summaryrefslogtreecommitdiffstats
path: root/Python/Python-ast.c
diff options
context:
space:
mode:
Diffstat (limited to 'Python/Python-ast.c')
0 files changed, 0 insertions, 0 deletions
id='n40' href='#n40'>40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/*
 *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
 *  Copyright (C) 2003, 2007, 2008 Apple Inc. All rights reserved.
 *  Copyright (C) 2003 Peter Kelly (pmk@post.com)
 *  Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "config.h"
#include "JSArray.h"

#include "ArrayPrototype.h"
#include "PropertyNameArray.h"
#include <wtf/AVLTree.h>
#include <wtf/Assertions.h>
#include <Operations.h>

#define CHECK_ARRAY_CONSISTENCY 0

using namespace std;
using namespace WTF;

namespace JSC {

ASSERT_CLASS_FITS_IN_CELL(JSArray);

// Overview of JSArray
//
// Properties of JSArray objects may be stored in one of three locations:
//   * The regular JSObject property map.
//   * A storage vector.
//   * A sparse map of array entries.
//
// Properties with non-numeric identifiers, with identifiers that are not representable
// as an unsigned integer, or where the value is greater than  MAX_ARRAY_INDEX
// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
// integer) are not considered array indices and will be stored in the JSObject property map.
//
// All properties with a numeric identifer, representable as an unsigned integer i,
// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
// storage vector or the sparse map.  An array index i will be handled in the following
// fashion:
//
//   * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector.
//   * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
//     be stored in the storage vector or in the sparse array, depending on the density of
//     data that would be stored in the vector (a vector being used where at least
//     (1 / minDensityMultiplier) of the entries would be populated).
//   * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
//     in the sparse array.

// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
// size calculation cannot overflow.  (sizeof(ArrayStorage) - sizeof(JSValuePtr)) +
// (vectorLength * sizeof(JSValuePtr)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValuePtr))) / sizeof(JSValuePtr))

// These values have to be macros to be used in max() and min() without introducing
// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
#define MIN_SPARSE_ARRAY_INDEX 10000U
#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
#define MAX_ARRAY_INDEX 0xFFFFFFFEU

// Our policy for when to use a vector and when to use a sparse map.
// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
// as long as it is 1/8 full. If more sparse than that, we use a map.
static const unsigned minDensityMultiplier = 8;

const ClassInfo JSArray::info = {"Array", 0, 0, 0};

static inline size_t storageSize(unsigned vectorLength)
{
    ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);

    // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
    // - as asserted above - the following calculation cannot overflow.
    size_t size = (sizeof(ArrayStorage) - sizeof(JSValuePtr)) + (vectorLength * sizeof(JSValuePtr));
    // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
    // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
    ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValuePtr))) / sizeof(JSValuePtr) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValuePtr))));

    return size;
}

static inline unsigned increasedVectorLength(unsigned newLength)
{
    ASSERT(newLength <= MAX_STORAGE_VECTOR_LENGTH);

    // Mathematically equivalent to:
    //   increasedLength = (newLength * 3 + 1) / 2;
    // or:
    //   increasedLength = (unsigned)ceil(newLength * 1.5));
    // This form is not prone to internal overflow.
    unsigned increasedLength = newLength + (newLength >> 1) + (newLength & 1);
    ASSERT(increasedLength >= newLength);

    return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
}

static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
{
    return length / minDensityMultiplier <= numValues;
}

#if !CHECK_ARRAY_CONSISTENCY

inline void JSArray::checkConsistency(ConsistencyCheckType)
{
}

#endif

JSArray::JSArray(PassRefPtr<Structure> structure)
    : JSObject(structure)
{
    unsigned initialCapacity = 0;

    m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
    m_fastAccessCutoff = 0;
    m_storage->m_vectorLength = initialCapacity;
    m_storage->m_length = 0;

    checkConsistency();
}

JSArray::JSArray(PassRefPtr<Structure> structure, unsigned initialLength)
    : JSObject(structure)
{
    unsigned initialCapacity = min(initialLength, MIN_SPARSE_ARRAY_INDEX);

    m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
    m_fastAccessCutoff = 0;
    m_storage->m_vectorLength = initialCapacity;
    m_storage->m_length = initialLength;

    Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValuePtr));

    checkConsistency();
}

JSArray::JSArray(ExecState* exec, PassRefPtr<Structure> structure, const ArgList& list)
    : JSObject(structure)
{
    unsigned length = list.size();

    m_fastAccessCutoff = length;

    ArrayStorage* storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(length)));

    storage->m_vectorLength = length;
    storage->m_numValuesInVector = length;
    storage->m_sparseValueMap = 0;
    storage->m_length = length;

    size_t i = 0;
    ArgList::const_iterator end = list.end();
    for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
        storage->m_vector[i] = (*it).jsValue(exec);

    m_storage = storage;

