diff options
Diffstat (limited to 'Objects/stringlib/fastsearch.h')
-rw-r--r-- | Objects/stringlib/fastsearch.h | 490 |
1 files changed, 470 insertions, 20 deletions
diff --git a/Objects/stringlib/fastsearch.h b/Objects/stringlib/fastsearch.h index 56a4467..6574720 100644 --- a/Objects/stringlib/fastsearch.h +++ b/Objects/stringlib/fastsearch.h @@ -9,10 +9,16 @@ /* note: fastsearch may access s[n], which isn't a problem when using Python's ordinary string types, but may cause problems if you're using this code in other contexts. also, the count mode returns -1 - if there cannot possible be a match in the target string, and 0 if + if there cannot possibly be a match in the target string, and 0 if it has actually checked for matches, but didn't find any. callers beware! */ +/* If the strings are long enough, use Crochemore and Perrin's Two-Way + algorithm, which has worst-case O(n) runtime and best-case O(n/k). + Also compute a table of shifts to achieve O(n/k) in more cases, + and often (data dependent) deduce larger shifts than pure C&P can + deduce. */ + #define FAST_COUNT 0 #define FAST_SEARCH 1 #define FAST_RSEARCH 2 @@ -160,6 +166,353 @@ STRINGLIB(rfind_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch) #undef MEMCHR_CUT_OFF +/* Change to a 1 to see logging comments walk through the algorithm. */ +#if 0 && STRINGLIB_SIZEOF_CHAR == 1 +# define LOG(...) printf(__VA_ARGS__) +# define LOG_STRING(s, n) printf("\"%.*s\"", n, s) +#else +# define LOG(...) +# define LOG_STRING(s, n) +#endif + +Py_LOCAL_INLINE(Py_ssize_t) +STRINGLIB(_lex_search)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle, + Py_ssize_t *return_period, int invert_alphabet) +{ + /* Do a lexicographic search. Essentially this: + >>> max(needle[i:] for i in range(len(needle)+1)) + Also find the period of the right half. */ + Py_ssize_t max_suffix = 0; + Py_ssize_t candidate = 1; + Py_ssize_t k = 0; + // The period of the right half. + Py_ssize_t period = 1; + + while (candidate + k < len_needle) { + // each loop increases candidate + k + max_suffix + STRINGLIB_CHAR a = needle[candidate + k]; + STRINGLIB_CHAR b = needle[max_suffix + k]; + // check if the suffix at candidate is better than max_suffix + if (invert_alphabet ? (b < a) : (a < b)) { + // Fell short of max_suffix. + // The next k + 1 characters are non-increasing + // from candidate, so they won't start a maximal suffix. + candidate += k + 1; + k = 0; + // We've ruled out any period smaller than what's + // been scanned since max_suffix. + period = candidate - max_suffix; + } + else if (a == b) { + if (k + 1 != period) { + // Keep scanning the equal strings + k++; + } + else { + // Matched a whole period. + // Start matching the next period. + candidate += period; + k = 0; + } + } + else { + // Did better than max_suffix, so replace it. + max_suffix = candidate; + candidate++; + k = 0; + period = 1; + } + } + *return_period = period; + return max_suffix; +} + +Py_LOCAL_INLINE(Py_ssize_t) +STRINGLIB(_factorize)(const STRINGLIB_CHAR *needle, + Py_ssize_t len_needle, + Py_ssize_t *return_period) +{ + /* Do a "critical factorization", making it so that: + >>> needle = (left := needle[:cut]) + (right := needle[cut:]) + where the "local period" of the cut is maximal. + + The local period of the cut is the minimal length of a string w + such that (left endswith w or w endswith left) + and (right startswith w or w startswith left). + + The Critical Factorization Theorem says that this maximal local + period is the global period of the string. + + Crochemore and Perrin (1991) show that this cut can be computed + as the later of two cuts: one that gives a lexicographically + maximal right half, and one that gives the same with the + with respect to a reversed alphabet-ordering. + + This is what we want to happen: + >>> x = "GCAGAGAG" + >>> cut, period = factorize(x) + >>> x[:cut], (right := x[cut:]) + ('GC', 'AGAGAG') + >>> period # right half period + 2 + >>> right[period:] == right[:-period] + True + + This is how the local period lines up in the above example: + GC | AGAGAG + AGAGAGC = AGAGAGC + The length of this minimal repetition is 7, which is indeed the + period of the original string. */ + + Py_ssize_t cut1, period1, cut2, period2, cut, period; + cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0); + cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1); + + // Take the later cut. + if (cut1 > cut2) { + period = period1; + cut = cut1; + } + else { + period = period2; + cut = cut2; + } + + LOG("split: "); LOG_STRING(needle, cut); + LOG(" + "); LOG_STRING(needle + cut, len_needle - cut); + LOG("\n"); + + *return_period = period; + return cut; +} + +#define SHIFT_TYPE uint8_t +#define NOT_FOUND ((1U<<(8*sizeof(SHIFT_TYPE))) - 1U) +#define SHIFT_OVERFLOW (NOT_FOUND - 1U) + +#define TABLE_SIZE_BITS 6 +#define TABLE_SIZE (1U << TABLE_SIZE_BITS) +#define TABLE_MASK (TABLE_SIZE - 1U) + +typedef struct STRINGLIB(_pre) { + const STRINGLIB_CHAR *needle; + Py_ssize_t len_needle; + Py_ssize_t cut; + Py_ssize_t period; + int is_periodic; + SHIFT_TYPE table[TABLE_SIZE]; +} STRINGLIB(prework); + + +Py_LOCAL_INLINE(void) +STRINGLIB(_preprocess)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle, + STRINGLIB(prework) *p) +{ + p->needle = needle; + p->len_needle = len_needle; + p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period)); + assert(p->period + p->cut <= len_needle); + p->is_periodic = (0 == memcmp(needle, + needle + p->period, + p->cut * STRINGLIB_SIZEOF_CHAR)); + if (p->is_periodic) { + assert(p->cut <= len_needle/2); + assert(p->cut < p->period); + } + else { + // A lower bound on the period + p->period = Py_MAX(p->cut, len_needle - p->cut) + 1; + } + // Now fill up a table + memset(&(p->table[0]), 0xff, TABLE_SIZE*sizeof(SHIFT_TYPE)); + assert(p->table[0] == NOT_FOUND); + assert(p->table[TABLE_MASK] == NOT_FOUND); + for (Py_ssize_t i = 0; i < len_needle; i++) { + Py_ssize_t shift = len_needle - i; + if (shift > SHIFT_OVERFLOW) { + shift = SHIFT_OVERFLOW; + } + p->table[needle[i] & TABLE_MASK] = Py_SAFE_DOWNCAST(shift, + Py_ssize_t, + SHIFT_TYPE); + } +} + +Py_LOCAL_INLINE(Py_ssize_t) +STRINGLIB(_two_way)(const STRINGLIB_CHAR *haystack, Py_ssize_t len_haystack, + STRINGLIB(prework) *p) +{ + // Crochemore and Perrin's (1991) Two-Way algorithm. + // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260 + Py_ssize_t len_needle = p->len_needle; + Py_ssize_t cut = p->cut; + Py_ssize_t period = p->period; + const STRINGLIB_CHAR *needle = p->needle; + const STRINGLIB_CHAR *window = haystack; + const STRINGLIB_CHAR *last_window = haystack + len_haystack - len_needle; + SHIFT_TYPE *table = p->table; + LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack); + + if (p->is_periodic) { + LOG("Needle is periodic.\n"); + Py_ssize_t memory = 0; + periodicwindowloop: + while (window <= last_window) { + Py_ssize_t i = Py_MAX(cut, memory); + + // Visualize the line-up: + LOG("> "); LOG_STRING(haystack, len_haystack); + LOG("\n> "); LOG("%*s", window - haystack, ""); + LOG_STRING(needle, len_needle); + LOG("\n> "); LOG("%*s", window - haystack + i, ""); + LOG(" ^ <-- cut\n"); + + if (window[i] != needle[i]) { + // Sunday's trick: if we're going to jump, we might + // as well jump to line up the character *after* the + // current window. + STRINGLIB_CHAR first_outside = window[len_needle]; + SHIFT_TYPE shift = table[first_outside & TABLE_MASK]; + if (shift == NOT_FOUND) { + LOG("\"%c\" not found. Skipping entirely.\n", + first_outside); + window += len_needle + 1; + } + else { + LOG("Shifting to line up \"%c\".