summaryrefslogtreecommitdiffstats
path: root/Objects/mimalloc/os.c
diff options
context:
space:
mode:
Diffstat (limited to 'Objects/mimalloc/os.c')
-rw-r--r--Objects/mimalloc/os.c690
1 files changed, 690 insertions, 0 deletions
diff --git a/Objects/mimalloc/os.c b/Objects/mimalloc/os.c
new file mode 100644
index 0000000..f3bc718
--- /dev/null
+++ b/Objects/mimalloc/os.c
@@ -0,0 +1,690 @@
+/* ----------------------------------------------------------------------------
+Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
+This is free software; you can redistribute it and/or modify it under the
+terms of the MIT license. A copy of the license can be found in the file
+"LICENSE" at the root of this distribution.
+-----------------------------------------------------------------------------*/
+#include "mimalloc.h"
+#include "mimalloc/internal.h"
+#include "mimalloc/atomic.h"
+#include "mimalloc/prim.h"
+
+
+/* -----------------------------------------------------------
+ Initialization.
+ On windows initializes support for aligned allocation and
+ large OS pages (if MIMALLOC_LARGE_OS_PAGES is true).
+----------------------------------------------------------- */
+
+static mi_os_mem_config_t mi_os_mem_config = {
+ 4096, // page size
+ 0, // large page size (usually 2MiB)
+ 4096, // allocation granularity
+ true, // has overcommit? (if true we use MAP_NORESERVE on mmap systems)
+ false, // must free whole? (on mmap systems we can free anywhere in a mapped range, but on Windows we must free the entire span)
+ true // has virtual reserve? (if true we can reserve virtual address space without using commit or physical memory)
+};
+
+bool _mi_os_has_overcommit(void) {
+ return mi_os_mem_config.has_overcommit;
+}
+
+bool _mi_os_has_virtual_reserve(void) {
+ return mi_os_mem_config.has_virtual_reserve;
+}
+
+
+// OS (small) page size
+size_t _mi_os_page_size(void) {
+ return mi_os_mem_config.page_size;
+}
+
+// if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB)
+size_t _mi_os_large_page_size(void) {
+ return (mi_os_mem_config.large_page_size != 0 ? mi_os_mem_config.large_page_size : _mi_os_page_size());
+}
+
+bool _mi_os_use_large_page(size_t size, size_t alignment) {
+ // if we have access, check the size and alignment requirements
+ if (mi_os_mem_config.large_page_size == 0 || !mi_option_is_enabled(mi_option_allow_large_os_pages)) return false;
+ return ((size % mi_os_mem_config.large_page_size) == 0 && (alignment % mi_os_mem_config.large_page_size) == 0);
+}
+
+// round to a good OS allocation size (bounded by max 12.5% waste)
+size_t _mi_os_good_alloc_size(size_t size) {
+ size_t align_size;
+ if (size < 512*MI_KiB) align_size = _mi_os_page_size();
+ else if (size < 2*MI_MiB) align_size = 64*MI_KiB;
+ else if (size < 8*MI_MiB) align_size = 256*MI_KiB;
+ else if (size < 32*MI_MiB) align_size = 1*MI_MiB;
+ else align_size = 4*MI_MiB;
+ if mi_unlikely(size >= (SIZE_MAX - align_size)) return size; // possible overflow?
+ return _mi_align_up(size, align_size);
+}
+
+void _mi_os_init(void) {
+ _mi_prim_mem_init(&mi_os_mem_config);
+}
+
+
+/* -----------------------------------------------------------
+ Util
+-------------------------------------------------------------- */
+bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats);
+bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats);
+
+static void* mi_align_up_ptr(void* p, size_t alignment) {
+ return (void*)_mi_align_up((uintptr_t)p, alignment);
+}
+
+static void* mi_align_down_ptr(void* p, size_t alignment) {
+ return (void*)_mi_align_down((uintptr_t)p, alignment);
+}
+
+
+/* -----------------------------------------------------------
+ aligned hinting
+-------------------------------------------------------------- */
+
+// On 64-bit systems, we can do efficient aligned allocation by using
+// the 2TiB to 30TiB area to allocate those.
+#if (MI_INTPTR_SIZE >= 8)
+static mi_decl_cache_align _Atomic(uintptr_t)aligned_base;
+
+// Return a MI_SEGMENT_SIZE aligned address that is probably available.
