_digit[i]; - z->ob_digit[i] = carry & PyLong_MASK; - carry >>= PyLong_SHIFT; - } - z->ob_digit[i] = carry; - return long_normalize(z); + Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); + PyLongObject *z; + Py_ssize_t i; + digit carry = 0; + + /* Ensure a is the larger of the two: */ + if (size_a < size_b) { + { PyLongObject *temp = a; a = b; b = temp; } + { Py_ssize_t size_temp = size_a; + size_a = size_b; + size_b = size_temp; } + } + z = _PyLong_New(size_a+1); + if (z == NULL) + return NULL; + for (i = 0; i < size_b; ++i) { + carry += a->ob_digit[i] + b->ob_digit[i]; + z->ob_digit[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + } + for (; i < size_a; ++i) { + carry += a->ob_digit[i]; + z->ob_digit[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + } + z->ob_digit[i] = carry; + return long_normalize(z); } /* Subtract the absolute values of two integers. */ @@ -2628,113 +2628,113 @@ x_add(PyLongObject *a, PyLongObject *b) static PyLongObject * x_sub(PyLongObject *a, PyLongObject *b) { - Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); - PyLongObject *z; - Py_ssize_t i; - int sign = 1; - digit borrow = 0; - - /* Ensure a is the larger of the two: */ - if (size_a < size_b) { - sign = -1; - { PyLongObject *temp = a; a = b; b = temp; } - { Py_ssize_t size_temp = size_a; - size_a = size_b; - size_b = size_temp; } - } - else if (size_a == size_b) { - /* Find highest digit where a and b differ: */ - i = size_a; - while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) - ; - if (i < 0) - return (PyLongObject *)PyLong_FromLong(0); - if (a->ob_digit[i] < b->ob_digit[i]) { - sign = -1; - { PyLongObject *temp = a; a = b; b = temp; } - } - size_a = size_b = i+1; - } - z = _PyLong_New(size_a); - if (z == NULL) - return NULL; - for (i = 0; i < size_b; ++i) { - /* The following assumes unsigned arithmetic - works module 2**N for some N>PyLong_SHIFT. */ - borrow = a->ob_digit[i] - b->ob_digit[i] - borrow; - z->ob_digit[i] = borrow & PyLong_MASK; - borrow >>= PyLong_SHIFT; - borrow &= 1; /* Keep only one sign bit */ - } - for (; i < size_a; ++i) { - borrow = a->ob_digit[i] - borrow; - z->ob_digit[i] = borrow & PyLong_MASK; - borrow >>= PyLong_SHIFT; - borrow &= 1; /* Keep only one sign bit */ - } - assert(borrow == 0); - if (sign < 0) - NEGATE(z); - return long_normalize(z); + Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b)); + PyLongObject *z; + Py_ssize_t i; + int sign = 1; + digit borrow = 0; + + /* Ensure a is the larger of the two: */ + if (size_a < size_b) { + sign = -1; + { PyLongObject *temp = a; a = b; b = temp; } + { Py_ssize_t size_temp = size_a; + size_a = size_b; + size_b = size_temp; } + } + else if (size_a == size_b) { + /* Find highest digit where a and b differ: */ + i = size_a; + while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) + ; + if (i < 0) + return (PyLongObject *)PyLong_FromLong(0); + if (a->ob_digit[i] < b->ob_digit[i]) { + sign = -1; + { PyLongObject *temp = a; a = b; b = temp; } + } + size_a = size_b = i+1; + } + z = _PyLong_New(size_a); + if (z == NULL) + return NULL; + for (i = 0; i < size_b; ++i) { + /* The following assumes unsigned arithmetic + works module 2**N for some N>PyLong_SHIFT. */ + borrow = a->ob_digit[i] - b->ob_digit[i] - borrow; + z->ob_digit[i] = borrow & PyLong_MASK; + borrow >>= PyLong_SHIFT; + borrow &= 1; /* Keep only one sign bit */ + } + for (; i < size_a; ++i) { + borrow = a->ob_digit[i] - borrow; + z->ob_digit[i] = borrow & PyLong_MASK; + borrow >>= PyLong_SHIFT; + borrow &= 1; /* Keep only one sign bit */ + } + assert(borrow == 0); + if (sign < 0) + NEGATE(z); + return long_normalize(z); } static PyObject * long_add(PyLongObject *a, PyLongObject *b) { - PyLongObject *z; - - CHECK_BINOP(a, b); - - if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { - PyObject *result = PyLong_FromLong(MEDIUM_VALUE(a) + - MEDIUM_VALUE(b)); - return result; - } - if (Py_SIZE(a) < 0) { - if (Py_SIZE(b) < 0) { - z = x_add(a, b); - if (z != NULL && Py_SIZE(z) != 0) - Py_SIZE(z) = -(Py_SIZE(z)); - } - else - z = x_sub(b, a); - } - else { - if (Py_SIZE(b) < 0) - z = x_sub(a, b); - else - z = x_add(a, b); - } - return (PyObject *)z; + PyLongObject *z; + + CHECK_BINOP(a, b); + + if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { + PyObject *result = PyLong_FromLong(MEDIUM_VALUE(a) + + MEDIUM_VALUE(b)); + return result; + } + if (Py_SIZE(a) < 0) { + if (Py_SIZE(b) < 0) { + z = x_add(a, b); + if (z != NULL && Py_SIZE(z) != 0) + Py_SIZE(z) = -(Py_SIZE(z)); + } + else + z = x_sub(b, a); + } + else { + if (Py_SIZE(b) < 0) + z = x_sub(a, b); + else + z = x_add(a, b); + } + return (PyObject *)z; } static PyObject * long_sub(PyLongObject *a, PyLongObject *b) { - PyLongObject *z; - - CHECK_BINOP(a, b); - - if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { - PyObject* r; - r = PyLong_FromLong(MEDIUM_VALUE(a)-MEDIUM_VALUE(b)); - return r; - } - if (Py_SIZE(a) < 0) { - if (Py_SIZE(b) < 0) - z = x_sub(a, b); - else - z = x_add(a, b); - if (z != NULL && Py_SIZE(z) != 0) - Py_SIZE(z) = -(Py_SIZE(z)); - } - else { - if (Py_SIZE(b) < 0) - z = x_add(a, b); - else - z = x_sub(a, b); - } - return (PyObject *)z; + PyLongObject *z; + + CHECK_BINOP(a, b); + + if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { + PyObject* r; + r = PyLong_FromLong(MEDIUM_VALUE(a)-MEDIUM_VALUE(b)); + return r; + } + if (Py_SIZE(a) < 0) { + if (Py_SIZE(b) < 0) + z = x_sub(a, b); + else + z = x_add(a, b); + if (z != NULL && Py_SIZE(z) != 0) + Py_SIZE(z) = -(Py_SIZE(z)); + } + else { + if (Py_SIZE(b) < 0) + z = x_add(a, b); + else + z = x_sub(a, b); + } + return (PyObject *)z; } /* Grade school multiplication, ignoring the signs. @@ -2743,85 +2743,85 @@ long_sub(PyLongObject *a, PyLongObject *b) static PyLongObject * x_mul(PyLongObject *a, PyLongObject *b) { - PyLongObject *z; - Py_ssize_t size_a = ABS(Py_SIZE(a)); - Py_ssize_t size_b = ABS(Py_SIZE(b)); - Py_ssize_t i; - - z = _PyLong_New(size_a + size_b); - if (z == NULL) - return NULL; - - memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit)); - if (a == b) { - /* Efficient squaring per HAC, Algorithm 14.16: - * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf - * Gives slightly less than a 2x speedup when a == b, - * via exploiting that each entry in the multiplication - * pyramid appears twice (except for the size_a squares). - */ - for (i = 0; i < size_a; ++i) { - twodigits carry; - twodigits f = a->ob_digit[i]; - digit *pz = z->ob_digit + (i << 1); - digit *pa = a->ob_digit + i + 1; - digit *paend = a->ob_digit + size_a; - - SIGCHECK({ - Py_DECREF(z); - return NULL; - }) - - carry = *pz + f * f; - *pz++ = (digit)(carry & PyLong_MASK); - carry >>= PyLong_SHIFT; - assert(carry <= PyLong_MASK); - - /* Now f is added in twice in each column of the - * pyramid it appears. Same as adding f<<1 once. - */ - f <<= 1; - while (pa < paend) { - carry += *pz + *pa++ * f; - *pz++ = (digit)(carry & PyLong_MASK); - carry >>= PyLong_SHIFT; - assert(carry <= (PyLong_MASK << 1)); - } - if (carry) { - carry += *pz; - *pz++ = (digit)(carry & PyLong_MASK); - carry >>= PyLong_SHIFT; - } - if (carry) - *pz += (digit)(carry & PyLong_MASK); - assert((carry >> PyLong_SHIFT) == 0); - } - } - else { /* a is not the same as b -- gradeschool long mult */ - for (i = 0; i < size_a; ++i) { - twodigits carry = 0; - twodigits f = a->ob_digit[i]; - digit *pz = z->ob_digit + i; - digit *pb = b->ob_digit; - digit *pbend = b->ob_digit + size_b; - - SIGCHECK({ - Py_DECREF(z); - return NULL; - }) - - while (pb < pbend) { - carry += *pz + *pb++ * f; - *pz++ = (digit)(carry & PyLong_MASK); - carry >>= PyLong_SHIFT; - assert(carry <= PyLong_MASK); - } - if (carry) - *pz += (digit)(carry & PyLong_MASK); - assert((carry >> PyLong_SHIFT) == 0); - } - } - return long_normalize(z); + PyLongObject *z; + Py_ssize_t size_a = ABS(Py_SIZE(a)); + Py_ssize_t size_b = ABS(Py_SIZE(b)); + Py_ssize_t i; + + z = _PyLong_New(size_a + size_b); + if (z == NULL) + return NULL; + + memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit)); + if (a == b) { + /* Efficient squaring per HAC, Algorithm 14.16: + * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf + * Gives slightly less than a 2x speedup when a == b, + * via exploiting that each entry in the multiplication + * pyramid appears twice (except for the size_a squares). + */ + for (i = 0; i < size_a; ++i) { + twodigits carry; + twodigits f = a->ob_digit[i]; + digit *pz = z->ob_digit + (i << 1); + digit *pa = a->ob_digit + i + 1; + digit *paend = a->ob_digit + size_a; + + SIGCHECK({ + Py_DECREF(z); + return NULL; + }) + + carry = *pz + f * f; + *pz++ = (digit)(carry & PyLong_MASK); + carry >>= PyLong_SHIFT; + assert(carry <= PyLong_MASK); + + /* Now f is added in twice in each column of the + * pyramid it appears. Same as adding f<<1 once. + */ + f <<= 1; + while (pa < paend) { + carry += *pz + *pa++ * f; + *pz++ = (digit)(carry & PyLong_MASK); + carry >>= PyLong_SHIFT; + assert(carry <= (PyLong_MASK << 1)); + } + if (carry) { + carry += *pz; + *pz++ = (digit)(carry & PyLong_MASK); + carry >>= PyLong_SHIFT; + } + if (carry) + *pz += (digit)(carry & PyLong_MASK); + assert((carry >> PyLong_SHIFT) == 0); + } + } + else { /* a is not the same as b -- gradeschool long mult */ + for (i = 0; i < size_a; ++i) { + twodigits carry = 0; + twodigits f = a->ob_digit[i]; + digit *pz = z->ob_digit + i; + digit *pb = b->ob_digit; + digit *pbend = b->ob_digit + size_b; + + SIGCHECK({ + Py_DECREF(z); + return NULL; + }) + + while (pb < pbend) { + carry += *pz + *pb++ * f; + *pz++ = (digit)(carry & PyLong_MASK); + carry >>= PyLong_SHIFT; + assert(carry <= PyLong_MASK); + } + if (carry) + *pz += (digit)(carry & PyLong_MASK); + assert((carry >> PyLong_SHIFT) == 0); + } + } + return long_normalize(z); } /* A helper for Karatsuba multiplication (k_mul). @@ -2834,26 +2834,26 @@ x_mul(PyLongObject *a, PyLongObject *b) static int kmul_split(PyLongObject *n, Py_ssize_t size, PyLongObject **high, PyLongObject **low) { - PyLongObject *hi, *lo; - Py_ssize_t size_lo, size_hi; - const Py_ssize_t size_n = ABS(Py_SIZE(n)); - - size_lo = MIN(size_n, size); - size_hi = size_n - size_lo; - - if ((hi = _PyLong_New(size_hi)) == NULL) - return -1; - if ((lo = _PyLong_New(size_lo)) == NULL) { - Py_DECREF(hi); - return -1; - } - - memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit)); - memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit)); - - *high = long_normalize(hi); - *low = long_normalize(lo); - return 0; + PyLongObject *hi, *lo; + Py_ssize_t size_lo, size_hi; + const Py_ssize_t size_n = ABS(Py_SIZE(n)); + + size_lo = MIN(size_n, size); + size_hi = size_n - size_lo; + + if ((hi = _PyLong_New(size_hi)) == NULL) + return -1; + if ((lo = _PyLong_New(size_lo)) == NULL) { + Py_DECREF(hi); + return -1; + } + + memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit)); + memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit)); + + *high = long_normalize(hi); + *low = long_normalize(lo); + return 0; } static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b); @@ -2865,169 +2865,169 @@ static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b); static PyLongObject * k_mul(PyLongObject *a, PyLongObject *b) { - Py_ssize_t asize = ABS(Py_SIZE(a)); - Py_ssize_t bsize = ABS(Py_SIZE(b)); - PyLongObject *ah = NULL; - PyLongObject *al = NULL; - PyLongObject *bh = NULL; - PyLongObject *bl = NULL; - PyLongObject *ret = NULL; - PyLongObject *t1, *t2, *t3; - Py_ssize_t shift; /* the number of digits we split off */ - Py_ssize_t i; - - /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl - * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl - * Then the original product is - * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl - * By picking X to be a power of 2, "*X" is just shifting, and it's - * been reduced to 3 multiplies on numbers half the size. - */ - - /* We want to split based on the larger number; fiddle so that b - * is largest. - */ - if (asize > bsize) { - t1 = a; - a = b; - b = t1; - - i = asize; - asize = bsize; - bsize = i; - } - - /* Use gradeschool math when either number is too small. */ - i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF; - if (asize <= i) { - if (asize == 0) - return (PyLongObject *)PyLong_FromLong(0); - else - return x_mul(a, b); - } - - /* If a is small compared to b, splitting on b gives a degenerate - * case with ah==0, and Karatsuba may be (even much) less efficient - * than "grade school" then. However, we can still win, by viewing - * b as a string of "big digits", each of width a->ob_size. That - * leads to a sequence of balanced calls to k_mul. - */ - if (2 * asize <= bsize) - return k_lopsided_mul(a, b); - - /* Split a & b into hi & lo pieces. */ - shift = bsize >> 1; - if (kmul_split(a, shift, &ah, &al) < 0) goto fail; - assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */ - - if (a == b) { - bh = ah; - bl = al; - Py_INCREF(bh); - Py_INCREF(bl); - } - else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; - - /* The plan: - * 1. Allocate result space (asize + bsize digits: that's always - * enough). - * 2. Compute ah*bh, and copy into result at 2*shift. - * 3. Compute al*bl, and copy into result at 0. Note that this - * can't overlap with #2. - * 4. Subtract al*bl from the result, starting at shift. This may - * underflow (borrow out of the high digit), but we don't care: - * we're effectively doing unsigned arithmetic mod - * BASE**(sizea + sizeb), and so long as the *final* result fits, - * borrows and carries out of the high digit can be ignored. - * 5. Subtract ah*bh from the result, starting at shift. - * 6. Compute (ah+al)*(bh+bl), and add it into the result starting - * at shift. - */ - - /* 1. Allocate result space. */ - ret = _PyLong_New(asize + bsize); - if (ret == NULL) goto fail; + Py_ssize_t asize = ABS(Py_SIZE(a)); + Py_ssize_t bsize = ABS(Py_SIZE(b)); + PyLongObject *ah = NULL; + PyLongObject *al = NULL; + PyLongObject *bh = NULL; + PyLongObject *bl = NULL; + PyLongObject *ret = NULL; + PyLongObject *t1, *t2, *t3; + Py_ssize_t shift; /* the number of digits we split off */ + Py_ssize_t i; + + /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl + * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl + * Then the original product is + * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl + * By picking X to be a power of 2, "*X" is just shifting, and it's + * been reduced to 3 multiplies on numbers half the size. + */ + + /* We want to split based on the larger number; fiddle so that b + * is largest. + */ + if (asize > bsize) { + t1 = a; + a = b; + b = t1; + + i = asize; + asize = bsize; + bsize = i; + } + + /* Use gradeschool math when either number is too small. */ + i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF; + if (asize <= i) { + if (asize == 0) + return (PyLongObject *)PyLong_FromLong(0); + else + return x_mul(a, b); + } + + /* If a is small compared to b, splitting on b gives a degenerate + * case with ah==0, and Karatsuba may be (even much) less efficient + * than "grade school" then. However, we can still win, by viewing + * b as a string of "big digits", each of width a->ob_size. That + * leads to a sequence of balanced calls to k_mul. + */ + if (2 * asize <= bsize) + return k_lopsided_mul(a, b); + + /* Split a & b into hi & lo pieces. */ + shift = bsize >> 1; + if (kmul_split(a, shift, &ah, &al) < 0) goto fail; + assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */ + + if (a == b) { + bh = ah; + bl = al; + Py_INCREF(bh); + Py_INCREF(bl); + } + else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; + + /* The plan: + * 1. Allocate result space (asize + bsize digits: that's always + * enough). + * 2. Compute ah*bh, and copy into result at 2*shift. + * 3. Compute al*bl, and copy into result at 0. Note that this + * can't overlap with #2. + * 4. Subtract al*bl from the result, starting at shift. This may + * underflow (borrow out of the high digit), but we don't care: + * we're effectively doing unsigned arithmetic mod + * BASE**(sizea + sizeb), and so long as the *final* result fits, + * borrows and carries out of the high digit can be ignored. + * 5. Subtract ah*bh from the result, starting at shift. + * 6. Compute (ah+al)*(bh+bl), and add it into the result starting + * at shift. + */ + + /* 1. Allocate result space. */ + ret = _PyLong_New(asize + bsize); + if (ret == NULL) goto fail; #ifdef Py_DEBUG - /* Fill with trash, to catch reference to uninitialized digits. */ - memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit)); + /* Fill with trash, to catch reference to uninitialized digits. */ + memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit)); #endif - /* 2. t1 <- ah*bh, and copy into high digits of result. */ - if ((t1 = k_mul(ah, bh)) == NULL) goto fail; - assert(Py_SIZE(t1) >= 0); - assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret)); - memcpy(ret->ob_digit + 2*shift, t1->ob_digit, - Py_SIZE(t1) * sizeof(digit)); - - /* Zero-out the digits higher than the ah*bh copy. */ - i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1); - if (i) - memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0, - i * sizeof(digit)); - - /* 3. t2 <- al*bl, and copy into the low digits. */ - if ((t2 = k_mul(al, bl)) == NULL) { - Py_DECREF(t1); - goto fail; - } - assert(Py_SIZE(t2) >= 0); - assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */ - memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit)); - - /* Zero out remaining digits. */ - i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */ - if (i) - memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit)); - - /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first - * because it's fresher in cache. - */ - i = Py_SIZE(ret) - shift; /* # digits after shift */ - (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2)); - Py_DECREF(t2); - - (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1)); - Py_DECREF(t1); - - /* 6. t3 <- (ah+al)(bh+bl), and add into result. */ - if ((t1 = x_add(ah, al)) == NULL) goto fail; - Py_DECREF(ah); - Py_DECREF(al); - ah = al = NULL; - - if (a == b) { - t2 = t1; - Py_INCREF(t2); - } - else if ((t2 = x_add(bh, bl)) == NULL) { - Py_DECREF(t1); - goto fail; - } - Py_DECREF(bh); - Py_DECREF(bl); - bh = bl = NULL; - - t3 = k_mul(t1, t2); - Py_DECREF(t1); - Py_DECREF(t2); - if (t3 == NULL) goto fail; - assert(Py_SIZE(t3) >= 0); - - /* Add t3. It's not obvious why we can't run out of room here. - * See the (*) comment after this function. - */ - (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3)); - Py_DECREF(t3); - - return long_normalize(ret); + /* 2. t1 <- ah*bh, and copy into high digits of result. */ + if ((t1 = k_mul(ah, bh)) == NULL) goto fail; + assert(Py_SIZE(t1) >= 0); + assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret)); + memcpy(ret->ob_digit + 2*shift, t1->ob_digit, + Py_SIZE(t1) * sizeof(digit)); + + /* Zero-out the digits higher than the ah*bh copy. */ + i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1); + if (i) + memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0, + i * sizeof(digit)); + + /* 3. t2 <- al*bl, and copy into the low digits. */ + if ((t2 = k_mul(al, bl)) == NULL) { + Py_DECREF(t1); + goto fail; + } + assert(Py_SIZE(t2) >= 0); + assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */ + memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit)); + + /* Zero out remaining digits. */ + i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */ + if (i) + memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit)); + + /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first + * because it's fresher in cache. + */ + i = Py_SIZE(ret) - shift; /* # digits after shift */ + (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2)); + Py_DECREF(t2); + + (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1)); + Py_DECREF(t1); + + /* 6. t3 <- (ah+al)(bh+bl), and add into result. */ + if ((t1 = x_add(ah, al)) == NULL) goto fail; + Py_DECREF(ah); + Py_DECREF(al); + ah = al = NULL; + + if (a == b) { + t2 = t1; + Py_INCREF(t2); + } + else if ((t2 = x_add(bh, bl)) == NULL) { + Py_DECREF(t1); + goto fail; + } + Py_DECREF(bh); + Py_DECREF(bl); + bh = bl = NULL; + + t3 = k_mul(t1, t2); + Py_DECREF(t1); + Py_DECREF(t2); + if (t3 == NULL) goto fail; + assert(Py_SIZE(t3) >= 0); + + /* Add t3. It's not obvious why we can't run out of room here. + * See the (*) comment after this function. + */ + (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3)); + Py_DECREF(t3); + + return long_normalize(ret); fail: - Py_XDECREF(ret); - Py_XDECREF(ah); - Py_XDECREF(al); - Py_XDECREF(bh); - Py_XDECREF(bl); - return NULL; + Py_XDECREF(ret); + Py_XDECREF(ah); + Py_XDECREF(al); + Py_XDECREF(bh); + Py_XDECREF(bl); + return NULL; } /* (*) Why adding t3 can't "run out of room" above. @@ -3086,85 +3086,85 @@ ah*bh and al*bl too. static PyLongObject * k_lopsided_mul(PyLongObject *a, PyLongObject *b) { - const Py_ssize_t asize = ABS(Py_SIZE(a)); - Py_ssize_t bsize = ABS(Py_SIZE(b)); - Py_ssize_t nbdone; /* # of b digits already multiplied */ - PyLongObject *ret; - PyLongObject *bslice = NULL; - - assert(asize > KARATSUBA_CUTOFF); - assert(2 * asize <= bsize); - - /* Allocate result space, and zero it out. */ - ret = _PyLong_New(asize + bsize); - if (ret == NULL) - return NULL; - memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit)); - - /* Successive slices of b are copied into bslice. */ - bslice = _PyLong_New(asize); - if (bslice == NULL) - goto fail; - - nbdone = 0; - while (bsize > 0) { - PyLongObject *product; - const Py_ssize_t nbtouse = MIN(bsize, asize); - - /* Multiply the next slice of b by a. */ - memcpy(bslice->ob_digit, b->ob_digit + nbdone, - nbtouse * sizeof(digit)); - Py_SIZE(bslice) = nbtouse; - product = k_mul(a, bslice); - if (product == NULL) - goto fail; - - /* Add into result. */ - (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone, - product->ob_digit, Py_SIZE(product)); - Py_DECREF(product); - - bsize -= nbtouse; - nbdone += nbtouse; - } - - Py_DECREF(bslice); - return long_normalize(ret); + const Py_ssize_t asize = ABS(Py_SIZE(a)); + Py_ssize_t bsize = ABS(Py_SIZE(b)); + Py_ssize_t nbdone; /* # of b digits already multiplied */ + PyLongObject *ret; + PyLongObject *bslice = NULL; + + assert(asize > KARATSUBA_CUTOFF); + assert(2 * asize <= bsize); + + /* Allocate result space, and zero it out. */ + ret = _PyLong_New(asize + bsize); + if (ret == NULL) + return NULL; + memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit)); + + /* Successive slices of b are copied into bslice. */ + bslice = _PyLong_New(asize); + if (bslice == NULL) + goto fail; + + nbdone = 0; + while (bsize > 0) { + PyLongObject *product; + const Py_ssize_t nbtouse = MIN(bsize, asize); + + /* Multiply the next slice of b by a. */ + memcpy(bslice->ob_digit, b->ob_digit + nbdone, + nbtouse * sizeof(digit)); + Py_SIZE(bslice) = nbtouse; + product = k_mul(a, bslice); + if (product == NULL) + goto fail; + + /* Add into result. */ + (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone, + product->ob_digit, Py_SIZE(product)); + Py_DECREF(product); + + bsize -= nbtouse; + nbdone += nbtouse; + } + + Py_DECREF(bslice); + return long_normalize(ret); fail: - Py_DECREF(ret); - Py_XDECREF(bslice); - return NULL; + Py_DECREF(ret); + Py_XDECREF(bslice); + return NULL; } static PyObject * long_mul(PyLongObject *a, PyLongObject *b) { - PyLongObject *z; + PyLongObject *z; - CHECK_BINOP(a, b); + CHECK_BINOP(a, b); - /* fast path for single-digit multiplication */ - if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { - stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b); + /* fast path for single-digit multiplication */ + if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) { + stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b); #ifdef HAVE_LONG_LONG - return PyLong_FromLongLong((PY_LONG_LONG)v); + return PyLong_FromLongLong((PY_LONG_LONG)v); #else - /* if we don't have long long then we're almost certainly - using 15-bit digits, so v will fit in a long. In the - unlikely event that we're using 30-bit digits on a platform - without long long, a large v will just cause us to fall - through to the general multiplication code below. */ - if (v >= LONG_MIN && v <= LONG_MAX) - return PyLong_FromLong((long)v); + /* if we don't have long long then we're almost certainly + using 15-bit digits, so v will fit in a long. In the + unlikely event that we're using 30-bit digits on a platform + without long long, a large v will just cause us to fall + through to the general multiplication code below. */ + if (v >= LONG_MIN && v <= LONG_MAX) + return PyLong_FromLong((long)v); #endif - } + } - z = k_mul(a, b); - /* Negate if exactly one of the inputs is negative. */ - if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) - NEGATE(z); - return (PyObject *)z; + z = k_mul(a, b); + /* Negate if exactly one of the inputs is negative. */ + if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) + NEGATE(z); + return (PyObject *)z; } /* The / and % operators are now defined in terms of divmod(). @@ -3173,11 +3173,11 @@ long_mul(PyLongObject *a, PyLongObject *b) |a| by |b|, with the sign of a. This is also expressed as a - b*trunc(a/b), if trunc truncates towards zero. Some examples: - a b a rem b a mod b - 13 10 3 3 - -13 10 -3 7 - 13 -10 3 -7 - -13 -10 -3 -3 + a b a rem b a mod b + 13 10 3 3 + -13 10 -3 7 + 13 -10 3 -7 + -13 -10 -3 -3 So, to get from rem to mod, we have to add b if a and b have different signs. We then subtract one from the 'div' part of the outcome to keep the invariant intact. */ @@ -3190,57 +3190,57 @@ long_mul(PyLongObject *a, PyLongObject *b) */ static int l_divmod(PyLongObject *v, PyLongObject *w, - PyLongObject **pdiv, PyLongObject **pmod) + PyLongObject **pdiv, PyLongObject **pmod) { - PyLongObject *div, *mod; - - if (long_divrem(v, w, &div, &mod) < 0) - return -1; - if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) || - (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) { - PyLongObject *temp; - PyLongObject *one; - temp = (PyLongObject *) long_add(mod, w); - Py_DECREF(mod); - mod = temp; - if (mod == NULL) { - Py_DECREF(div); - return -1; - } - one = (PyLongObject *) PyLong_FromLong(1L); - if (one == NULL || - (temp = (PyLongObject *) long_sub(div, one)) == NULL) { - Py_DECREF(mod); - Py_DECREF(div); - Py_XDECREF(one); - return -1; - } - Py_DECREF(one); - Py_DECREF(div); - div = temp; - } - if (pdiv != NULL) - *pdiv = div; - else - Py_DECREF(div); - - if (pmod != NULL) - *pmod = mod; - else - Py_DECREF(mod); - - return 0; + PyLongObject *div, *mod; + + if (long_divrem(v, w, &div, &mod) < 0) + return -1; + if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) || + (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) { + PyLongObject *temp; + PyLongObject *one; + temp = (PyLongObject *) long_add(mod, w); + Py_DECREF(mod); + mod = temp; + if (mod == NULL) { + Py_DECREF(div); + return -1; + } + one = (PyLongObject *) PyLong_FromLong(1L); + if (one == NULL || + (temp = (PyLongObject *) long_sub(div, one)) == NULL) { + Py_DECREF(mod); + Py_DECREF(div); + Py_XDECREF(one); + return -1; + } + Py_DECREF(one); + Py_DECREF(div); + div = temp; + } + if (pdiv != NULL) + *pdiv = div; + else + Py_DECREF(div); + + if (pmod != NULL) + *pmod = mod; + else + Py_DECREF(mod); + + return 0; } static PyObject * long_div(PyObject *a, PyObject *b) { - PyLongObject *div; + PyLongObject *div; - CHECK_BINOP(a, b); - if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0) - div = NULL; - return (PyObject *)div; + CHECK_BINOP(a, b); + if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0) + div = NULL; + return (PyObject *)div; } /* PyLong/PyLong -> float, with correctly rounded result. */ @@ -3251,631 +3251,631 @@ long_div(PyObject *a, PyObject *b) static PyObject * long_true_divide(PyObject *v, PyObject *w) { - PyLongObject *a, *b, *x; - Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits; - digit mask, low; - int inexact, negate, a_is_small, b_is_small; - double dx, result; - - CHECK_BINOP(v, w); - a = (PyLongObject *)v; - b = (PyLongObject *)w; - - /* - Method in a nutshell: - - 0. reduce to case a, b > 0; filter out obvious underflow/overflow - 1. choose a suitable integer 'shift' - 2. use integer arithmetic to compute x = floor(2**-shift*a/b) - 3. adjust x for correct rounding - 4. convert x to a double dx with the same value - 5. return ldexp(dx, shift). - - In more detail: - - 0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b - returns either 0.0 or -0.0, depending on the sign of b. For a and - b both nonzero, ignore signs of a and b, and add the sign back in - at the end. Now write a_bits and b_bits for the bit lengths of a - and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise - for b). Then - - 2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1). - - So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and - so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP - - DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of - the way, we can assume that - - DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP. - - 1. The integer 'shift' is chosen so that x has the right number of - bits for a double, plus two or three extra bits that will be used - in the rounding decisions. Writing a_bits and b_bits for the - number of significant bits in a and b respectively, a - straightforward formula for shift is: - - shift = a_bits - b_bits - DBL_MANT_DIG - 2 - - This is fine in the usual case, but if a/b is smaller than the - smallest normal float then it can lead to double rounding on an - IEEE 754 platform, giving incorrectly rounded results. So we - adjust the formula slightly. The actual formula used is: - - shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2 - - 2. The quantity x is computed by first shifting a (left -shift bits - if shift <= 0, right shift bits if shift > 0) and then dividing by - b. For both the shift and the division, we keep track of whether - the result is inexact, in a flag 'inexact'; this information is - needed at the rounding stage. - - With the choice of shift above, together with our assumption that - a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows - that x >= 1. - - 3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace - this with an exactly representable float of the form - - round(x/2**extra_bits) * 2**(extra_bits+shift). - - For float representability, we need x/2**extra_bits < - 2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP - - DBL_MANT_DIG. This translates to the condition: - - extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG - - To round, we just modify the bottom digit of x in-place; this can - end up giving a digit with value > PyLONG_MASK, but that's not a - problem since digits can hold values up to 2*PyLONG_MASK+1. - - With the original choices for shift above, extra_bits will always - be 2 or 3. Then rounding under the round-half-to-even rule, we - round up iff the most significant of the extra bits is 1, and - either: (a) the computation of x in step 2 had an inexact result, - or (b) at least one other of the extra bits is 1, or (c) the least - significant bit of x (above those to be rounded) is 1. - - 4. Conversion to a double is straightforward; all floating-point - operations involved in the conversion are exact, so there's no - danger of rounding errors. - - 5. Use ldexp(x, shift) to compute x*2**shift, the final result. - The result will always be exactly representable as a double, except - in the case that it overflows. To avoid dependence on the exact - behaviour of ldexp on overflow, we check for overflow before - applying ldexp. The result of ldexp is adjusted for sign before - returning. - */ - - /* Reduce to case where a and b are both positive. */ - a_size = ABS(Py_SIZE(a)); - b_size = ABS(Py_SIZE(b)); - negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0); - if (b_size == 0) { - PyErr_SetString(PyExc_ZeroDivisionError, - "division by zero"); - goto error; - } - if (a_size == 0) - goto underflow_or_zero; - - /* Fast path for a and b small (exactly representable in a double). - Relies on floating-point division being correctly rounded; results - may be subject to double rounding on x86 machines that operate with - the x87 FPU set to 64-bit precision. */ - a_is_small = a_size <= MANT_DIG_DIGITS || - (a_size == MANT_DIG_DIGITS+1 && - a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); - b_is_small = b_size <= MANT_DIG_DIGITS || - (b_size == MANT_DIG_DIGITS+1 && - b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); - if (a_is_small && b_is_small) { - double da, db; - da = a->ob_digit[--a_size]; - while (a_size > 0) - da = da * PyLong_BASE + a->ob_digit[--a_size]; - db = b->ob_digit[--b_size]; - while (b_size > 0) - db = db * PyLong_BASE + b->ob_digit[--b_size]; - result = da / db; - goto success; - } - - /* Catch obvious cases of underflow and overflow */ - diff = a_size - b_size; - if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1) - /* Extreme overflow */ - goto overflow; - else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT) - /* Extreme underflow */ - goto underflow_or_zero; - /* Next line is now safe from overflowing a Py_ssize_t */ - diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) - - bits_in_digit(b->ob_digit[b_size - 1]); - /* Now diff = a_bits - b_bits. */ - if (diff > DBL_MAX_EXP) - goto overflow; - else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1) - goto underflow_or_zero; - - /* Choose value for shift; see comments for step 1 above. */ - shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2; - - inexact = 0; - - /* x = abs(a * 2**-shift) */ - if (shift <= 0) { - Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT; - digit rem; - /* x = a << -shift */ - if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) { - /* In practice, it's probably impossible to end up - here. Both a and b would have to be enormous, - using close to SIZE_T_MAX bytes of memory each. */ - PyErr_SetString(PyExc_OverflowError, - "intermediate overflow during division"); - goto error; - } - x = _PyLong_New(a_size + shift_digits + 1); - if (x == NULL) - goto error; - for (i = 0; i < shift_digits; i++) - x->ob_digit[i] = 0; - rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit, - a_size, -shift % PyLong_SHIFT); - x->ob_digit[a_size + shift_digits] = rem; - } - else { - Py_ssize_t shift_digits = shift / PyLong_SHIFT; - digit rem; - /* x = a >> shift */ - assert(a_size >= shift_digits); - x = _PyLong_New(a_size - shift_digits); - if (x == NULL) - goto error; - rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits, - a_size - shift_digits, shift % PyLong_SHIFT); - /* set inexact if any of the bits shifted out is nonzero */ - if (rem) - inexact = 1; - while (!inexact && shift_digits > 0) - if (a->ob_digit[--shift_digits]) - inexact = 1; - } - long_normalize(x); - x_size = Py_SIZE(x); - - /* x //= b. If the remainder is nonzero, set inexact. We own the only - reference to x, so it's safe to modify it in-place. */ - if (b_size == 1) { - digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size, - b->ob_digit[0]); - long_normalize(x); - if (rem) - inexact = 1; - } - else { - PyLongObject *div, *rem; - div = x_divrem(x, b, &rem); - Py_DECREF(x); - x = div; - if (x == NULL) - goto error; - if (Py_SIZE(rem)) - inexact = 1; - Py_DECREF(rem); - } - x_size = ABS(Py_SIZE(x)); - assert(x_size > 0); /* result of division is never zero */ - x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]); - - /* The number of extra bits that have to be rounded away. */ - extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG; - assert(extra_bits == 2 || extra_bits == 3); - - /* Round by directly modifying the low digit of x. */ - mask = (digit)1 << (extra_bits - 1); - low = x->ob_digit[0] | inexact; - if (low & mask && low & (3*mask-1)) - low += mask; - x->ob_digit[0] = low & ~(mask-1U); - - /* Convert x to a double dx; the conversion is exact. */ - dx = x->ob_digit[--x_size]; - while (x_size > 0) - dx = dx * PyLong_BASE + x->ob_digit[--x_size]; - Py_DECREF(x); - - /* Check whether ldexp result will overflow a double. */ - if (shift + x_bits >= DBL_MAX_EXP && - (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits))) - goto overflow; - result = ldexp(dx, (int)shift); + PyLongObject *a, *b, *x; + Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits; + digit mask, low; + int inexact, negate, a_is_small, b_is_small; + double dx, result; + + CHECK_BINOP(v, w); + a = (PyLongObject *)v; + b = (PyLongObject *)w; + + /* + Method in a nutshell: + + 0. reduce to case a, b > 0; filter out obvious underflow/overflow + 1. choose a suitable integer 'shift' + 2. use integer arithmetic to compute x = floor(2**-shift*a/b) + 3. adjust x for correct rounding + 4. convert x to a double dx with the same value + 5. return ldexp(dx, shift). + + In more detail: + + 0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b + returns either 0.0 or -0.0, depending on the sign of b. For a and + b both nonzero, ignore signs of a and b, and add the sign back in + at the end. Now write a_bits and b_bits for the bit lengths of a + and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise + for b). Then + + 2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1). + + So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and + so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP - + DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of + the way, we can assume that + + DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP. + + 1. The integer 'shift' is chosen so that x has the right number of + bits for a double, plus two or three extra bits that will be used + in the rounding decisions. Writing a_bits and b_bits for the + number of significant bits in a and b respectively, a + straightforward formula for shift is: + + shift = a_bits - b_bits - DBL_MANT_DIG - 2 + + This is fine in the usual case, but if a/b is smaller than the + smallest normal float then it can lead to double rounding on an + IEEE 754 platform, giving incorrectly rounded results. So we + adjust the formula slightly. The actual formula used is: + + shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2 + + 2. The quantity x is computed by first shifting a (left -shift bits + if shift <= 0, right shift bits if shift > 0) and then dividing by + b. For both the shift and the division, we keep track of whether + the result is inexact, in a flag 'inexact'; this information is + needed at the rounding stage. + + With the choice of shift above, together with our assumption that + a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows + that x >= 1. + + 3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace + this with an exactly representable float of the form + + round(x/2**extra_bits) * 2**(extra_bits+shift). + + For float representability, we need x/2**extra_bits < + 2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP - + DBL_MANT_DIG. This translates to the condition: + + extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG + + To round, we just modify the bottom digit of x in-place; this can + end up giving a digit with value > PyLONG_MASK, but that's not a + problem since digits can hold values up to 2*PyLONG_MASK+1. + + With the original choices for shift above, extra_bits will always + be 2 or 3. Then rounding under the round-half-to-even rule, we + round up iff the most significant of the extra bits is 1, and + either: (a) the computation of x in step 2 had an inexact result, + or (b) at least one other of the extra bits is 1, or (c) the least + significant bit of x (above those to be rounded) is 1. + + 4. Conversion to a double is straightforward; all floating-point + operations involved in the conversion are exact, so there's no + danger of rounding errors. + + 5. Use ldexp(x, shift) to compute x*2**shift, the final result. + The result will always be exactly representable as a double, except + in the case that it overflows. To avoid dependence on the exact + behaviour of ldexp on overflow, we check for overflow before + applying ldexp. The result of ldexp is adjusted for sign before + returning. + */ + + /* Reduce to case where a and b are both positive. */ + a_size = ABS(Py_SIZE(a)); + b_size = ABS(Py_SIZE(b)); + negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0); + if (b_size == 0) { + PyErr_SetString(PyExc_ZeroDivisionError, + "division by zero"); + goto error; + } + if (a_size == 0) + goto underflow_or_zero; + + /* Fast path for a and b small (exactly representable in a double). + Relies on floating-point division being correctly rounded; results + may be subject to double rounding on x86 machines that operate with + the x87 FPU set to 64-bit precision. */ + a_is_small = a_size <= MANT_DIG_DIGITS || + (a_size == MANT_DIG_DIGITS+1 && + a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); + b_is_small = b_size <= MANT_DIG_DIGITS || + (b_size == MANT_DIG_DIGITS+1 && + b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); + if (a_is_small && b_is_small) { + double da, db; + da = a->ob_digit[--a_size]; + while (a_size > 0) + da = da * PyLong_BASE + a->ob_digit[--a_size]; + db = b->ob_digit[--b_size]; + while (b_size > 0) + db = db * PyLong_BASE + b->ob_digit[--b_size]; + result = da / db; + goto success; + } + + /* Catch obvious cases of underflow and overflow */ + diff = a_size - b_size; + if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1) + /* Extreme overflow */ + goto overflow; + else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT) + /* Extreme underflow */ + goto underflow_or_zero; + /* Next line is now safe from overflowing a Py_ssize_t */ + diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) - + bits_in_digit(b->ob_digit[b_size - 1]); + /* Now diff = a_bits - b_bits. */ + if (diff > DBL_MAX_EXP) + goto overflow; + else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1) + goto underflow_or_zero; + + /* Choose value for shift; see comments for step 1 above. */ + shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2; + + inexact = 0; + + /* x = abs(a * 2**-shift) */ + if (shift <= 0) { + Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT; + digit rem; + /* x = a << -shift */ + if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) { + /* In practice, it's probably impossible to end up + here. Both a and b would have to be enormous, + using close to SIZE_T_MAX bytes of memory each. */ + PyErr_SetString(PyExc_OverflowError, + "intermediate overflow during division"); + goto error; + } + x = _PyLong_New(a_size + shift_digits + 1); + if (x == NULL) + goto error; + for (i = 0; i < shift_digits; i++) + x->ob_digit[i] = 0; + rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit, + a_size, -shift % PyLong_SHIFT); + x->ob_digit[a_size + shift_digits] = rem; + } + else { + Py_ssize_t shift_digits = shift / PyLong_SHIFT; + digit rem; + /* x = a >> shift */ + assert(a_size >= shift_digits); + x = _PyLong_New(a_size - shift_digits); + if (x == NULL) + goto error; + rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits, + a_size - shift_digits, shift % PyLong_SHIFT); + /* set inexact if any of the bits shifted out is nonzero */ + if (rem) + inexact = 1; + while (!inexact && shift_digits > 0) + if (a->ob_digit[--shift_digits]) + inexact = 1; + } + long_normalize(x); + x_size = Py_SIZE(x); + + /* x //= b. If the remainder is nonzero, set inexact. We own the only + reference to x, so it's safe to modify it in-place. */ + if (b_size == 1) { + digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size, + b->ob_digit[0]); + long_normalize(x); + if (rem) + inexact = 1; + } + else { + PyLongObject *div, *rem; + div = x_divrem(x, b, &rem); + Py_DECREF(x); + x = div; + if (x == NULL) + goto error; + if (Py_SIZE(rem)) + inexact = 1; + Py_DECREF(rem); + } + x_size = ABS(Py_SIZE(x)); + assert(x_size > 0); /* result of division is never zero */ + x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]); + + /* The number of extra bits that have to be rounded away. */ + extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG; + assert(extra_bits == 2 || extra_bits == 3); + + /* Round by directly modifying the low digit of x. */ + mask = (digit)1 << (extra_bits - 1); + low = x->ob_digit[0] | inexact; + if (low & mask && low & (3*mask-1)) + low += mask; + x->ob_digit[0] = low & ~(mask-1U); + + /* Convert x to a double dx; the conversion is exact. */ + dx = x->ob_digit[--x_size]; + while (x_size > 0) + dx = dx * PyLong_BASE + x->ob_digit[--x_size]; + Py_DECREF(x); + + /* Check whether ldexp result will overflow a double. */ + if (shift + x_bits >= DBL_MAX_EXP && + (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits))) + goto overflow; + result = ldexp(dx, (int)shift); success: - return PyFloat_FromDouble(negate ? -result : result); + return PyFloat_FromDouble(negate ? -result : result); underflow_or_zero: - return PyFloat_FromDouble(negate ? -0.0 : 0.0); + return PyFloat_FromDouble(negate ? -0.0 : 0.0); overflow: - PyErr_SetString(PyExc_OverflowError, - "integer division result too large for a float"); + PyErr_SetString(PyExc_OverflowError, + "integer division result too large for a float"); error: - return NULL; + return NULL; } static PyObject * long_mod(PyObject *a, PyObject *b) { - PyLongObject *mod; - - CHECK_BINOP(a, b); + PyLongObject *mod; + + CHECK_BINOP(a, b); - if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0) - mod = NULL; - return (PyObject *)mod; + if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0) + mod = NULL; + return (PyObject *)mod; } static PyObject * long_divmod(PyObject *a, PyObject *b) { - PyLongObject *div, *mod; - PyObject *z; - - CHECK_BINOP(a, b); - - if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) { - return NULL; - } - z = PyTuple_New(2); - if (z != NULL) { - PyTuple_SetItem(z, 0, (PyObject *) div); - PyTuple_SetItem(z, 1, (PyObject *) mod); - } - else { - Py_DECREF(div); - Py_DECREF(mod); - } - return z; + PyLongObject *div, *mod; + PyObject *z; + + CHECK_BINOP(a, b); + + if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) { + return NULL; + } + z = PyTuple_New(2); + if (z != NULL) { + PyTuple_SetItem(z, 0, (PyObject *) div); + PyTuple_SetItem(z, 1, (PyObject *) mod); + } + else { + Py_DECREF(div); + Py_DECREF(mod); + } + return z; } /* pow(v, w, x) */ static PyObject * long_pow(PyObject *v, PyObject *w, PyObject *x) { - PyLongObject *a, *b, *c; /* a,b,c = v,w,x */ - int negativeOutput = 0; /* if x<0 return negative output */ - - PyLongObject *z = NULL; /* accumulated result */ - Py_ssize_t i, j, k; /* counters */ - PyLongObject *temp = NULL; - - /* 5-ary values. If the exponent is large enough, table is - * precomputed so that table[i] == a**i % c for i in range(32). - */ - PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, - 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; - - /* a, b, c = v, w, x */ - CHECK_BINOP(v, w); - a = (PyLongObject*)v; Py_INCREF(a); - b = (PyLongObject*)w; Py_INCREF(b); - if (PyLong_Check(x)) { - c = (PyLongObject *)x; - Py_INCREF(x); - } - else if (x == Py_None) - c = NULL; - else { - Py_DECREF(a); - Py_DECREF(b); - Py_INCREF(Py_NotImplemented); - return Py_NotImplemented; - } - - if (Py_SIZE(b) < 0) { /* if exponent is negative */ - if (c) { - PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " - "cannot be negative when 3rd argument specified"); - goto Error; - } - else { - /* else return a float. This works because we know - that this calls float_pow() which converts its - arguments to double. */ - Py_DECREF(a); - Py_DECREF(b); - return PyFloat_Type.tp_as_number->nb_power(v, w, x); - } - } - - if (c) { - /* if modulus == 0: - raise ValueError() */ - if (Py_SIZE(c) == 0) { - PyErr_SetString(PyExc_ValueError, - "pow() 3rd argument cannot be 0"); - goto Error; - } - - /* if modulus < 0: - negativeOutput = True - modulus = -modulus */ - if (Py_SIZE(c) < 0) { - negativeOutput = 1; - temp = (PyLongObject *)_PyLong_Copy(c); - if (temp == NULL) - goto Error; - Py_DECREF(c); - c = temp; - temp = NULL; - NEGATE(c); - } - - /* if modulus == 1: - return 0 */ - if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) { - z = (PyLongObject *)PyLong_FromLong(0L); - goto Done; - } - - /* if base < 0: - base = base % modulus - Having the base positive just makes things easier. */ - if (Py_SIZE(a) < 0) { - if (l_divmod(a, c, NULL, &temp) < 0) - goto Error; - Py_DECREF(a); - a = temp; - temp = NULL; - } - } - - /* At this point a, b, and c are guaranteed non-negative UNLESS - c is NULL, in which case a may be negative. */ - - z = (PyLongObject *)PyLong_FromLong(1L); - if (z == NULL) - goto Error; - - /* Perform a modular reduction, X = X % c, but leave X alone if c - * is NULL. - */ -#define REDUCE(X) \ - if (c != NULL) { \ - if (l_divmod(X, c, NULL, &temp) < 0) \ - goto Error; \ - Py_XDECREF(X); \ - X = temp; \ - temp = NULL; \ - } - - /* Multiply two values, then reduce the result: - result = X*Y % c. If c is NULL, skip the mod. */ -#define MULT(X, Y, result) \ -{ \ - temp = (PyLongObject *)long_mul(X, Y); \ - if (temp == NULL) \ - goto Error; \ - Py_XDECREF(result); \ - result = temp; \ - temp = NULL; \ - REDUCE(result) \ + PyLongObject *a, *b, *c; /* a,b,c = v,w,x */ + int negativeOutput = 0; /* if x<0 return negative output */ + + PyLongObject *z = NULL; /* accumulated result */ + Py_ssize_t i, j, k; /* counters */ + PyLongObject *temp = NULL; + + /* 5-ary values. If the exponent is large enough, table is + * precomputed so that table[i] == a**i % c for i in range(32). + */ + PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; + + /* a, b, c = v, w, x */ + CHECK_BINOP(v, w); + a = (PyLongObject*)v; Py_INCREF(a); + b = (PyLongObject*)w; Py_INCREF(b); + if (PyLong_Check(x)) { + c = (PyLongObject *)x; + Py_INCREF(x); + } + else if (x == Py_None) + c = NULL; + else { + Py_DECREF(a); + Py_DECREF(b); + Py_INCREF(Py_NotImplemented); + return Py_NotImplemented; + } + + if (Py_SIZE(b) < 0) { /* if exponent is negative */ + if (c) { + PyErr_SetString(PyExc_TypeError, "pow() 2nd argument " + "cannot be negative when 3rd argument specified"); + goto Error; + } + else { + /* else return a float. This works because we know + that this calls float_pow() which converts its + arguments to double. */ + Py_DECREF(a); + Py_DECREF(b); + return PyFloat_Type.tp_as_number->nb_power(v, w, x); + } + } + + if (c) { + /* if modulus == 0: + raise ValueError() */ + if (Py_SIZE(c) == 0) { + PyErr_SetString(PyExc_ValueError, + "pow() 3rd argument cannot be 0"); + goto Error; + } + + /* if modulus < 0: + negativeOutput = True + modulus = -modulus */ + if (Py_SIZE(c) < 0) { + negativeOutput = 1; + temp = (PyLongObject *)_PyLong_Copy(c); + if (temp == NULL) + goto Error; + Py_DECREF(c); + c = temp; + temp = NULL; + NEGATE(c); + } + + /* if modulus == 1: + return 0 */ + if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) { + z = (PyLongObject *)PyLong_FromLong(0L); + goto Done; + } + + /* if base < 0: + base = base % modulus + Having the base positive just makes things easier. */ + if (Py_SIZE(a) < 0) { + if (l_divmod(a, c, NULL, &temp) < 0) + goto Error; + Py_DECREF(a); + a = temp; + temp = NULL; + } + } + + /* At this point a, b, and c are guaranteed non-negative UNLESS + c is NULL, in which case a may be negative. */ + + z = (PyLongObject *)PyLong_FromLong(1L); + if (z == NULL) + goto Error; + + /* Perform a modular reduction, X = X % c, but leave X alone if c + * is NULL. + */ +#define REDUCE(X) \ + if (c != NULL) { \ + if (l_divmod(X, c, NULL, &temp) < 