\n", first_outside); + Py_ssize_t memory_shift = i - cut + 1; + window += Py_MAX(shift, memory_shift); + } + memory = 0; + goto periodicwindowloop; + } + for (i = i + 1; i < len_needle; i++) { + if (needle[i] != window[i]) { + LOG("Right half does not match. Jump ahead by %d.\n", + i - cut + 1); + window += i - cut + 1; + memory = 0; + goto periodicwindowloop; + } + } + for (i = memory; i < cut; i++) { + if (needle[i] != window[i]) { + LOG("Left half does not match. Jump ahead by period %d.\n", + period); + window += period; + memory = len_needle - period; + goto periodicwindowloop; + } + } + LOG("Left half matches. Returning %d.\n", + window - haystack); + return window - haystack; + } + } + else { + LOG("Needle is not periodic.\n"); + assert(cut < len_needle); + STRINGLIB_CHAR needle_cut = needle[cut]; + windowloop: + while (window <= last_window) { + + // Visualize the line-up: + LOG("> "); LOG_STRING(haystack, len_haystack); + LOG("\n> "); LOG("%*s", window - haystack, ""); + LOG_STRING(needle, len_needle); + LOG("\n> "); LOG("%*s", window - haystack + cut, ""); + LOG(" ^ <-- cut\n"); + + if (window[cut] != needle_cut) { + // Sunday's trick: if we're going to jump, we might + // as well jump to line up the character *after* the + // current window. + STRINGLIB_CHAR first_outside = window[len_needle]; + SHIFT_TYPE shift = table[first_outside & TABLE_MASK]; + if (shift == NOT_FOUND) { + LOG("\"%c\" not found. Skipping entirely.\n", + first_outside); + window += len_needle + 1; + } + else { + LOG("Shifting to line up \"%c\".\n", first_outside); + window += shift; + } + goto windowloop; + } + for (Py_ssize_t i = cut + 1; i < len_needle; i++) { + if (needle[i] != window[i]) { + LOG("Right half does not match. Advance by %d.\n", + i - cut + 1); + window += i - cut + 1; + goto windowloop; + } + } + for (Py_ssize_t i = 0; i < cut; i++) { + if (needle[i] != window[i]) { + LOG("Left half does not match. Advance by period %d.\n", + period); + window += period; + goto windowloop; + } + } + LOG("Left half matches. Returning %d.\n", window - haystack); + return window - haystack; + } + } + LOG("Not found. Returning -1.\n"); + return -1; +} + +Py_LOCAL_INLINE(Py_ssize_t) +STRINGLIB(_two_way_find)(const STRINGLIB_CHAR *haystack, + Py_ssize_t len_haystack, + const STRINGLIB_CHAR *needle, + Py_ssize_t len_needle) +{ + LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack); + STRINGLIB(prework) p; + STRINGLIB(_preprocess)(needle, len_needle, &p); + return STRINGLIB(_two_way)(haystack, len_haystack, &p); +} + +Py_LOCAL_INLINE(Py_ssize_t) +STRINGLIB(_two_way_count)(const STRINGLIB_CHAR *haystack, + Py_ssize_t len_haystack, + const STRINGLIB_CHAR *needle, + Py_ssize_t len_needle, + Py_ssize_t maxcount) +{ + LOG("###### Counting \"%s\" in \"%s\".\n", needle, haystack); + STRINGLIB(prework) p; + STRINGLIB(_preprocess)(needle, len_needle, &p); + Py_ssize_t index = 0, count = 0; + while (1) { + Py_ssize_t result; + result = STRINGLIB(_two_way)(haystack + index, + len_haystack - index, &p); + if (result == -1) { + return count; + } + count++; + if (count == maxcount) { + return maxcount; + } + index += result + len_needle; + } + return count; +} + +#undef SHIFT_TYPE +#undef NOT_FOUND +#undef SHIFT_OVERFLOW +#undef TABLE_SIZE_BITS +#undef TABLE_SIZE +#undef TABLE_MASK + +#undef LOG +#undef LOG_STRING + Py_LOCAL_INLINE(Py_ssize_t) FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n, const STRINGLIB_CHAR* p, Py_ssize_t m, @@ -195,10 +548,22 @@ FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n, } mlast = m - 1; - skip = mlast - 1; + skip = mlast; mask = 0; if (mode != FAST_RSEARCH) { + if (m >= 100 && w >= 2000 && w / m >= 5) { + /* For larger problems where the needle isn't a huge + percentage of the size of the haystack, the relatively + expensive O(m) startup cost of the two-way algorithm + will surely pay off. */ + if (mode == FAST_SEARCH) { + return STRINGLIB(_two_way_find)(s, n, p, m); + } + else { + return