diff options
Diffstat (limited to 'Objects/object.c')
-rw-r--r-- | Objects/object.c | 136 |
1 files changed, 87 insertions, 49 deletions
diff --git a/Objects/object.c b/Objects/object.c index 0802348..76d018f 100644 --- a/Objects/object.c +++ b/Objects/object.c @@ -647,63 +647,101 @@ PyObject_RichCompareBool(PyObject *v, PyObject *w, int op) All the utility functions (_Py_Hash*()) return "-1" to signify an error. */ +/* For numeric types, the hash of a number x is based on the reduction + of x modulo the prime P = 2**_PyHASH_BITS - 1. It's designed so that + hash(x) == hash(y) whenever x and y are numerically equal, even if + x and y have different types. + + A quick summary of the hashing strategy: + + (1) First define the 'reduction of x modulo P' for any rational + number x; this is a standard extension of the usual notion of + reduction modulo P for integers. If x == p/q (written in lowest + terms), the reduction is interpreted as the reduction of p times + the inverse of the reduction of q, all modulo P; if q is exactly + divisible by P then define the reduction to be infinity. So we've + got a well-defined map + + reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }. + + (2) Now for a rational number x, define hash(x) by: + + reduce(x) if x >= 0 + -reduce(-x) if x < 0 + + If the result of the reduction is infinity (this is impossible for + integers, floats and Decimals) then use the predefined hash value + _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead. + _PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the + hashes of float and Decimal infinities and nans. + + A selling point for the above strategy is that it makes it possible + to compute hashes of decimal and binary floating-point numbers + efficiently, even if the exponent of the binary or decimal number + is large. The key point is that + + reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS) + + provided that {reduce(x), reduce(y)} != {0, infinity}. The reduction of a + binary or decimal float is never infinity, since the denominator is a power + of 2 (for binary) or a divisor of a power of 10 (for decimal). So we have, + for nonnegative x, + + reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS + + reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS + + and reduce(10**e) can be computed efficiently by the usual modular + exponentiation algorithm. For reduce(2**e) it's even better: since + P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication + by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits. + + */ + long _Py_HashDouble(double v) { - double intpart, fractpart; - int expo; - long hipart; - long x; /* the final hash value */ - /* This is designed so that Python numbers of different types - * that compare equal hash to the same value; otherwise comparisons - * of mapping keys will turn out weird. - */ + int e, sign; + double m; + unsigned long x, y; if (!Py_IS_FINITE(v)) { if (Py_IS_INFINITY(v)) - return v < 0 ? -271828 : 314159; + return v > 0 ? _PyHASH_INF : -_PyHASH_INF; else - return 0; + return _PyHASH_NAN; } - fractpart = modf(v, &intpart); - if (fractpart == 0.0) { - /* This must return the same hash as an equal int or long. */ - if (intpart > LONG_MAX/2 || -intpart > LONG_MAX/2) { - /* Convert to long and use its hash. */ - PyObject *plong; /* converted to Python long */ - plong = PyLong_FromDouble(v); - if (plong == NULL) - return -1; - x = PyObject_Hash(plong); - Py_DECREF(plong); - return x; - } - /* Fits in a C long == a Python int, so is its own hash. */ - x = (long)intpart; - if (x == -1) - x = -2; - return x; - } - /* The fractional part is non-zero, so we don't have to worry about - * making this match the hash of some other type. - * Use frexp to get at the bits in the double. - * Since the VAX D double format has 56 mantissa bits, which is the - * most of any double format in use, each of these parts may have as - * many as (but no more than) 56 significant bits. - * So, assuming sizeof(long) >= 4, each part can be broken into two - * longs; frexp and multiplication are used to do that. - * Also, since the Cray double format has 15 exponent bits, which is - * the most of any double format in use, shifting the exponent field - * left by 15 won't overflow a long (again assuming sizeof(long) >= 4). - */ - v = frexp(v, &expo); - v *= 2147483648.0; /* 2**31 */ - hipart = (long)v; /* take the top 32 bits */ - v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */ - x = hipart + (long)v + (expo << 15); - if (x == -1) - x = -2; - return x; + + m = frexp(v, &e); + + sign = 1; + if (m < 0) { + sign = -1; + m = -m; + } + + /* process 28 bits at a time; this should work well both for binary + and hexadecimal floating point. */ + x = 0; + while (m) { + x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28); + m *= 268435456.0; /* 2**28 */ + e -= 28; + y = (unsigned long)m; /* pull out integer part */ + m -= y; + x += y; + if (x >= _PyHASH_MODULUS) + x -= _PyHASH_MODULUS; + } + + /* adjust for the exponent; first reduce it modulo _PyHASH_BITS */ + e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS); + x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e); + + x = x * sign; + if (x == (unsigned long)-1) + x = (unsigned long)-2; + return (long)x; } long |