+// If this returns NULL, the OS will determine the address but on some OS's that may not be
+// properly aligned which can be more costly as it needs to be adjusted afterwards.
+// For a size > 1GiB this always returns NULL in order to guarantee good ASLR randomization;
+// (otherwise an initial large allocation of say 2TiB has a 50% chance to include (known) addresses
+// in the middle of the 2TiB - 6TiB address range (see issue #372))
+
+#define MI_HINT_BASE ((uintptr_t)2 << 40) // 2TiB start
+#define MI_HINT_AREA ((uintptr_t)4 << 40) // upto 6TiB (since before win8 there is "only" 8TiB available to processes)
+#define MI_HINT_MAX ((uintptr_t)30 << 40) // wrap after 30TiB (area after 32TiB is used for huge OS pages)
+
+void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size)
+{
+ if (try_alignment <= 1 || try_alignment > MI_SEGMENT_SIZE) return NULL;
+ size = _mi_align_up(size, MI_SEGMENT_SIZE);
+ if (size > 1*MI_GiB) return NULL; // guarantee the chance of fixed valid address is at most 1/(MI_HINT_AREA / 1<<30) = 1/4096.
+ #if (MI_SECURE>0)
+ size += MI_SEGMENT_SIZE; // put in `MI_SEGMENT_SIZE` virtual gaps between hinted blocks; this splits VLA's but increases guarded areas.
+ #endif
+
+ uintptr_t hint = mi_atomic_add_acq_rel(&aligned_base, size);
+ if (hint == 0 || hint > MI_HINT_MAX) { // wrap or initialize
+ uintptr_t init = MI_HINT_BASE;
+ #if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of aligned allocations unless in debug mode
+ uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap());
+ init = init + ((MI_SEGMENT_SIZE * ((r>>17) & 0xFFFFF)) % MI_HINT_AREA); // (randomly 20 bits)*4MiB == 0 to 4TiB
+ #endif
+ uintptr_t expected = hint + size;
+ mi_atomic_cas_strong_acq_rel(&aligned_base, &expected, init);
+ hint = mi_atomic_add_acq_rel(&aligned_base, size); // this may still give 0 or > MI_HINT_MAX but that is ok, it is a hint after all
+ }
+ if (hint%try_alignment != 0) return NULL;
+ return (void*)hint;
+}
+#else
+void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) {
+ MI_UNUSED(try_alignment); MI_UNUSED(size);
+ return NULL;
+}
+#endif
+
+
+/* -----------------------------------------------------------
+ Free memory
+-------------------------------------------------------------- */
+
+static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats);
+
+static void mi_os_prim_free(void* addr, size_t size, bool still_committed, mi_stats_t* tld_stats) {
+ MI_UNUSED(tld_stats);
+ mi_assert_internal((size % _mi_os_page_size()) == 0);
+ if (addr == NULL || size == 0) return; // || _mi_os_is_huge_reserved(addr)
+ int err = _mi_prim_free(addr, size);
+ if (err != 0) {
+ _mi_warning_message("unable to free OS memory (error: %d (0x%x), size: 0x%zx bytes, address: %p)\n", err, err, size, addr);
+ }
+ mi_stats_t* stats = &_mi_stats_main;
+ if (still_committed) { _mi_stat_decrease(&stats->committed, size); }
+ _mi_stat_decrease(&stats->reserved, size);
+}
+
+void _mi_os_free_ex(void* addr, size_t size, bool still_committed, mi_memid_t memid, mi_stats_t* tld_stats) {
+ if (mi_memkind_is_os(memid.memkind)) {
+ size_t csize = _mi_os_good_alloc_size(size);
+ void* base = addr;
+ // different base? (due to alignment)
+ if (memid.mem.os.base != NULL) {
+ mi_assert(memid.mem.os.base <= addr);
+ mi_assert((uint8_t*)memid.mem.os.base + memid.mem.os.alignment >= (uint8_t*)addr);
+ base = memid.mem.os.base;
+ csize += ((uint8_t*)addr - (uint8_t*)memid.mem.os.base);
+ }
+ // free it
+ if (memid.memkind == MI_MEM_OS_HUGE) {
+ mi_assert(memid.is_pinned);
+ mi_os_free_huge_os_pages(base, csize, tld_stats);
+ }
+ else {
+ mi_os_prim_free(base, csize, still_committed, tld_stats);
+ }
+ }
+ else {
+ // nothing to do
+ mi_assert(memid.memkind < MI_MEM_OS);
+ }
+}
+
+void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* tld_stats) {
+ _mi_os_free_ex(p, size, true, memid, tld_stats);
+}
+
+
+/* -----------------------------------------------------------
+ Primitive allocation from the OS.