STRINGLIB(_two_way_count)(s, n, p, m, maxcount); + } + } const STRINGLIB_CHAR *ss = s + m - 1; const STRINGLIB_CHAR *pp = p + m - 1; @@ -207,41 +572,118 @@ FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n, /* process pattern[:-1] */ for (i = 0; i < mlast; i++) { STRINGLIB_BLOOM_ADD(mask, p[i]); - if (p[i] == p[mlast]) + if (p[i] == p[mlast]) { skip = mlast - i - 1; + } } /* process pattern[-1] outside the loop */ STRINGLIB_BLOOM_ADD(mask, p[mlast]); + if (m >= 100 && w >= 8000) { + /* To ensure that we have good worst-case behavior, + here's an adaptive version of the algorithm, where if + we match O(m) characters without any matches of the + entire needle, then we predict that the startup cost of + the two-way algorithm will probably be worth it. */ + Py_ssize_t hits = 0; + for (i = 0; i <= w; i++) { + if (ss[i] == pp[0]) { + /* candidate match */ + for (j = 0; j < mlast; j++) { + if (s[i+j] != p[j]) { + break; + } + } + if (j == mlast) { + /* got a match! */ + if (mode != FAST_COUNT) { + return i; + } + count++; + if (count == maxcount) { + return maxcount; + } + i = i + mlast; + continue; + } + /* miss: check if next character is part of pattern */ + if (!STRINGLIB_BLOOM(mask, ss[i+1])) { + i = i + m; + } + else { + i = i + skip; + } + hits += j + 1; + if (hits >= m / 4 && i < w - 1000) { + /* We've done O(m) fruitless comparisons + anyway, so spend the O(m) cost on the + setup for the two-way algorithm. */ + Py_ssize_t res; + if (mode == FAST_COUNT) { + res = STRINGLIB(_two_way_count)( + s+i, n-i, p, m, maxcount-count); + return count + res; + } + else { + res = STRINGLIB(_two_way_find)(s+i, n-i, p, m); + if (res == -1) { + return -1; + } + return i + res; + } + } + } + else { + /* skip: check if next character is part of pattern */ + if (!STRINGLIB_BLOOM(mask, ss[i+1])) { + i = i + m; + } + } + } + if (mode != FAST_COUNT) { + return -1; + } + return count; + } + /* The standard, non-adaptive version of the algorithm. */ for (i = 0; i <= w; i++) { /* note: using mlast in the skip path slows things down on x86 */ if (ss[i] == pp[0]) { /* candidate match */ - for (j = 0; j < mlast; j++) - if (s[i+j] != p[j]) + for (j = 0; j < mlast; j++) { + if (s[i+j] != p[j]) { break; + } + } if (j == mlast) { /* got a match! */ - if (mode != FAST_COUNT) + if (mode != FAST_COUNT) { return i; + } count++; - if (count == maxcount) + if (count == maxcount) { return maxcount; + } i = i + mlast; continue; } /* miss: check if next character is part of pattern */ - if (!STRINGLIB_BLOOM(mask, ss[i+1])) + if (!STRINGLIB_BLOOM(mask, ss[i+1])) { i = i + m; - else + } + else { i = i + skip; - } else { + } + } + else { /* skip: check if next character is part of pattern */ - if (!STRINGLIB_BLOOM(mask, ss[i+1])) + if (!STRINGLIB_BLOOM(mask, ss[i+1])) { i = i + m; + } } } - } else { /* FAST_RSEARCH */ + } + else { /* FAST_RSEARCH */ /* create compressed boyer-moore delta 1 table */ @@ -250,28 +692,36 @@ FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n, /* process pattern[:0:-1] */ for (i = mlast; i > 0; i--) { STRINGLIB_BLOOM_ADD(mask, p[i]); - if (p[i] == p[0]) + if (p[i] == p[0]) { skip = i - 1; + } } for (i = w; i >= 0; i--) { if (s[i] == p[0]) { /* candidate match */ - for (j = mlast; j > 0; j--) - if (s[i+j] != p[j]) + for (j = mlast; j > 0; j--) { + if (s[i+j] != p[j]) { break; - if (j == 0) + } + } + if (j == 0) { /* got a match! */ return i; + } /* miss: check if previous character is part of pattern */ - if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) + if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) { i = i - m; - else + } + else { i = i - skip; - } else { + } + } + else { /* skip: check if previous character is part of pattern */ - if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) + if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) { i = i - m; + } } } } |