0) \ + goto Error; \ + Py_XDECREF(X); \ + X = temp; \ + temp = NULL; \ + } + + /* Multiply two values, then reduce the result: + result = X*Y % c. If c is NULL, skip the mod. */ +#define MULT(X, Y, result) \ +{ \ + temp = (PyLongObject *)long_mul(X, Y); \ + if (temp == NULL) \ + goto Error; \ + Py_XDECREF(result); \ + result = temp; \ + temp = NULL; \ + REDUCE(result) \ } - if (Py_SIZE(b) <= FIVEARY_CUTOFF) { - /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */ - /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */ - for (i = Py_SIZE(b) - 1; i >= 0; --i) { - digit bi = b->ob_digit[i]; - - for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) { - MULT(z, z, z) - if (bi & j) - MULT(z, a, z) - } - } - } - else { - /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */ - Py_INCREF(z); /* still holds 1L */ - table[0] = z; - for (i = 1; i < 32; ++i) - MULT(table[i-1], a, table[i]) - - for (i = Py_SIZE(b) - 1; i >= 0; --i) { - const digit bi = b->ob_digit[i]; - - for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) { - const int index = (bi >> j) & 0x1f; - for (k = 0; k < 5; ++k) - MULT(z, z, z) - if (index) - MULT(z, table[index], z) - } - } - } - - if (negativeOutput && (Py_SIZE(z) != 0)) { - temp = (PyLongObject *)long_sub(z, c); - if (temp == NULL) - goto Error; - Py_DECREF(z); - z = temp; - temp = NULL; - } - goto Done; + if (Py_SIZE(b) <= FIVEARY_CUTOFF) { + /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */ + /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */ + for (i = Py_SIZE(b) - 1; i >= 0; --i) { + digit bi = b->ob_digit[i]; + + for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) { + MULT(z, z, z) + if (bi & j) + MULT(z, a, z) + } + } + } + else { + /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */ + Py_INCREF(z); /* still holds 1L */ + table[0] = z; + for (i = 1; i < 32; ++i) + MULT(table[i-1], a, table[i]) + + for (i = Py_SIZE(b) - 1; i >= 0; --i) { + const digit bi = b->ob_digit[i]; + + for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) { + const int index = (bi >> j) & 0x1f; + for (k = 0; k < 5; ++k) + MULT(z, z, z) + if (index) + MULT(z, table[index], z) + } + } + } + + if (negativeOutput && (Py_SIZE(z) != 0)) { + temp = (PyLongObject *)long_sub(z, c); + if (temp == NULL) + goto Error; + Py_DECREF(z); + z = temp; + temp = NULL; + } + goto Done; Error: - if (z != NULL) { - Py_DECREF(z); - z = NULL; - } - /* fall through */ + if (z != NULL) { + Py_DECREF(z); + z = NULL; + } + /* fall through */ Done: - if (Py_SIZE(b) > FIVEARY_CUTOFF) { - for (i = 0; i < 32; ++i) - Py_XDECREF(table[i]); - } - Py_DECREF(a); - Py_DECREF(b); - Py_XDECREF(c); - Py_XDECREF(temp); - return (PyObject *)z; + if (Py_SIZE(b) > FIVEARY_CUTOFF) { + for (i = 0; i < 32; ++i) + Py_XDECREF(table[i]); + } + Py_DECREF(a); + Py_DECREF(b); + Py_XDECREF(c); + Py_XDECREF(temp); + return (PyObject *)z; } static PyObject * long_invert(PyLongObject *v) { - /* Implement ~x as -(x+1) */ - PyLongObject *x; - PyLongObject *w; - if (ABS(Py_SIZE(v)) <=1) - return PyLong_FromLong(-(MEDIUM_VALUE(v)+1)); - w = (PyLongObject *)PyLong_FromLong(1L); - if (w == NULL) - return NULL; - x = (PyLongObject *) long_add(v, w); - Py_DECREF(w); - if (x == NULL) - return NULL; - Py_SIZE(x) = -(Py_SIZE(x)); - return (PyObject *)maybe_small_long(x); + /* Implement ~x as -(x+1) */ + PyLongObject *x; + PyLongObject *w; + if (ABS(Py_SIZE(v)) <=1) + return PyLong_FromLong(-(MEDIUM_VALUE(v)+1)); + w = (PyLongObject *)PyLong_FromLong(1L); + if (w == NULL) + return NULL; + x = (PyLongObject *) long_add(v, w); + Py_DECREF(w); + if (x == NULL) + return NULL; + Py_SIZE(x) = -(Py_SIZE(x)); + return (PyObject *)maybe_small_long(x); } static PyObject * long_neg(PyLongObject *v) { - PyLongObject *z; - if (ABS(Py_SIZE(v)) <= 1) - return PyLong_FromLong(-MEDIUM_VALUE(v)); - z = (PyLongObject *)_PyLong_Copy(v); - if (z != NULL) - Py_SIZE(z) = -(Py_SIZE(v)); - return (PyObject *)z; + PyLongObject *z; + if (ABS(Py_SIZE(v)) <= 1) + return PyLong_FromLong(-MEDIUM_VALUE(v)); + z = (PyLongObject *)_PyLong_Copy(v); + if (z != NULL) + Py_SIZE(z) = -(Py_SIZE(v)); + return (PyObject *)z; } static PyObject * long_abs(PyLongObject *v) { - if (Py_SIZE(v) < 0) - return long_neg(v); - else - return long_long((PyObject *)v); + if (Py_SIZE(v) < 0) + return long_neg(v); + else + return long_long((PyObject *)v); } static int long_bool(PyLongObject *v) { - return Py_SIZE(v) != 0; + return Py_SIZE(v) != 0; } static PyObject * long_rshift(PyLongObject *a, PyLongObject *b) { - PyLongObject *z = NULL; - Py_ssize_t shiftby, newsize, wordshift, loshift, hishift, i, j; - digit lomask, himask; - - CHECK_BINOP(a, b); - - if (Py_SIZE(a) < 0) { - /* Right shifting negative numbers is harder */ - PyLongObject *a1, *a2; - a1 = (PyLongObject *) long_invert(a); - if (a1 == NULL) - goto rshift_error; - a2 = (PyLongObject *) long_rshift(a1, b); - Py_DECREF(a1); - if (a2 == NULL) - goto rshift_error; - z = (PyLongObject *) long_invert(a2); - Py_DECREF(a2); - } - else { - shiftby = PyLong_AsSsize_t((PyObject *)b); - if (shiftby == -1L && PyErr_Occurred()) - goto rshift_error; - if (shiftby < 0) { - PyErr_SetString(PyExc_ValueError, - "negative shift count"); - goto rshift_error; - } - wordshift = shiftby / PyLong_SHIFT; - newsize = ABS(Py_SIZE(a)) - wordshift; - if (newsize <= 0) - return PyLong_FromLong(0); - loshift = shiftby % PyLong_SHIFT; - hishift = PyLong_SHIFT - loshift; - lomask = ((digit)1 << hishift) - 1; - himask = PyLong_MASK ^ lomask; - z = _PyLong_New(newsize); - if (z == NULL) - goto rshift_error; - if (Py_SIZE(a) < 0) - Py_SIZE(z) = -(Py_SIZE(z)); - for (i = 0, j = wordshift; i < newsize; i++, j++) { - z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask; - if (i+1 < newsize) - z->ob_digit[i] |= - (a->ob_digit[j+1] << hishift) & himask; - } - z = long_normalize(z); - } + PyLongObject *z = NULL; + Py_ssize_t shiftby, newsize, wordshift, loshift, hishift, i, j; + digit lomask, himask; + + CHECK_BINOP(a, b); + + if (Py_SIZE(a) < 0) { + /* Right shifting negative numbers is harder */ + PyLongObject *a1, *a2; + a1 = (PyLongObject *) long_invert(a); + if (a1 == NULL) + goto rshift_error; + a2 = (PyLongObject *) long_rshift(a1, b); + Py_DECREF(a1); + if (a2 == NULL) + goto rshift_error; + z = (PyLongObject *) long_invert(a2); + Py_DECREF(a2); + } + else { + shiftby = PyLong_AsSsize_t((PyObject *)b); + if (shiftby == -1L && PyErr_Occurred()) + goto rshift_error; + if (shiftby < 0) { + PyErr_SetString(PyExc_ValueError, + "negative shift count"); + goto rshift_error; + } + wordshift = shiftby / PyLong_SHIFT; + newsize = ABS(Py_SIZE(a)) - wordshift; + if (newsize <= 0) + return PyLong_FromLong(0); + loshift = shiftby % PyLong_SHIFT; + hishift = PyLong_SHIFT - loshift; + lomask = ((digit)1 << hishift) - 1; + himask = PyLong_MASK ^ lomask; + z = _PyLong_New(newsize); + if (z == NULL) + goto rshift_error; + if (Py_SIZE(a) < 0) + Py_SIZE(z) = -(Py_SIZE(z)); + for (i = 0, j = wordshift; i < newsize; i++, j++) { + z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask; + if (i+1 < newsize) + z->ob_digit[i] |= + (a->ob_digit[j+1] << hishift) & himask; + } + z = long_normalize(z); + } rshift_error: - return (PyObject *) maybe_small_long(z); + return (PyObject *) maybe_small_long(z); } static PyObject * long_lshift(PyObject *v, PyObject *w) { - /* This version due to Tim Peters */ - PyLongObject *a = (PyLongObject*)v; - PyLongObject *b = (PyLongObject*)w; - PyLongObject *z = NULL; - Py_ssize_t shiftby, oldsize, newsize, wordshift, remshift, i, j; - twodigits accum; - - CHECK_BINOP(a, b); - - shiftby = PyLong_AsSsize_t((PyObject *)b); - if (shiftby == -1L && PyErr_Occurred()) - goto lshift_error; - if (shiftby < 0) { - PyErr_SetString(PyExc_ValueError, "negative shift count"); - goto lshift_error; - } - /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */ - wordshift = shiftby / PyLong_SHIFT; - remshift = shiftby - wordshift * PyLong_SHIFT; - - oldsize = ABS(Py_SIZE(a)); - newsize = oldsize + wordshift; - if (remshift) - ++newsize; - z = _PyLong_New(newsize); - if (z == NULL) - goto lshift_error; - if (Py_SIZE(a) < 0) - NEGATE(z); - for (i = 0; i < wordshift; i++) - z->ob_digit[i] = 0; - accum = 0; - for (i = wordshift, j = 0; j < oldsize; i++, j++) { - accum |= (twodigits)a->ob_digit[j] << remshift; - z->ob_digit[i] = (digit)(accum & PyLong_MASK); - accum >>= PyLong_SHIFT; - } - if (remshift) - z->ob_digit[newsize-1] = (digit)accum; - else - assert(!accum); - z = long_normalize(z); + /* This version due to Tim Peters */ + PyLongObject *a = (PyLongObject*)v; + PyLongObject *b = (PyLongObject*)w; + PyLongObject *z = NULL; + Py_ssize_t shiftby, oldsize, newsize, wordshift, remshift, i, j; + twodigits accum; + + CHECK_BINOP(a, b); + + shiftby = PyLong_AsSsize_t((PyObject *)b); + if (shiftby == -1L && PyErr_Occurred()) + goto lshift_error; + if (shiftby < 0) { + PyErr_SetString(PyExc_ValueError, "negative shift count"); + goto lshift_error; + } + /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */ + wordshift = shiftby / PyLong_SHIFT; + remshift = shiftby - wordshift * PyLong_SHIFT; + + oldsize = ABS(Py_SIZE(a)); + newsize = oldsize + wordshift; + if (remshift) + ++newsize; + z = _PyLong_New(newsize); + if (z == NULL) + goto lshift_error; + if (Py_SIZE(a) < 0) + NEGATE(z); + for (i = 0; i < wordshift; i++) + z->ob_digit[i] = 0; + accum = 0; + for (i = wordshift, j = 0; j < oldsize; i++, j++) { + accum |= (twodigits)a->ob_digit[j] << remshift; + z->ob_digit[i] = (digit)(accum & PyLong_MASK); + accum >>= PyLong_SHIFT; + } + if (remshift) + z->ob_digit[newsize-1] = (digit)accum; + else + assert(!accum); + z = long_normalize(z); lshift_error: - return (PyObject *) maybe_small_long(z); + return (PyObject *) maybe_small_long(z); } /* Compute two's complement of digit vector a[0:m], writing result to @@ -3885,186 +3885,186 @@ lshift_error: static void v_complement(digit *z, digit *a, Py_ssize_t m) { - Py_ssize_t i; - digit carry = 1; - for (i = 0; i < m; ++i) { - carry += a[i] ^ PyLong_MASK; - z[i] = carry & PyLong_MASK; - carry >>= PyLong_SHIFT; - } - assert(carry == 0); + Py_ssize_t i; + digit carry = 1; + for (i = 0; i < m; ++i) { + carry += a[i] ^ PyLong_MASK; + z[i] = carry & PyLong_MASK; + carry >>= PyLong_SHIFT; + } + assert(carry == 0); } /* Bitwise and/xor/or operations */ static PyObject * long_bitwise(PyLongObject *a, - int op, /* '&', '|', '^' */ - PyLongObject *b) + int op, /* '&', '|', '^' */ + PyLongObject *b) { - int nega, negb, negz; - Py_ssize_t size_a, size_b, size_z, i; - PyLongObject *z; - - /* Bitwise operations for negative numbers operate as though - on a two's complement representation. So convert arguments - from sign-magnitude to two's complement, and convert the - result back to sign-magnitude at the end. */ - - /* If a is negative, replace it by its two's complement. */ - size_a = ABS(Py_SIZE(a)); - nega = Py_SIZE(a) < 0; - if (nega) { - z = _PyLong_New(size_a); - if (z == NULL) - return NULL; - v_complement(z->ob_digit, a->ob_digit, size_a); - a = z; - } - else - /* Keep reference count consistent. */ - Py_INCREF(a); - - /* Same for b. */ - size_b = ABS(Py_SIZE(b)); - negb = Py_SIZE(b) < 0; - if (negb) { - z = _PyLong_New(size_b); - if (z == NULL) { - Py_DECREF(a); - return NULL; - } - v_complement(z->ob_digit, b->ob_digit, size_b); - b = z; - } - else - Py_INCREF(b); - - /* Swap a and b if necessary to ensure size_a >= size_b. */ - if (size_a < size_b) { - z = a; a = b; b = z; - size_z = size_a; size_a = size_b; size_b = size_z; - negz = nega; nega = negb; negb = negz; - } - - /* JRH: The original logic here was to allocate the result value (z) - as the longer of the two operands. However, there are some cases - where the result is guaranteed to be shorter than that: AND of two - positives, OR of two negatives: use the shorter number. AND with - mixed signs: use the positive number. OR with mixed signs: use the - negative number. - */ - switch (op) { - case '^': - negz = nega ^ negb; - size_z = size_a; - break; - case '&': - negz = nega & negb; - size_z = negb ? size_a : size_b; - break; - case '|': - negz = nega | negb; - size_z = negb ? size_b : size_a; - break; - default: - PyErr_BadArgument(); - return NULL; - } - - /* We allow an extra digit if z is negative, to make sure that - the final two's complement of z doesn't overflow. */ - z = _PyLong_New(size_z + negz); - if (z == NULL) { - Py_DECREF(a); - Py_DECREF(b); - return NULL; - } - - /* Compute digits for overlap of a and b. */ - switch(op) { - case '&': - for (i = 0; i < size_b; ++i) - z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i]; - break; - case '|': - for (i = 0; i < size_b; ++i) - z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i]; - break; - case '^': - for (i = 0; i < size_b; ++i) - z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i]; - break; - default: - PyErr_BadArgument(); - return