+-------------------------------------------------------------- */
+
+// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
+static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, mi_stats_t* stats) {
+ mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
+ mi_assert_internal(is_zero != NULL);
+ mi_assert_internal(is_large != NULL);
+ if (size == 0) return NULL;
+ if (!commit) { allow_large = false; }
+ if (try_alignment == 0) { try_alignment = 1; } // avoid 0 to ensure there will be no divide by zero when aligning
+
+ *is_zero = false;
+ void* p = NULL;
+ int err = _mi_prim_alloc(size, try_alignment, commit, allow_large, is_large, is_zero, &p);
+ if (err != 0) {
+ _mi_warning_message("unable to allocate OS memory (error: %d (0x%x), size: 0x%zx bytes, align: 0x%zx, commit: %d, allow large: %d)\n", err, err, size, try_alignment, commit, allow_large);
+ }
+ mi_stat_counter_increase(stats->mmap_calls, 1);
+ if (p != NULL) {
+ _mi_stat_increase(&stats->reserved, size);
+ if (commit) {
+ _mi_stat_increase(&stats->committed, size);
+ // seems needed for asan (or `mimalloc-test-api` fails)
+ #ifdef MI_TRACK_ASAN
+ if (*is_zero) { mi_track_mem_defined(p,size); }
+ else { mi_track_mem_undefined(p,size); }
+ #endif
+ }
+ }
+ return p;
+}
+
+
+// Primitive aligned allocation from the OS.
+// This function guarantees the allocated memory is aligned.
+static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** base, mi_stats_t* stats) {
+ mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0));
+ mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
+ mi_assert_internal(is_large != NULL);
+ mi_assert_internal(is_zero != NULL);
+ mi_assert_internal(base != NULL);
+ if (!commit) allow_large = false;
+ if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL;
+ size = _mi_align_up(size, _mi_os_page_size());
+
+ // try first with a hint (this will be aligned directly on Win 10+ or BSD)
+ void* p = mi_os_prim_alloc(size, alignment, commit, allow_large, is_large, is_zero, stats);
+ if (p == NULL) return NULL;
+
+ // aligned already?
+ if (((uintptr_t)p % alignment) == 0) {
+ *base = p;
+ }
+ else {
+ // if not aligned, free it, overallocate, and unmap around it
+ // NOTE(sgross): this warning causes issues in Python tests
+ // _mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit);
+ mi_os_prim_free(p, size, commit, stats);
+ if (size >= (SIZE_MAX - alignment)) return NULL; // overflow
+ const size_t over_size = size + alignment;
+
+ if (mi_os_mem_config.must_free_whole) { // win32 virtualAlloc cannot free parts of an allocate block
+ // over-allocate uncommitted (virtual) memory
+ p = mi_os_prim_alloc(over_size, 1 /*alignment*/, false /* commit? */, false /* allow_large */, is_large, is_zero, stats);
+ if (p == NULL) return NULL;
+
+ // set p to the aligned part in the full region
+ // note: this is dangerous on Windows as VirtualFree needs the actual base pointer
+ // this is handled though by having the `base` field in the memid's
+ *base = p; // remember the base
+ p = mi_align_up_ptr(p, alignment);
+
+ // explicitly commit only the aligned part
+ if (commit) {
+ _mi_os_commit(p, size, NULL, stats);
+ }
+ }
+ else { // mmap can free inside an allocation
+ // overallocate...
+ p = mi_os_prim_alloc(over_size, 1, commit, false, is_large, is_zero, stats);
+ if (p == NULL) return NULL;
+
+ // and selectively unmap parts around the over-allocated area. (noop on sbrk)
+ void* aligned_p = mi_align_up_ptr(p, alignment);
+ size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
+ size_t mid_size = _mi_align_up(size, _mi_os_page_size());
+ size_t post_size = over_size - pre_size - mid_size;
+ mi_assert_internal(pre_size < over_size&& post_size < over_size&& mid_size >= size);
+ if (pre_size > 0) { mi_os_prim_free(p, pre_size, commit, stats); }
+ if (post_size > 0) { mi_os_prim_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats); }
+ // we can return the aligned pointer on `mmap` (and sbrk) systems
+ p = aligned_p;
+ *base = aligned_p; // since we freed the pre part, `*base == p`.