    // When the array is created non-empty, its cells are filled, so it's really no worse than
    // a property map. Therefore don't report extra memory cost.

    checkConsistency();
}

JSArray::~JSArray()
{
    checkConsistency(DestructorConsistencyCheck);

    delete m_storage->m_sparseValueMap;
    fastFree(m_storage);
}

bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
{
    ArrayStorage* storage = m_storage;

    if (i >= storage->m_length) {
        if (i > MAX_ARRAY_INDEX)
            return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
        return false;
    }

    if (i < storage->m_vectorLength) {
        JSValuePtr& valueSlot = storage->m_vector[i];
        if (valueSlot) {
            slot.setValueSlot(&valueSlot);
            return true;
        }
    } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        if (i >= MIN_SPARSE_ARRAY_INDEX) {
            SparseArrayValueMap::iterator it = map->find(i);
            if (it != map->end()) {
                slot.setValueSlot(&it->second);
                return true;
            }
        }
    }

    return false;
}

bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
    if (propertyName == exec->propertyNames().length) {
        slot.setValue(jsNumber(exec, length()));
        return true;
    }

    bool isArrayIndex;
    unsigned i = propertyName.toArrayIndex(&isArrayIndex);
    if (isArrayIndex)
        return JSArray::getOwnPropertySlot(exec, i, slot);

    return JSObject::getOwnPropertySlot(exec, propertyName, slot);
}

// ECMA 15.4.5.1
void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValuePtr value, PutPropertySlot& slot)
{
    bool isArrayIndex;
    unsigned i = propertyName.toArrayIndex(&isArrayIndex);
    if (isArrayIndex) {
        put(exec, i, value);
        return;
    }

    if (propertyName == exec->propertyNames().length) {
        unsigned newLength = value->toUInt32(exec);
        if (value->toNumber(exec) != static_cast<double>(newLength)) {
            throwError(exec, RangeError, "Invalid array length.");
            return;
        }
        setLength(newLength);
        return;
    }

    JSObject::put(exec, propertyName, value, slot);
}

void JSArray::put(ExecState* exec, unsigned i, JSValuePtr value)
{
    checkConsistency();

    unsigned length = m_storage->m_length;
    if (i >= length && i <= MAX_ARRAY_INDEX) {
        length = i + 1;
        m_storage->m_length = length;
    }

    if (i < m_storage->m_vectorLength) {
        JSValuePtr& valueSlot = m_storage->m_vector[i];
        if (valueSlot) {
            valueSlot = value;
            checkConsistency();
            return;
        }
        valueSlot = value;
        if (++m_storage->m_numValuesInVector == m_storage->m_length)
            m_fastAccessCutoff = m_storage->m_length;
        checkConsistency();
        return;
    }

    putSlowCase(exec, i, value);
}

NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValuePtr value)
{
    ArrayStorage* storage = m_storage;
    SparseArrayValueMap* map = storage->m_sparseValueMap;

    if (i >= MIN_SPARSE_ARRAY_INDEX) {
        if (i > MAX_ARRAY_INDEX) {
            PutPropertySlot slot;
            put(exec, Identifier::from(exec, i), value, slot);
            return;
        }

        // We miss some cases where we could compact the storage, such as a large array that is being filled from the end
        // (which will only be compacted as we reach indices that are less than cutoff) - but this makes the check much faster.
        if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
            if (!map) {
                map = new SparseArrayValueMap;
                storage->m_sparseValueMap = map;
            }
            map->set(i, value);
            return;
        }
    }

    // We have decided that we'll put the new item into the vector.
    // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
    if (!map || map->isEmpty()) {
        if (increaseVectorLength(i + 1)) {
            storage = m_storage;
            storage->m_vector[i] = value;
            if (++storage->m_numValuesInVector == storage->m_length)
                m_fastAccessCutoff = storage->m_length;
            checkConsistency();
        } else
            throwOutOfMemoryError(exec);
        return;
    }