NULL; - } - - /* Copy any remaining digits of a, inverting if necessary. */ - if (op == '^' && negb) - for (; i < size_z; ++i) - z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK; - else if (i < size_z) - memcpy(&z->ob_digit[i], &a->ob_digit[i], - (size_z-i)*sizeof(digit)); - - /* Complement result if negative. */ - if (negz) { - Py_SIZE(z) = -(Py_SIZE(z)); - z->ob_digit[size_z] = PyLong_MASK; - v_complement(z->ob_digit, z->ob_digit, size_z+1); - } - - Py_DECREF(a); - Py_DECREF(b); - return (PyObject *)maybe_small_long(long_normalize(z)); + int nega, negb, negz; + Py_ssize_t size_a, size_b, size_z, i; + PyLongObject *z; + + /* Bitwise operations for negative numbers operate as though + on a two's complement representation. So convert arguments + from sign-magnitude to two's complement, and convert the + result back to sign-magnitude at the end. */ + + /* If a is negative, replace it by its two's complement. */ + size_a = ABS(Py_SIZE(a)); + nega = Py_SIZE(a) < 0; + if (nega) { + z = _PyLong_New(size_a); + if (z == NULL) + return NULL; + v_complement(z->ob_digit, a->ob_digit, size_a); + a = z; + } + else + /* Keep reference count consistent. */ + Py_INCREF(a); + + /* Same for b. */ + size_b = ABS(Py_SIZE(b)); + negb = Py_SIZE(b) < 0; + if (negb) { + z = _PyLong_New(size_b); + if (z == NULL) { + Py_DECREF(a); + return NULL; + } + v_complement(z->ob_digit, b->ob_digit, size_b); + b = z; + } + else + Py_INCREF(b); + + /* Swap a and b if necessary to ensure size_a >= size_b. */ + if (size_a < size_b) { + z = a; a = b; b = z; + size_z = size_a; size_a = size_b; size_b = size_z; + negz = nega; nega = negb; negb = negz; + } + + /* JRH: The original logic here was to allocate the result value (z) + as the longer of the two operands. However, there are some cases + where the result is guaranteed to be shorter than that: AND of two + positives, OR of two negatives: use the shorter number. AND with + mixed signs: use the positive number. OR with mixed signs: use the + negative number. + */ + switch (op) { + case '^': + negz = nega ^ negb; + size_z = size_a; + break; + case '&': + negz = nega & negb; + size_z = negb ? size_a : size_b; + break; + case '|': + negz = nega | negb; + size_z = negb ? size_b : size_a; + break; + default: + PyErr_BadArgument(); + return NULL; + } + + /* We allow an extra digit if z is negative, to make sure that + the final two's complement of z doesn't overflow. */ + z = _PyLong_New(size_z + negz); + if (z == NULL) { + Py_DECREF(a); + Py_DECREF(b); + return NULL; + } + + /* Compute digits for overlap of a and b. */ + switch(op) { + case '&': + for (i = 0; i < size_b; ++i) + z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i]; + break; + case '|': + for (i = 0; i < size_b; ++i) + z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i]; + break; + case '^': + for (i = 0; i < size_b; ++i) + z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i]; + break; + default: + PyErr_BadArgument(); + return NULL; + } + + /* Copy any remaining digits of a, inverting if necessary. */ + if (op == '^' && negb) + for (; i < size_z; ++i) + z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK; + else if (i < size_z) + memcpy(&z->ob_digit[i], &a->ob_digit[i], + (size_z-i)*sizeof(digit)); + + /* Complement result if negative. */ + if (negz) { + Py_SIZE(z) = -(Py_SIZE(z)); + z->ob_digit[size_z] = PyLong_MASK; + v_complement(z->ob_digit, z->ob_digit, size_z+1); + } + + Py_DECREF(a); + Py_DECREF(b); + return (PyObject *)maybe_small_long(long_normalize(z)); } static PyObject * long_and(PyObject *a, PyObject *b) { - PyObject *c; - CHECK_BINOP(a, b); - c = long_bitwise((PyLongObject*)a, '&', (PyLongObject*)b); - return c; + PyObject *c; + CHECK_BINOP(a, b); + c = long_bitwise((PyLongObject*)a, '&', (PyLongObject*)b); + return c; } static PyObject * long_xor(PyObject *a, PyObject *b) { - PyObject *c; - CHECK_BINOP(a, b); - c = long_bitwise((PyLongObject*)a, '^', (PyLongObject*)b); - return c; + PyObject *c; + CHECK_BINOP(a, b); + c = long_bitwise((PyLongObject*)a, '^', (PyLongObject*)b); + return c; } static PyObject * long_or(PyObject *a, PyObject *b) { - PyObject *c; - CHECK_BINOP(a, b); - c = long_bitwise((PyLongObject*)a, '|', (PyLongObject*)b); - return c; + PyObject *c; + CHECK_BINOP(a, b); + c = long_bitwise((PyLongObject*)a, '|', (PyLongObject*)b); + return c; } static PyObject * long_long(PyObject *v) { - if (PyLong_CheckExact(v)) - Py_INCREF(v); - else - v = _PyLong_Copy((PyLongObject *)v); - return v; + if (PyLong_CheckExact(v)) + Py_INCREF(v); + else + v = _PyLong_Copy((PyLongObject *)v); + return v; } static PyObject * long_float(PyObject *v) { - double result; - result = PyLong_AsDouble(v); - if (result == -1.0 && PyErr_Occurred()) - return NULL; - return PyFloat_FromDouble(result); + double result; + result = PyLong_AsDouble(v); + if (result == -1.0 && PyErr_Occurred()) + return NULL; + return PyFloat_FromDouble(result); } static PyObject * @@ -4073,47 +4073,47 @@ long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); static PyObject * long_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { - PyObject *x = NULL; - int base = -909; /* unlikely! */ - static char *kwlist[] = {"x", "base", 0}; - - if (type != &PyLong_Type) - return long_subtype_new(type, args, kwds); /* Wimp out */ - if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist, - &x, &base)) - return NULL; - if (x == NULL) - return PyLong_FromLong(0L); - if (base == -909) - return PyNumber_Long(x); - else if (PyUnicode_Check(x)) - return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x), - PyUnicode_GET_SIZE(x), - base); - else if (PyByteArray_Check(x) || PyBytes_Check(x)) { - /* Since PyLong_FromString doesn't have a length parameter, - * check here for possible NULs in the string. */ - char *string; - Py_ssize_t size = Py_SIZE(x); - if (PyByteArray_Check(x)) - string = PyByteArray_AS_STRING(x); - else - string = PyBytes_AS_STRING(x); - if (strlen(string) != (size_t)size) { - /* We only see this if there's a null byte in x, - x is a bytes or buffer, *and* a base is given. */ - PyErr_Format(PyExc_ValueError, - "invalid literal for int() with base %d: %R", - base, x); - return NULL; - } - return PyLong_FromString(string, NULL, base); - } - else { - PyErr_SetString(PyExc_TypeError, - "int() can't convert non-string with explicit base"); - return NULL; - } + PyObject *x = NULL; + int base = -909; /* unlikely! */ + static char *kwlist[] = {"x", "base", 0}; + + if (type != &PyLong_Type) + return long_subtype_new(type, args, kwds); /* Wimp out */ + if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist, + &x, &base)) + return NULL; + if (x == NULL) + return PyLong_FromLong(0L); + if (base == -909) + return PyNumber_Long(x); + else if (PyUnicode_Check(x)) + return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x), + PyUnicode_GET_SIZE(x), + base); + else if (PyByteArray_Check(x) || PyBytes_Check(x)) { + /* Since PyLong_FromString doesn't have a length parameter, + * check here for possible NULs in the string. */ + char *string; + Py_ssize_t size = Py_SIZE(x); + if (PyByteArray_Check(x)) + string = PyByteArray_AS_STRING(x); + else + string = PyBytes_AS_STRING(x); + if (strlen(string) != (size_t)size) { + /* We only see this if there's a null byte in x, + x is a bytes or buffer, *and* a base is given. */ + PyErr_Format(PyExc_ValueError, + "invalid literal for int() with base %d: %R", + base, x); + return NULL; + } + return PyLong_FromString(string, NULL, base); + } + else { + PyErr_SetString(PyExc_TypeError, + "int() can't convert non-string with explicit base"); + return NULL; + } } /* Wimpy, slow approach to tp_new calls for subtypes of long: @@ -4124,256 +4124,256 @@ long_new(PyTypeObject *type, PyObject *args, PyObject *kwds) static PyObject * long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { - PyLongObject *tmp, *newobj; - Py_ssize_t i, n; - - assert(PyType_IsSubtype(type, &PyLong_Type)); - tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds); - if (tmp == NULL) - return NULL; - assert(PyLong_CheckExact(tmp)); - n = Py_SIZE(tmp); - if (n < 0) - n = -n; - newobj = (PyLongObject *)type->tp_alloc(type, n); - if (newobj == NULL) { - Py_DECREF(tmp); - return NULL; - } - assert(PyLong_Check(newobj)); - Py_SIZE(newobj) = Py_SIZE(tmp); - for (i = 0; i < n; i++) - newobj->ob_digit[i] = tmp->ob_digit[i]; - Py_DECREF(tmp); - return (PyObject *)newobj; + PyLongObject *tmp, *newobj; + Py_ssize_t i, n; + + assert(PyType_IsSubtype(type, &PyLong_Type)); + tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds); + if (tmp == NULL) + return NULL; + assert(PyLong_CheckExact(tmp)); + n = Py_SIZE(tmp); + if (n < 0) + n = -n; + newobj = (PyLongObject *)type->tp_alloc(type, n); + if (newobj == NULL) { + Py_DECREF(tmp); + return NULL; + } + assert(PyLong_Check(newobj)); + Py_SIZE(newobj) = Py_SIZE(tmp); + for (i = 0; i < n; i++) + newobj->ob_digit[i] = tmp->ob_digit[i]; + Py_DECREF(tmp); + return (PyObject *)newobj; } static PyObject * long_getnewargs(PyLongObject *v) { - return Py_BuildValue("(N)", _PyLong_Copy(v)); + return Py_BuildValue("(N)", _PyLong_Copy(v)); } static PyObject * long_get0(PyLongObject *v, void *context) { - return PyLong_FromLong(0L); + return PyLong_FromLong(0L); } static PyObject * long_get1(PyLongObject *v, void *context) { - return PyLong_FromLong(1L); + return PyLong_FromLong(1L); } static PyObject * long__format__(PyObject *self, PyObject *args) { - PyObject *format_spec; + PyObject *format_spec; - if (!PyArg_ParseTuple(args, "U:__format__", &format_spec)) - return NULL; - return _PyLong_FormatAdvanced(self, - PyUnicode_AS_UNICODE(format_spec), - PyUnicode_GET_SIZE(format_spec)); + if (!PyArg_ParseTuple(args, "U:__format__", &format_spec)) + return NULL; + return _PyLong_FormatAdvanced(self, + PyUnicode_AS_UNICODE(format_spec), + PyUnicode_GET_SIZE(format_spec)); } static PyObject * long_round(PyObject *self, PyObject *args) { - PyObject *o_ndigits=NULL, *temp; - PyLongObject *pow=NULL, *q=NULL, *r=NULL, *ndigits=NULL, *one; - int errcode; - digit q_mod_4; - - /* Notes on the algorithm: to round to the nearest 10**n (n positive), - the straightforward method is: - - (1) divide by 10**n - (2) round to nearest integer (round to even in case of tie) - (3) multiply result by 10**n. - - But the rounding step involves examining the fractional part of the - quotient to see whether it's greater than 0.5 or not. Since we - want to do the whole calculation in integer arithmetic, it's - simpler to do: - - (1) divide by (10**n)/2 - (2) round to nearest multiple of 2 (multiple of 4 in case of tie) - (3) multiply result by (10**n)/2. - - Then all we need to know about the fractional part of the quotient - arising in step (2) is whether it's zero or not. - - Doing both a multiplication and division is wasteful, and is easily - avoided if we just figure out how much to adjust the original input - by to do the rounding. - - Here's the whole algorithm expressed in Python. - - def round(self, ndigits = None): - """round(int, int) -> int""" - if ndigits is None or ndigits >= 0: - return self - pow = 10**-ndigits >> 1 - q, r = divmod(self, pow) - self -= r - if (q & 1 != 0): - if (q & 2 == r == 0): - self -= pow - else: - self += pow - return self - - */ - if (!PyArg_ParseTuple(args, "|O", &o_ndigits)) - return NULL; - if (o_ndigits == NULL) - return long_long(self); - - ndigits = (PyLongObject *)PyNumber_Index(o_ndigits); - if (ndigits == NULL) - return NULL; - - if (Py_SIZE(ndigits) >= 0) { - Py_DECREF(ndigits); - return long_long(self); - } - - Py_INCREF(self); /* to keep refcounting simple */ - /* we now own references to self, ndigits */ - - /* pow = 10 ** -ndigits >> 1 */ - pow = (PyLongObject *)PyLong_FromLong(10L); - if (pow == NULL) - goto error; - temp = long_neg(ndigits); - Py_DECREF(ndigits); - ndigits = (PyLongObject *)temp; - if (ndigits == NULL) - goto error; - temp = long_pow((PyObject *)pow, (PyObject *)ndigits, Py_None); - Py_DECREF(pow); - pow = (PyLongObject *)temp; - if (pow == NULL) - goto error; - assert(PyLong_Check(pow)); /* check long_pow returned a long */ - one = (PyLongObject *)PyLong_FromLong(1L); - if (one == NULL) - goto error; - temp = long_rshift(pow, one); - Py_DECREF(one); - Py_DECREF(pow); - pow = (PyLongObject *)temp; - if (pow == NULL) - goto error; - - /* q, r = divmod(self, pow) */ - errcode = l_divmod((PyLongObject *)self, pow, &q, &r); - if (errcode == -1) - goto error; - - /* self -= r */ - temp = long_sub((PyLongObject *)self, r); - Py_DECREF(self); - self = temp; - if (self == NULL) - goto error; - - /* get value of quotient modulo 4 */ - if (Py_SIZE(q) == 0) - q_mod_4 = 0; - else if (Py_SIZE(q) > 0) - q_mod_4 = q->ob_digit[0] & 3; - else - q_mod_4 = (PyLong_BASE-q->ob_digit[0]) & 3; - - if ((q_mod_4 & 1) == 1) { - /* q is odd; round self up or down by adding or subtracting pow */ - if (q_mod_4 == 1 && Py_SIZE(r) == 0) - temp = (PyObject *)long_sub((PyLongObject *)self, pow); - else - temp = (PyObject *)long_add((PyLongObject *)self, pow); - Py_DECREF(self); - self = temp; - if (self == NULL) - goto error; - } - Py_DECREF(q); - Py_DECREF(r); - Py_DECREF(pow); - Py_DECREF(ndigits); - return self; + PyObject *o_ndigits=NULL, *temp; + PyLongObject *pow=NULL, *q=NULL, *r=NULL, *ndigits=NULL, *one; + int errcode; + digit q_mod_4; + + /* Notes on the algorithm: to round to the nearest 10**n (n positive), + the straightforward method is: + + (1) divide by 10**n + (2) round to nearest integer (round to even in case of tie) + (3) multiply result by 10**n. + + But the rounding step involves examining the fractional part of the + quotient to see whether it's greater than 0.5 or not. Since we + want to do the whole calculation in integer arithmetic, it's + simpler to do: + + (1) divide by (10**n)/2 + (2) round to nearest multiple of 2 (multiple of 4 in case of tie) + (3) multiply result by (10**n)/2. + + Then all we need to know about the fractional part of the quotient + arising in step (2) is whether it's zero or not. + + Doing both a multiplication and division is wasteful, and is easily + avoided if we just figure out how much to adjust the original input + by to do the rounding. + + Here's the whole algorithm expressed in Python. + + def round(self, ndigits = None): + """round(int, int) -> int""" + if ndigits is None or ndigits >= 0: + return self + pow = 10**-ndigits >> 1 + q, r = divmod(self, pow) + self -= r + if (q & 1 != 0): + if (q & 2 == r == 0): + self -= pow + else: + self += pow + return self + + */ + if (!PyArg_ParseTuple(args, "|O", &o_ndigits)) + return NULL; + if (o_ndigits == NULL) + return long_long(self); + + ndigits = (PyLongObject *)PyNumber_Index(o_ndigits); + if (ndigits == NULL) + return NULL; + + if (Py_SIZE(ndigits) >= 0) { + Py_DECREF(ndigits); + return long_long(self); + } + + Py_INCREF(self); /* to keep refcounting simple */ + /* we now own references to self, ndigits */ + + /* pow = 10 ** -ndigits >> 1 */ + pow = (PyLongObject *)PyLong_FromLong(10L); + if (pow == NULL) + goto error; + temp = long_neg(ndigits); + Py_DECREF(ndigits); + ndigits = (PyLongObject *)temp; + if (ndigits == NULL) + goto error; + temp = long_pow((PyObject *)pow, (PyObject *)ndigits, Py_None); + Py_DECREF(pow); + pow = (PyLongObject *)temp; + if (pow == NULL) + goto error; + assert(PyLong_Check(pow)); /* check long_pow returned a long */ + one = (PyLongObject *)PyLong_FromLong(1L); + if (one == NULL) + goto error; + temp = long_rshift(pow, one); + Py_DECREF(one); + Py_DECREF(pow); + pow = (PyLongObject *)temp; + if (pow == NULL) + goto error; + + /* q, r = divmod(self, pow) */ + errcode = l_divmod((PyLongObject *)self, pow, &q, &r); + if (errcode == -1) + goto error; + + /* self -= r */ + temp = long_sub((PyLongObject *)self, r); + Py_DECREF(self); + self = temp; + if (self == NULL) + goto error; + + /* get value of quotient modulo 4 */ + if (Py_SIZE(q) == 0) + q_mod_4 = 0; + else if (Py_SIZE(q) > 0) + q_mod_4 = q->ob_digit[0] & 3; + else + q_mod_4 = (PyLong_BASE-q->ob_digit[0]) & 3; + + if ((q_mod_4 & 1) == 1) { + /* q is odd; round self up or down by adding or subtracting pow */ + if (q_mod_4 == 1 && Py_SIZE(r) == 0) + temp = (PyObject *)long_sub((PyLongObject *)self, pow); + else + temp = (PyObject *)long_add((PyLongObject *)self, pow); + Py_DECREF(self); + self = temp; + if (self == NULL) + goto error; + } + Py_DECREF(q); + Py_DECREF(r); + Py_DECREF(pow); + Py_DECREF(ndigits); + return self; error: - Py_XDECREF(q); - Py_XDECREF(r); - Py_XDECREF(pow); - Py_XDECREF(self); - Py_XDECREF(ndigits); - return NULL; + Py_XDECREF(q); + Py_XDECREF(r); + Py_XDECREF(pow); + Py_XDECREF(self); + Py_XDECREF(ndigits); + return NULL; } static PyObject * long_sizeof(PyLongObject *v) { - Py_ssize_t res; + Py_ssize_t res; - res = offsetof(PyLongObject, ob_digit) + ABS(Py_SIZE(v))*sizeof(digit); - return PyLong_FromSsize_t(res); + res = offsetof(PyLongObject, ob_digit) + ABS(Py_SIZE(v))*sizeof(digit); + return PyLong_FromSsize_t(res); } static PyObject * long_bit_length(PyLongObject *v) { - PyLongObject *result, *x, *y; - Py_ssize_t ndigits, msd_bits = 0; - digit msd; - - assert(v != NULL); - assert(PyLong_Check(v)); - - ndigits = ABS(Py_SIZE(v)); - if (ndigits == 0) - return PyLong_FromLong(0); - - msd = v->ob_digit[ndigits-1]; - while (msd >= 32) { - msd_bits += 6; - msd >>= 6; - } - msd_bits += (long)(BitLengthTable[msd]); - - if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT) - return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits); - - /* expression above may overflow; use Python integers instead */ - result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1); - if (result == NULL) - return NULL; - x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT); - if (x == NULL) - goto error; - y = (PyLongObject *)long_mul(result, x); - Py_DECREF(x); - if (y == NULL) - goto error; - Py_DECREF(result); - result = y; - - x = (PyLongObject *)PyLong_FromLong((long)msd_bits); - if (x == NULL) - goto error; - y = (PyLongObject *)long_add(result, x); - Py_DECREF(x); - if (y == NULL) - goto error; - Py_DECREF(result); - result = y; - - return (PyObject *)result; + PyLongObject *result, *x, *y; + Py_ssize_t ndigits, msd_bits = 0; + digit msd; + + assert(v != NULL); + assert(PyLong_Check(v)); + + ndigits = ABS(Py_SIZE(v)); + if (ndigits == 0) + return PyLong_FromLong(0); + + msd = v->ob_digit[ndigits-1]; + while (msd >= 32) { + msd_bits += 6; + msd >>= 6; + } + msd_bits += (long)(BitLengthTable[msd]); + + if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT) + return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits); + + /* expression above may overflow; use Python integers instead */ + result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1); + if (result == NULL) + return NULL; + x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT); + if (x == NULL) + goto error; + y = (PyLongObject *)long_mul(result, x); + Py_DECREF(x); + if (y == NULL) + goto error; + Py_DECREF(result); + result = y; + + x = (PyLongObject *)PyLong_FromLong((long)msd_bits); + if (x == NULL) + goto error; + y = (PyLongObject *)long_add(result, x); + Py_DECREF(x); + if (y == NULL) + goto error; + Py_DECREF(result); + result = y; + + return (PyObject *)result; error: - Py_DECREF(result); - return NULL; + Py_DECREF(result); + return NULL; } PyDoc_STRVAR(long_bit_length_doc, @@ -4389,7 +4389,7 @@ Number of bits necessary to represent self in binary.\n\ static PyObject * long_is_finite(PyObject *v) { - Py_RETURN_TRUE; + Py_RETURN_TRUE; } #endif @@ -4397,64 +4397,64 @@ long_is_finite(PyObject *v) static PyObject * long_to_bytes(PyLongObject *v, PyObject *args, PyObject *kwds) { - PyObject *byteorder_str; - PyObject *is_signed_obj = NULL; - Py_ssize_t length; - int little_endian; - int is_signed; - PyObject *bytes; - static char *kwlist[] = {"length", "byteorder", "signed", NULL}; - - if (!PyArg_ParseTupleAndKeywords(args, kwds, "nU|O:to_bytes", kwlist, - &length, &byteorder_str, - &is_signed_obj)) - return NULL; - - if (args != NULL && Py_SIZE(args) > 2) { - PyErr_SetString(PyExc_TypeError, - "'signed' is a keyword-only argument"); - return NULL; - } - - if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little")) - little_endian = 1; - else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big")) - little_endian = 0; - else { - PyErr_SetString(PyExc_ValueError, - "byteorder must be either 'little' or 'big'"); - return NULL; - } - - if (is_signed_obj != NULL) { - int cmp = PyObject_IsTrue(is_signed_obj); - if (cmp < 0) - return NULL; - is_signed = cmp ? 1 : 0; - } - else { - /* If the signed argument was omitted, use False as the - default. */ - is_signed = 0; - } - - if (length < 0) { - PyErr_SetString(PyExc_ValueError, - "length argument must be non-negative"); - return NULL; - } - - bytes = PyBytes_FromStringAndSize(NULL, length); - if (bytes == NULL) - return NULL; - - if (_PyLong_AsByteArray(v, (unsigned char *)PyBytes_AS_STRING(bytes), - length, little_endian, is_signed) < 0) { - Py_DECREF(bytes); - return NULL; - } - - return bytes; + PyObject *byteorder_str; + PyObject *is_signed_obj = NULL; + Py_ssize_t length; + int little_endian; + int is_signed; + PyObject *bytes; + static char *kwlist[] = {"length", "byteorder", "signed", NULL}; + + if (!PyArg_ParseTupleAndKeywords(args, kwds, "nU|O:to_bytes", kwlist, + &length, &byteorder_str, + &is_signed_obj)) + return NULL; + + if (args != NULL && Py_SIZE(args) > 2) { + PyErr_SetString(PyExc_TypeError, + "'signed' is a keyword-only argument"); + return NULL; + } + + if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little")) + little_endian = 1; + else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big")) + little_endian = 0; + else { + PyErr_SetString(PyExc_ValueError, + "byteorder must be either 'little' or 'big'"); + return NULL; + } + + if (is_signed_obj != NULL) { + int cmp = PyObject_IsTrue(is_signed_obj); + if (cmp < 0) + return NULL; + is_signed = cmp ? 1 : 0; + } + else { + /* If the signed argument was omitted, use False as the + default. */ + is_signed = 0; + } + + if (length < 0) { + PyErr_SetString(PyExc_ValueError, + "length argument must be non-negative"); + return NULL; + } + + bytes = PyBytes_FromStringAndSize(NULL, length); + if (bytes == NULL) + return NULL; + + if (_PyLong_AsByteArray(v, (unsigned char *)PyBytes_AS_STRING(bytes), + length, little_endian, is_signed) < 0) { + Py_DECREF(bytes); + return NULL; + } + + return bytes; } PyDoc_STRVAR(long_to_bytes_doc, @@ -4462,7 +4462,7 @@ PyDoc_STRVAR(long_to_bytes_doc, \n\ Return an array of bytes representing an integer.\n\ \n\ -The integer is represented using length bytes. An OverflowError is\n\ +The integer is represented using length bytes. An OverflowError is\n\ raised if the integer is not representable with the given number of\n\ bytes.\n\ \n\ @@ -4473,87 +4473,87 @@ significant byte is at the end of the byte array. To request the native\n\ byte order of the host system, use `sys.byteorder' as the byte order value.\n\ \n\ The signed keyword-only argument determines whether two's complement is\n\ -used to represent the integer. If signed is False and a negative integer\n\ +used to represent the integer. If signed is False and a negative integer\n\ is given, an OverflowError is raised."); static PyObject * long_from_bytes(PyTypeObject *type, PyObject *args, PyObject *kwds) { - PyObject *byteorder_str; - PyObject *is_signed_obj = NULL; - int little_endian; - int is_signed; - PyObject *obj; - PyObject *bytes; - PyObject *long_obj; - static char *kwlist[] = {"bytes", "byteorder", "signed", NULL}; - - if (!PyArg_ParseTupleAndKeywords(args, kwds, "OU|O:from_bytes", kwlist, - &obj, &byteorder_str, - &is_signed_obj)) - return NULL; - - if (args != NULL && Py_SIZE(args) > 2) { - PyErr_SetString(PyExc_TypeError, - "'signed' is a keyword-only argument"); - return NULL; - } - - if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little")) - little_endian = 1; - else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big")) - little_endian = 0; - else { - PyErr_SetString(PyExc_ValueError, - "byteorder must be either 'little' or 'big'"); - return NULL; - } - - if (is_signed_obj != NULL) { - int cmp = PyObject_IsTrue(is_signed_obj); - if (cmp < 0) - return NULL; - is_signed = cmp ? 1 : 0; - } - else { - /* If the signed argument was omitted, use False as the - default. */ - is_signed = 0; - } - - bytes = PyObject_Bytes(obj); - if (bytes == NULL) - return NULL; - - long_obj = _PyLong_FromByteArray( - (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes), - little_endian, is_signed); - Py_DECREF(bytes); - - /* If from_bytes() was used on subclass, allocate new subclass - * instance, initialize it with decoded long value and return it. - */ - if (type != &PyLong_Type && PyType_IsSubtype(type, &PyLong_Type)) { - PyLongObject *newobj; - int i; - Py_ssize_t n = ABS(Py_SIZE(long_obj)); - - newobj = (PyLongObject *)type->tp_alloc(type, n); - if (newobj == NULL) { - Py_DECREF(long_obj); - return NULL; - } - assert(PyLong_Check(newobj)); - Py_SIZE(newobj) = Py_SIZE(long_obj); - for (i = 0; i < n; i++) { - newobj->ob_digit[i] = - ((PyLongObject *)long_obj)->ob_digit[i]; - } - Py_DECREF(long_obj); - return (PyObject *)newobj; - } - - return long_obj; + PyObject *byteorder_str; + PyObject *is_signed_obj = NULL; + int little_endian; + int is_signed; + PyObject *obj; + PyObject *bytes; + PyObject *long_obj; + static char *kwlist[] = {"bytes", "byteorder", "signed", NULL}; + + if (!PyArg_ParseTupleAndKeywords(args, kwds, "OU|O:from_bytes", kwlist, + &obj, &byteorder_str, + &is_signed_obj)) + return NULL; + + if (args != NULL && Py_SIZE(args) > 2) { + PyErr_SetString(PyExc_TypeError, + "'signed' is a keyword-only argument"); + return NULL; + } + + if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little")) + little_endian = 1; + else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big")) + little_endian = 0; + else { + PyErr_SetString(PyExc_ValueError, + "byteorder must be either 'little' or 'big'"); + return NULL; + } + + if (is_signed_obj != NULL) { + int cmp = PyObject_IsTrue(is_signed_obj); + if (cmp < 0) + return NULL; + is_signed = cmp ? 