+ }
+ }
+
+ mi_assert_internal(p == NULL || (p != NULL && *base != NULL && ((uintptr_t)p % alignment) == 0));
+ return p;
+}
+
+
+/* -----------------------------------------------------------
+ OS API: alloc and alloc_aligned
+----------------------------------------------------------- */
+
+void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* tld_stats) {
+ MI_UNUSED(tld_stats);
+ *memid = _mi_memid_none();
+ mi_stats_t* stats = &_mi_stats_main;
+ if (size == 0) return NULL;
+ size = _mi_os_good_alloc_size(size);
+ bool os_is_large = false;
+ bool os_is_zero = false;
+ void* p = mi_os_prim_alloc(size, 0, true, false, &os_is_large, &os_is_zero, stats);
+ if (p != NULL) {
+ *memid = _mi_memid_create_os(true, os_is_zero, os_is_large);
+ }
+ return p;
+}
+
+void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats)
+{
+ MI_UNUSED(&_mi_os_get_aligned_hint); // suppress unused warnings
+ MI_UNUSED(tld_stats);
+ *memid = _mi_memid_none();
+ if (size == 0) return NULL;
+ size = _mi_os_good_alloc_size(size);
+ alignment = _mi_align_up(alignment, _mi_os_page_size());
+
+ bool os_is_large = false;
+ bool os_is_zero = false;
+ void* os_base = NULL;
+ void* p = mi_os_prim_alloc_aligned(size, alignment, commit, allow_large, &os_is_large, &os_is_zero, &os_base, &_mi_stats_main /*tld->stats*/ );
+ if (p != NULL) {
+ *memid = _mi_memid_create_os(commit, os_is_zero, os_is_large);
+ memid->mem.os.base = os_base;
+ memid->mem.os.alignment = alignment;
+ }
+ return p;
+}
+
+/* -----------------------------------------------------------
+ OS aligned allocation with an offset. This is used
+ for large alignments > MI_ALIGNMENT_MAX. We use a large mimalloc
+ page where the object can be aligned at an offset from the start of the segment.
+ As we may need to overallocate, we need to free such pointers using `mi_free_aligned`
+ to use the actual start of the memory region.
+----------------------------------------------------------- */
+
+void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t offset, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats) {
+ mi_assert(offset <= MI_SEGMENT_SIZE);
+ mi_assert(offset <= size);
+ mi_assert((alignment % _mi_os_page_size()) == 0);
+ *memid = _mi_memid_none();
+ if (offset > MI_SEGMENT_SIZE) return NULL;
+ if (offset == 0) {
+ // regular aligned allocation
+ return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, tld_stats);
+ }
+ else {
+ // overallocate to align at an offset
+ const size_t extra = _mi_align_up(offset, alignment) - offset;
+ const size_t oversize = size + extra;
+ void* const start = _mi_os_alloc_aligned(oversize, alignment, commit, allow_large, memid, tld_stats);
+ if (start == NULL) return NULL;
+
+ void* const p = (uint8_t*)start + extra;
+ mi_assert(_mi_is_aligned((uint8_t*)p + offset, alignment));
+ // decommit the overallocation at the start
+ if (commit && extra > _mi_os_page_size()) {
+ _mi_os_decommit(start, extra, tld_stats);
+ }
+ return p;
+ }
+}
+
+/* -----------------------------------------------------------
+ OS memory API: reset, commit, decommit, protect, unprotect.