    // Decide how many values it would be best to move from the map.
    unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
    unsigned newVectorLength = increasedVectorLength(i + 1);
    for (unsigned j = max(storage->m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
        newNumValuesInVector += map->contains(j);
    if (i >= MIN_SPARSE_ARRAY_INDEX)
        newNumValuesInVector -= map->contains(i);
    if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
        unsigned proposedNewNumValuesInVector = newNumValuesInVector;
        // If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further.
        while (newVectorLength < MAX_STORAGE_VECTOR_LENGTH) {
            unsigned proposedNewVectorLength = increasedVectorLength(newVectorLength + 1);
            for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j)
                proposedNewNumValuesInVector += map->contains(j);
            if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
                break;
            newVectorLength = proposedNewVectorLength;
            newNumValuesInVector = proposedNewNumValuesInVector;
        }
    }

    storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength)));
    if (!storage) {
        throwOutOfMemoryError(exec);
        return;
    }

    unsigned vectorLength = storage->m_vectorLength;
    if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
        for (unsigned j = vectorLength; j < newVectorLength; ++j)
            storage->m_vector[j] = noValue();
        if (i > MIN_SPARSE_ARRAY_INDEX)
            map->remove(i);
    } else {
        for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j)
            storage->m_vector[j] = noValue();
        for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
            storage->m_vector[j] = map->take(j);
    }

    storage->m_vector[i] = value;

    storage->m_vectorLength = newVectorLength;
    storage->m_numValuesInVector = newNumValuesInVector;

    m_storage = storage;

    checkConsistency();
}

bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
{
    bool isArrayIndex;
    unsigned i = propertyName.toArrayIndex(&isArrayIndex);
    if (isArrayIndex)
        return deleteProperty(exec, i);

    if (propertyName == exec->propertyNames().length)
        return false;

    return JSObject::deleteProperty(exec, propertyName);
}

bool JSArray::deleteProperty(ExecState* exec, unsigned i)
{
    checkConsistency();

    ArrayStorage* storage = m_storage;

    if (i < storage->m_vectorLength) {
        JSValuePtr& valueSlot = storage->m_vector[i];
        if (!valueSlot) {
            checkConsistency();
            return false;
        }
        valueSlot = noValue();
        --storage->m_numValuesInVector;
        if (m_fastAccessCutoff > i)
            m_fastAccessCutoff = i;
        checkConsistency();
        return true;
    }

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        if (i >= MIN_SPARSE_ARRAY_INDEX) {
            SparseArrayValueMap::iterator it = map->find(i);
            if (it != map->end()) {
                map->remove(it);
                checkConsistency();
                return true;
            }
        }
    }

    checkConsistency();

    if (i > MAX_ARRAY_INDEX)
        return deleteProperty(exec, Identifier::from(exec, i));

    return false;
}

void JSArray::getPropertyNames(ExecState* exec, PropertyNameArray& propertyNames)
{
    // FIXME: Filling PropertyNameArray with an identifier for every integer
    // is incredibly inefficient for large arrays. We need a different approach,
    // which almost certainly means a different structure for PropertyNameArray.

    ArrayStorage* storage = m_storage;

    unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength);
    for (unsigned i = 0; i < usedVectorLength; ++i) {
        if (storage->m_vector[i])
            propertyNames.add(Identifier::from(exec, i));
    }

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        SparseArrayValueMap::iterator end = map->end();
        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
            propertyNames.add(Identifier::from(exec, it->first));
    }

    JSObject::getPropertyNames(exec, propertyNames);
}

bool JSArray::increaseVectorLength(unsigned newLength)
{
    // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
    // to the vector. Callers have to account for that, because they can do it more efficiently.

    ArrayStorage* storage = m_storage;

    unsigned vectorLength = storage->m_vectorLength;
    ASSERT(newLength > vectorLength);
    ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
    unsigned newVectorLength = increasedVectorLength(newLength);

    storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength)));
    if (!storage)
        return false;

    storage->m_vectorLength = newVectorLength;

    for (unsigned i = vectorLength; i < newVectorLength; ++i)
        storage->m_vector[i] = noValue();

    m_storage = storage;
    return true;
}

void JSArray::setLength(unsigned newLength)
{
    checkConsistency();

    ArrayStorage* storage = m_storage;

    unsigned length = m_storage->m_length;

    if (newLength < length) {
        if (m_fastAccessCutoff > newLength)
            m_fastAccessCutoff = newLength;

        unsigned usedVectorLength = min(length, storage->m_vectorLength);
        for (unsigned i = newLength; i < usedVectorLength; ++i) {
            JSValuePtr& valueSlot = storage->m_vector[i];
            bool hadValue = valueSlot;
            valueSlot = noValue();
            storage->m_numValuesInVector -= hadValue;
        }

        if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
            SparseArrayValueMap copy = *map;
            SparseArrayValueMap::iterator end = copy.end();
            for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
                if (it->first >= newLength)
                    map->remove(it->first);
            }
            if (map->isEmpty()) {
                delete map;
                storage->m_sparseValueMap = 0;
            }
        }
    }

    m_storage->m_length = newLength;

    checkConsistency();
}

JSValuePtr JSArray::pop()
{
    checkConsistency();

    unsigned length = m_storage->m_length;
    if (!length)
        return jsUndefined();

    --length;