1 : 0; + } + else { + /* If the signed argument was omitted, use False as the + default. */ + is_signed = 0; + } + + bytes = PyObject_Bytes(obj); + if (bytes == NULL) + return NULL; + + long_obj = _PyLong_FromByteArray( + (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes), + little_endian, is_signed); + Py_DECREF(bytes); + + /* If from_bytes() was used on subclass, allocate new subclass + * instance, initialize it with decoded long value and return it. + */ + if (type != &PyLong_Type && PyType_IsSubtype(type, &PyLong_Type)) { + PyLongObject *newobj; + int i; + Py_ssize_t n = ABS(Py_SIZE(long_obj)); + + newobj = (PyLongObject *)type->tp_alloc(type, n); + if (newobj == NULL) { + Py_DECREF(long_obj); + return NULL; + } + assert(PyLong_Check(newobj)); + Py_SIZE(newobj) = Py_SIZE(long_obj); + for (i = 0; i < n; i++) { + newobj->ob_digit[i] = + ((PyLongObject *)long_obj)->ob_digit[i]; + } + Py_DECREF(long_obj); + return (PyObject *)newobj; + } + + return long_obj; } PyDoc_STRVAR(long_from_bytes_doc, @@ -4575,32 +4575,32 @@ The signed keyword-only argument indicates whether two's complement is\n\ used to represent the integer."); static PyMethodDef long_methods[] = { - {"conjugate", (PyCFunction)long_long, METH_NOARGS, - "Returns self, the complex conjugate of any int."}, - {"bit_length", (PyCFunction)long_bit_length, METH_NOARGS, - long_bit_length_doc}, + {"conjugate", (PyCFunction)long_long, METH_NOARGS, + "Returns self, the complex conjugate of any int."}, + {"bit_length", (PyCFunction)long_bit_length, METH_NOARGS, + long_bit_length_doc}, #if 0 - {"is_finite", (PyCFunction)long_is_finite, METH_NOARGS, - "Returns always True."}, + {"is_finite", (PyCFunction)long_is_finite, METH_NOARGS, + "Returns always True."}, #endif - {"to_bytes", (PyCFunction)long_to_bytes, - METH_VARARGS|METH_KEYWORDS, long_to_bytes_doc}, - {"from_bytes", (PyCFunction)long_from_bytes, - METH_VARARGS|METH_KEYWORDS|METH_CLASS, long_from_bytes_doc}, - {"__trunc__", (PyCFunction)long_long, METH_NOARGS, - "Truncating an Integral returns itself."}, - {"__floor__", (PyCFunction)long_long, METH_NOARGS, - "Flooring an Integral returns itself."}, - {"__ceil__", (PyCFunction)long_long, METH_NOARGS, - "Ceiling of an Integral returns itself."}, - {"__round__", (PyCFunction)long_round, METH_VARARGS, - "Rounding an Integral returns itself.\n" - "Rounding with an ndigits argument also returns an integer."}, - {"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS}, - {"__format__", (PyCFunction)long__format__, METH_VARARGS}, - {"__sizeof__", (PyCFunction)long_sizeof, METH_NOARGS, - "Returns size in memory, in bytes"}, - {NULL, NULL} /* sentinel */ + {"to_bytes", (PyCFunction)long_to_bytes, + METH_VARARGS|METH_KEYWORDS, long_to_bytes_doc}, + {"from_bytes", (PyCFunction)long_from_bytes, + METH_VARARGS|METH_KEYWORDS|METH_CLASS, long_from_bytes_doc}, + {"__trunc__", (PyCFunction)long_long, METH_NOARGS, + "Truncating an Integral returns itself."}, + {"__floor__", (PyCFunction)long_long, METH_NOARGS, + "Flooring an Integral returns itself."}, + {"__ceil__", (PyCFunction)long_long, METH_NOARGS, + "Ceiling of an Integral returns itself."}, + {"__round__", (PyCFunction)long_round, METH_VARARGS, + "Rounding an Integral returns itself.\n" + "Rounding with an ndigits argument also returns an integer."}, + {"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS}, + {"__format__", (PyCFunction)long__format__, METH_VARARGS}, + {"__sizeof__", (PyCFunction)long_sizeof, METH_NOARGS, + "Returns size in memory, in bytes"}, + {NULL, NULL} /* sentinel */ }; static PyGetSetDef long_getset[] = { @@ -4633,83 +4633,83 @@ string, use the optional base. It is an error to supply a base when\n\ converting a non-string."); static PyNumberMethods long_as_number = { - (binaryfunc) long_add, /*nb_add*/ - (binaryfunc) long_sub, /*nb_subtract*/ - (binaryfunc) long_mul, /*nb_multiply*/ - long_mod, /*nb_remainder*/ - long_divmod, /*nb_divmod*/ - long_pow, /*nb_power*/ - (unaryfunc) long_neg, /*nb_negative*/ - (unaryfunc) long_long, /*tp_positive*/ - (unaryfunc) long_abs, /*tp_absolute*/ - (inquiry) long_bool, /*tp_bool*/ - (unaryfunc) long_invert, /*nb_invert*/ - long_lshift, /*nb_lshift*/ - (binaryfunc) long_rshift, /*nb_rshift*/ - long_and, /*nb_and*/ - long_xor, /*nb_xor*/ - long_or, /*nb_or*/ - long_long, /*nb_int*/ - 0, /*nb_reserved*/ - long_float, /*nb_float*/ - 0, /* nb_inplace_add */ - 0, /* nb_inplace_subtract */ - 0, /* nb_inplace_multiply */ - 0, /* nb_inplace_remainder */ - 0, /* nb_inplace_power */ - 0, /* nb_inplace_lshift */ - 0, /* nb_inplace_rshift */ - 0, /* nb_inplace_and */ - 0, /* nb_inplace_xor */ - 0, /* nb_inplace_or */ - long_div, /* nb_floor_divide */ - long_true_divide, /* nb_true_divide */ - 0, /* nb_inplace_floor_divide */ - 0, /* nb_inplace_true_divide */ - long_long, /* nb_index */ + (binaryfunc) long_add, /*nb_add*/ + (binaryfunc) long_sub, /*nb_subtract*/ + (binaryfunc) long_mul, /*nb_multiply*/ + long_mod, /*nb_remainder*/ + long_divmod, /*nb_divmod*/ + long_pow, /*nb_power*/ + (unaryfunc) long_neg, /*nb_negative*/ + (unaryfunc) long_long, /*tp_positive*/ + (unaryfunc) long_abs, /*tp_absolute*/ + (inquiry) long_bool, /*tp_bool*/ + (unaryfunc) long_invert, /*nb_invert*/ + long_lshift, /*nb_lshift*/ + (binaryfunc) long_rshift, /*nb_rshift*/ + long_and, /*nb_and*/ + long_xor, /*nb_xor*/ + long_or, /*nb_or*/ + long_long, /*nb_int*/ + 0, /*nb_reserved*/ + long_float, /*nb_float*/ + 0, /* nb_inplace_add */ + 0, /* nb_inplace_subtract */ + 0, /* nb_inplace_multiply */ + 0, /* nb_inplace_remainder */ + 0, /* nb_inplace_power */ + 0, /* nb_inplace_lshift */ + 0, /* nb_inplace_rshift */ + 0, /* nb_inplace_and */ + 0, /* nb_inplace_xor */ + 0, /* nb_inplace_or */ + long_div, /* nb_floor_divide */ + long_true_divide, /* nb_true_divide */ + 0, /* nb_inplace_floor_divide */ + 0, /* nb_inplace_true_divide */ + long_long, /* nb_index */ }; PyTypeObject PyLong_Type = { - PyVarObject_HEAD_INIT(&PyType_Type, 0) - "int", /* tp_name */ - offsetof(PyLongObject, ob_digit), /* tp_basicsize */ - sizeof(digit), /* tp_itemsize */ - long_dealloc, /* tp_dealloc */ - 0, /* tp_print */ - 0, /* tp_getattr */ - 0, /* tp_setattr */ - 0, /* tp_reserved */ - long_to_decimal_string, /* tp_repr */ - &long_as_number, /* tp_as_number */ - 0, /* tp_as_sequence */ - 0, /* tp_as_mapping */ - (hashfunc)long_hash, /* tp_hash */ - 0, /* tp_call */ - long_to_decimal_string, /* tp_str */ - PyObject_GenericGetAttr, /* tp_getattro */ - 0, /* tp_setattro */ - 0, /* tp_as_buffer */ - Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | - Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */ - long_doc, /* tp_doc */ - 0, /* tp_traverse */ - 0, /* tp_clear */ - long_richcompare, /* tp_richcompare */ - 0, /* tp_weaklistoffset */ - 0, /* tp_iter */ - 0, /* tp_iternext */ - long_methods, /* tp_methods */ - 0, /* tp_members */ - long_getset, /* tp_getset */ - 0, /* tp_base */ - 0, /* tp_dict */ - 0, /* tp_descr_get */ - 0, /* tp_descr_set */ - 0, /* tp_dictoffset */ - 0, /* tp_init */ - 0, /* tp_alloc */ - long_new, /* tp_new */ - PyObject_Del, /* tp_free */ + PyVarObject_HEAD_INIT(&PyType_Type, 0) + "int", /* tp_name */ + offsetof(PyLongObject, ob_digit), /* tp_basicsize */ + sizeof(digit), /* tp_itemsize */ + long_dealloc, /* tp_dealloc */ + 0, /* tp_print */ + 0, /* tp_getattr */ + 0, /* tp_setattr */ + 0, /* tp_reserved */ + long_to_decimal_string, /* tp_repr */ + &long_as_number, /* tp_as_number */ + 0, /* tp_as_sequence */ + 0, /* tp_as_mapping */ + (hashfunc)long_hash, /* tp_hash */ + 0, /* tp_call */ + long_to_decimal_string, /* tp_str */ + PyObject_GenericGetAttr, /* tp_getattro */ + 0, /* tp_setattro */ + 0, /* tp_as_buffer */ + Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | + Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */ + long_doc, /* tp_doc */ + 0, /* tp_traverse */ + 0, /* tp_clear */ + long_richcompare, /* tp_richcompare */ + 0, /* tp_weaklistoffset */ + 0, /* tp_iter */ + 0, /* tp_iternext */ + long_methods, /* tp_methods */ + 0, /* tp_members */ + long_getset, /* tp_getset */ + 0, /* tp_base */ + 0, /* tp_dict */ + 0, /* tp_descr_get */ + 0, /* tp_descr_set */ + 0, /* tp_dictoffset */ + 0, /* tp_init */ + 0, /* tp_alloc */ + long_new, /* tp_new */ + PyObject_Del, /* tp_free */ }; static PyTypeObject Int_InfoType; @@ -4721,89 +4721,89 @@ A struct sequence that holds information about Python's\n\ internal representation of integers. The attributes are read only."); static PyStructSequence_Field int_info_fields[] = { - {"bits_per_digit", "size of a digit in bits"}, - {"sizeof_digit", "size in bytes of the C type used to " - "represent a digit"}, - {NULL, NULL} + {"bits_per_digit", "size of a digit in bits"}, + {"sizeof_digit", "size in bytes of the C type used to " + "represent a digit"}, + {NULL, NULL} }; static PyStructSequence_Desc int_info_desc = { - "sys.int_info", /* name */ - int_info__doc__, /* doc */ - int_info_fields, /* fields */ - 2 /* number of fields */ + "sys.int_info", /* name */ + int_info__doc__, /* doc */ + int_info_fields, /* fields */ + 2 /* number of fields */ }; PyObject * PyLong_GetInfo(void) { - PyObject* int_info; - int field = 0; - int_info = PyStructSequence_New(&Int_InfoType); - if (int_info == NULL) - return NULL; - PyStructSequence_SET_ITEM(int_info, field++, - PyLong_FromLong(PyLong_SHIFT)); - PyStructSequence_SET_ITEM(int_info, field++, - PyLong_FromLong(sizeof(digit))); - if (PyErr_Occurred()) { - Py_CLEAR(int_info); - return NULL; - } - return int_info; + PyObject* int_info; + int field = 0; + int_info = PyStructSequence_New(&Int_InfoType); + if (int_info == NULL) + return NULL; + PyStructSequence_SET_ITEM(int_info, field++, + PyLong_FromLong(PyLong_SHIFT)); + PyStructSequence_SET_ITEM(int_info, field++, + PyLong_FromLong(sizeof(digit))); + if (PyErr_Occurred()) { + Py_CLEAR(int_info); + return NULL; + } + return int_info; } int _PyLong_Init(void) { #if NSMALLNEGINTS + NSMALLPOSINTS > 0 - int ival, size; - PyLongObject *v = small_ints; - - for (ival = -NSMALLNEGINTS; ival < NSMALLPOSINTS; ival++, v++) { - size = (ival < 0) ? -1 : ((ival == 0) ? 0 : 1); - if (Py_TYPE(v) == &PyLong_Type) { - /* The element is already initialized, most likely - * the Python interpreter was initialized before. - */ - Py_ssize_t refcnt; - PyObject* op = (PyObject*)v; - - refcnt = Py_REFCNT(op) < 0 ? 0 : Py_REFCNT(op); - _Py_NewReference(op); - /* _Py_NewReference sets the ref count to 1 but - * the ref count might be larger. Set the refcnt - * to the original refcnt + 1 */ - Py_REFCNT(op) = refcnt + 1; - assert(Py_SIZE(op) == size); - assert(v->ob_digit[0] == abs(ival)); - } - else { - PyObject_INIT(v, &PyLong_Type); - } - Py_SIZE(v) = size; - v->ob_digit[0] = abs(ival); - } + int ival, size; + PyLongObject *v = small_ints; + + for (ival = -NSMALLNEGINTS; ival < NSMALLPOSINTS; ival++, v++) { + size = (ival < 0) ? -1 : ((ival == 0) ? 0 : 1); + if (Py_TYPE(v) == &PyLong_Type) { + /* The element is already initialized, most likely + * the Python interpreter was initialized before. + */ + Py_ssize_t refcnt; + PyObject* op = (PyObject*)v; + + refcnt = Py_REFCNT(op) < 0 ? 0 : Py_REFCNT(op); + _Py_NewReference(op); + /* _Py_NewReference sets the ref count to 1 but + * the ref count might be larger. Set the refcnt + * to the original refcnt + 1 */ + Py_REFCNT(op) = refcnt + 1; + assert(Py_SIZE(op) == size); + assert(v->ob_digit[0] == abs(ival)); + } + else { + PyObject_INIT(v, &PyLong_Type); + } + Py_SIZE(v) = size; + v->ob_digit[0] = abs(ival); + } #endif - /* initialize int_info */ - if (Int_InfoType.tp_name == 0) - PyStructSequence_InitType(&Int_InfoType, &int_info_desc); + /* initialize int_info */ + if (Int_InfoType.tp_name == 0) + PyStructSequence_InitType(&Int_InfoType, &int_info_desc); - return 1; + return 1; } void PyLong_Fini(void) { - /* Integers are currently statically allocated. Py_DECREF is not - needed, but Python must forget about the reference or multiple - reinitializations will fail. */ + /* Integers are currently statically allocated. Py_DECREF is not + needed, but Python must forget about the reference or multiple + reinitializations will fail. */ #if NSMALLNEGINTS + NSMALLPOSINTS > 0 - int i; - PyLongObject *v = small_ints; - for (i = 0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++, v++) { - _Py_DEC_REFTOTAL; - _Py_ForgetReference((PyObject*)v); - } + int i; + PyLongObject *v = small_ints; + for (i = 0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++, v++) { + _Py_DEC_REFTOTAL; + _Py_ForgetReference((PyObject*)v); + } #endif } |