+----------------------------------------------------------- */
+
+// OS page align within a given area, either conservative (pages inside the area only),
+// or not (straddling pages outside the area is possible)
+static void* mi_os_page_align_areax(bool conservative, void* addr, size_t size, size_t* newsize) {
+ mi_assert(addr != NULL && size > 0);
+ if (newsize != NULL) *newsize = 0;
+ if (size == 0 || addr == NULL) return NULL;
+
+ // page align conservatively within the range
+ void* start = (conservative ? mi_align_up_ptr(addr, _mi_os_page_size())
+ : mi_align_down_ptr(addr, _mi_os_page_size()));
+ void* end = (conservative ? mi_align_down_ptr((uint8_t*)addr + size, _mi_os_page_size())
+ : mi_align_up_ptr((uint8_t*)addr + size, _mi_os_page_size()));
+ ptrdiff_t diff = (uint8_t*)end - (uint8_t*)start;
+ if (diff <= 0) return NULL;
+
+ mi_assert_internal((conservative && (size_t)diff <= size) || (!conservative && (size_t)diff >= size));
+ if (newsize != NULL) *newsize = (size_t)diff;
+ return start;
+}
+
+static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t* newsize) {
+ return mi_os_page_align_areax(true, addr, size, newsize);
+}
+
+bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) {
+ MI_UNUSED(tld_stats);
+ mi_stats_t* stats = &_mi_stats_main;
+ if (is_zero != NULL) { *is_zero = false; }
+ _mi_stat_increase(&stats->committed, size); // use size for precise commit vs. decommit
+ _mi_stat_counter_increase(&stats->commit_calls, 1);
+
+ // page align range
+ size_t csize;
+ void* start = mi_os_page_align_areax(false /* conservative? */, addr, size, &csize);
+ if (csize == 0) return true;
+
+ // commit
+ bool os_is_zero = false;
+ int err = _mi_prim_commit(start, csize, &os_is_zero);
+ if (err != 0) {
+ _mi_warning_message("cannot commit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
+ return false;
+ }
+ if (os_is_zero && is_zero != NULL) {
+ *is_zero = true;
+ mi_assert_expensive(mi_mem_is_zero(start, csize));
+ }
+ // note: the following seems required for asan (otherwise `mimalloc-test-stress` fails)
+ #ifdef MI_TRACK_ASAN
+ if (os_is_zero) { mi_track_mem_defined(start,csize); }
+ else { mi_track_mem_undefined(start,csize); }
+ #endif
+ return true;
+}
+
+static bool mi_os_decommit_ex(void* addr, size_t size, bool* needs_recommit, mi_stats_t* tld_stats) {
+ MI_UNUSED(tld_stats);
+ mi_stats_t* stats = &_mi_stats_main;
+ mi_assert_internal(needs_recommit!=NULL);
+ _mi_stat_decrease(&stats->committed, size);
+
+ // page align
+ size_t csize;
+ void* start = mi_os_page_align_area_conservative(addr, size, &csize);
+ if (csize == 0) return true;
+
+ // decommit
+ *needs_recommit = true;
+ int err = _mi_prim_decommit(start,csize,needs_recommit);
+ if (err != 0) {
+ _mi_warning_message("cannot decommit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
+ }
+ mi_assert_internal(err == 0);
+ return (err == 0);
+}
+
+bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* tld_stats) {
+ bool needs_recommit;
+ return mi_os_decommit_ex(addr, size, &needs_recommit, tld_stats);
+}
+
+
+// Signal to the OS that the address range is no longer in use
+// but may be used later again. This will release physical memory
+// pages and reduce swapping while keeping the memory committed.
+// We page align to a conservative area inside the range to reset.
+bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) {
+ // page align conservatively within the range
+ size_t csize;
+ void* start = mi_os_page_align_area_conservative(addr, size, &csize);
+ if (csize == 0) return true; // || _mi_os_is_huge_reserved(addr)
+ _mi_stat_increase(&stats->reset, csize);
+ _mi_stat_counter_increase(&stats->reset_calls, 1);
+
+ #if (MI_DEBUG>1) && !MI_SECURE && !MI_TRACK_ENABLED // && !MI_TSAN
+ memset(start, 0, csize); // pretend it is eagerly reset
+ #endif
+
+ int err = _mi_prim_reset(start, csize);
+ if (err != 0) {
+ _mi_warning_message("cannot reset OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
+ }
+ return (err == 0);
+}
+
+
+// either resets or decommits memory, returns true if the memory needs
+// to be recommitted if it is to be re-used later on.
+bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats)
+{
+ if (mi_option_get(mi_option_purge_delay) < 0) return false; // is purging allowed?
+ _mi_stat_counter_increase(&stats->purge_calls, 1);
+ _mi_stat_increase(&stats->purged, size);
+
+ if (mi_option_is_enabled(mi_option_purge_decommits) && // should decommit?
+ !_mi_preloading()) // don't decommit during preloading (unsafe)
+ {
+ bool needs_recommit = true;
+ mi_os_decommit_ex(p, size, &needs_recommit, stats);
+ return needs_recommit;
+ }
+ else {
+ if (allow_reset) { // this can sometimes be not allowed if the range is not fully committed
+ _mi_os_reset(p, size, stats);
+ }
+ return false; // needs no recommit
+ }
+}
+
+// either resets or decommits memory, returns true if the memory needs
+// to be recommitted if it is to be re-used later on.
+bool _mi_os_purge(void* p, size_t size, mi_stats_t * stats) {
+ return _mi_os_purge_ex(p, size, true, stats);
+}
+
+// Protect a region in memory to be not accessible.
+static bool mi_os_protectx(void* addr, size_t size, bool protect) {
+ // page align conservatively within the range
+ size_t csize = 0;
+ void* start = mi_os_page_align_area_conservative(addr, size, &csize);
+ if (csize == 0) return false;
+ /*
+ if (_mi_os_is_huge_reserved(addr)) {
+ _mi_warning_message("cannot mprotect memory allocated in huge OS pages\n");
+ }
+ */
+ int err = _mi_prim_protect(start,csize,protect);
+ if (err != 0) {
+ _mi_warning_message("cannot %s OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", (protect ? "protect" : "unprotect"), err, err, start, csize);
+ }
+ return (err == 0);
+}
+
+bool _mi_os_protect(void* addr, size_t size) {
+ return mi_os_protectx(addr, size, true);
+}
+
+bool _mi_os_unprotect(void* addr, size_t size) {
+ return mi_os_protectx(addr, size, false);
+}
+
+
+
+/* ----------------------------------------------------------------------------
+Support for allocating huge OS pages (1Gib) that are reserved up-front
+and possibly associated with a specific NUMA node. (use `numa_node>=0`)
+-----------------------------------------------------------------------------*/
+#define MI_HUGE_OS_PAGE_SIZE (MI_GiB)
+
+
+#if (MI_INTPTR_SIZE >= 8)
+// To ensure proper alignment, use our own area for huge OS pages
+static mi_decl_cache_align _Atomic(uintptr_t) mi_huge_start; // = 0
+
+// Claim an aligned address range for huge pages
+static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) {
+ if (total_size != NULL) *total_size = 0;
+ const size_t size = pages * MI_HUGE_OS_PAGE_SIZE;
+
+ uintptr_t start = 0;
+ uintptr_t end = 0;
+ uintptr_t huge_start = mi_atomic_load_relaxed(&mi_huge_start);
+ do {
+ start = huge_start;
+ if (start == 0) {
+ // Initialize the start address after the 32TiB area
+ start = ((uintptr_t)32 << 40); // 32TiB virtual start address
+ #if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode
+ uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap());
+ start = start + ((uintptr_t)MI_HUGE_OS_PAGE_SIZE * ((r>>17) & 0x0FFF)); // (randomly 12bits)*1GiB == between 0 to 4TiB
+ #endif
+ }
+ end = start + size;
+ mi_assert_internal(end % MI_SEGMENT_SIZE == 0);
+ } while (!mi_atomic_cas_strong_acq_rel(&mi_huge_start, &huge_start, end));
+
+ if (total_size != NULL) *total_size = size;
+ return (uint8_t*)start;
+}
+#else
+static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) {
+ MI_UNUSED(pages);
+ if (total_size != NULL) *total_size = 0;
+ return NULL;
+}
+#endif
+
+// Allocate MI_SEGMENT_SIZE aligned huge pages
+void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_msecs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid) {
+ *memid = _mi_memid_none();
+ if (psize != NULL) *psize = 0;
+ if (pages_reserved != NULL) *pages_reserved = 0;
+ size_t size = 0;
+ uint8_t* start = mi_os_claim_huge_pages(pages, &size);
+ if (start == NULL) return NULL; // or 32-bit systems
+
+ // Allocate one page at the time but try to place them contiguously
+ // We allocate one page at the time to be able to abort if it takes too long
+ // or to at least allocate as many as available on the system.
+ mi_msecs_t start_t = _mi_clock_start();
+ size_t page = 0;
+ bool all_zero = true;
+ while (page < pages) {
+ // allocate a page
+ bool is_zero = false;
+ void* addr = start + (page * MI_HUGE_OS_PAGE_SIZE);
+ void* p = NULL;
+ int err = _mi_prim_alloc_huge_os_pages(addr, MI_HUGE_OS_PAGE_SIZE, numa_node, &is_zero, &p);
+ if (!is_zero) { all_zero = false; }
+ if (err != 0) {
+ _mi_warning_message("unable to allocate huge OS page (error: %d (0x%x), address: %p, size: %zx bytes)\n", err, err, addr, MI_HUGE_OS_PAGE_SIZE);
+ break;
+ }
+
+ // Did we succeed at a contiguous address?
+ if (p != addr) {
+ // no success, issue a warning and break
+ if (p != NULL) {
+ _mi_warning_message("could not allocate contiguous huge OS page %zu at %p\n", page, addr);
+ mi_os_prim_free(p, MI_HUGE_OS_PAGE_SIZE, true, &_mi_stats_main);
+ }
+ break;
+ }
+
+ // success, record it
+ page++; // increase before timeout check (see issue #711)
+ _mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE);
+ _mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE);
+
+ // check for timeout
+ if (max_msecs > 0) {
+ mi_msecs_t elapsed = _mi_clock_end(start_t);
+ if (page >= 1) {
+ mi_msecs_t estimate = ((elapsed / (page+1)) * pages);
+ if (estimate > 2*max_msecs) { // seems like we are going to timeout, break
+ elapsed = max_msecs + 1;
+ }
+ }
+ if (elapsed > max_msecs) {
+ _mi_warning_message("huge OS page allocation timed out (after allocating %zu page(s))\n", page);
+ break;
+ }
+ }
+ }
+ mi_assert_internal(page*MI_HUGE_OS_PAGE_SIZE <= size);
+ if (pages_reserved != NULL) { *pages_reserved = page; }
+ if (psize != NULL) { *psize = page * MI_HUGE_OS_PAGE_SIZE; }
+ if (page != 0) {
+ mi_assert(start != NULL);
+ *memid = _mi_memid_create_os(true /* is committed */, all_zero, true /* is_large */);
+ memid->memkind = MI_MEM_OS_HUGE;
+ mi_assert(memid->is_pinned);
+ #ifdef MI_TRACK_ASAN
+ if (all_zero) { mi_track_mem_defined(start,size); }
+ #endif
+ }
+ return (page == 0 ? NULL : start);
+}
+
+// free every huge page in a range individually (as we allocated per page)
+// note: needed with VirtualAlloc but could potentially be done in one go on mmap'd systems.
+static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats) {
+ if (p==NULL || size==0) return;
+ uint8_t* base = (uint8_t*)p;
+ while (size >= MI_HUGE_OS_PAGE_SIZE) {
+ mi_os_prim_free(base, MI_HUGE_OS_PAGE_SIZE, true, stats);
+ size -= MI_HUGE_OS_PAGE_SIZE;
+ base += MI_HUGE_OS_PAGE_SIZE;
+ }
+}
+
+/* ----------------------------------------------------------------------------
+Support NUMA aware allocation
+-----------------------------------------------------------------------------*/
+
+_Atomic(size_t) _mi_numa_node_count; // = 0 // cache the node count
+
+size_t _mi_os_numa_node_count_get(void) {
+ size_t count = mi_atomic_load_acquire(&_mi_numa_node_count);
+ if (count <= 0) {
+ long ncount = mi_option_get(mi_option_use_numa_nodes); // given explicitly?
+ if (ncount > 0) {
+ count = (size_t)ncount;
+ }
+ else {
+ count = _mi_prim_numa_node_count(); // or detect dynamically
+ if (count == 0) count = 1;
+ }
+ mi_atomic_store_release(&_mi_numa_node_count, count); // save it
+ _mi_verbose_message("using %zd numa regions\n", count);
+ }
+ return count;
+}
+
+int _mi_os_numa_node_get(mi_os_tld_t* tld) {
+ MI_UNUSED(tld);
+ size_t numa_count = _mi_os_numa_node_count();
+ if (numa_count<=1) return 0; // optimize on single numa node systems: always node 0
+ // never more than the node count and >= 0
+ size_t numa_node = _mi_prim_numa_node();
+ if (numa_node >= numa_count) { numa_node = numa_node % numa_count; }
+ return (int)numa_node;
+}