    JSValuePtr result;

    if (m_fastAccessCutoff > length) {
        JSValuePtr& valueSlot = m_storage->m_vector[length];
        result = valueSlot;
        ASSERT(result);
        valueSlot = noValue();
        --m_storage->m_numValuesInVector;
        m_fastAccessCutoff = length;
    } else if (length < m_storage->m_vectorLength) {
        JSValuePtr& valueSlot = m_storage->m_vector[length];
        result = valueSlot;
        valueSlot = noValue();
        if (result)
            --m_storage->m_numValuesInVector;
        else
            result = jsUndefined();
    } else {
        result = jsUndefined();
        if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
            SparseArrayValueMap::iterator it = map->find(length);
            if (it != map->end()) {
                result = it->second;
                map->remove(it);
                if (map->isEmpty()) {
                    delete map;
                    m_storage->m_sparseValueMap = 0;
                }
            }
        }
    }

    m_storage->m_length = length;

    checkConsistency();

    return result;
}

void JSArray::push(ExecState* exec, JSValuePtr value)
{
    checkConsistency();

    if (m_storage->m_length < m_storage->m_vectorLength) {
        ASSERT(!m_storage->m_vector[m_storage->m_length]);
        m_storage->m_vector[m_storage->m_length] = value;
        if (++m_storage->m_numValuesInVector == ++m_storage->m_length)
            m_fastAccessCutoff = m_storage->m_length;
        checkConsistency();
        return;
    }

    if (m_storage->m_length < MIN_SPARSE_ARRAY_INDEX) {
        SparseArrayValueMap* map = m_storage->m_sparseValueMap;
        if (!map || map->isEmpty()) {
            if (increaseVectorLength(m_storage->m_length + 1)) {
                m_storage->m_vector[m_storage->m_length] = value;
                if (++m_storage->m_numValuesInVector == ++m_storage->m_length)
                    m_fastAccessCutoff = m_storage->m_length;
                checkConsistency();
                return;
            }
            checkConsistency();
            throwOutOfMemoryError(exec);
            return;
        }
    }

    putSlowCase(exec, m_storage->m_length++, value);
}

void JSArray::mark()
{
    JSObject::mark();

    ArrayStorage* storage = m_storage;

    unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength);
    for (unsigned i = 0; i < usedVectorLength; ++i) {
        JSValuePtr value = storage->m_vector[i];
        if (value && !value->marked())
            value->mark();
    }

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        SparseArrayValueMap::iterator end = map->end();
        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
            JSValuePtr value = it->second;
            if (!value->marked())
                value->mark();
        }
    }
}

typedef std::pair<JSValuePtr, UString> ArrayQSortPair;

static int compareByStringPairForQSort(const void* a, const void* b)
{
    const ArrayQSortPair* va = static_cast<const ArrayQSortPair*>(a);
    const ArrayQSortPair* vb = static_cast<const ArrayQSortPair*>(b);
    return compare(va->second, vb->second);
}

void JSArray::sort(ExecState* exec)
{
    unsigned lengthNotIncludingUndefined = compactForSorting();
    if (m_storage->m_sparseValueMap) {
        throwOutOfMemoryError(exec);
        return;
    }

    if (!lengthNotIncludingUndefined)
        return;

    // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
    // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
    // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
    // random or otherwise changing results, effectively making compare function inconsistent.

    Vector<ArrayQSortPair> values(lengthNotIncludingUndefined);
    if (!values.begin()) {
        throwOutOfMemoryError(exec);
        return;
    }

    for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
        JSValuePtr value = m_storage->m_vector[i];
        ASSERT(!value->isUndefined());
        values[i].first = value;
    }

    // FIXME: While calling these toString functions, the array could be mutated.
    // In that case, objects pointed to by values in this vector might get garbage-collected!

    // FIXME: The following loop continues to call toString on subsequent values even after
    // a toString call raises an exception.

    for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
        values[i].second = values[i].first->toString(exec);

    if (exec->hadException())
        return;

    // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
    // than O(N log N).

#if HAVE(MERGESORT)
    mergesort(values.begin(), values.size(), sizeof(ArrayQSortPair), compareByStringPairForQSort);
#else
    // FIXME: The qsort library function is likely to not be a stable sort.
    // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
    qsort(values.begin(), values.size(), sizeof(ArrayQSortPair), compareByStringPairForQSort);
#endif

    // FIXME: If the toString function changed the length of the array, this might be
    // modifying the vector incorrectly.

    for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
        m_storage->m_vector[i] = values[i].first;

    checkConsistency(SortConsistencyCheck);
}

struct AVLTreeNodeForArrayCompare {
    JSValuePtr value;

    // Child pointers.  The high bit of gt is robbed and used as the
    // balance factor sign.  The high bit of lt is robbed and used as
    // the magnitude of the balance factor.
    int32_t gt;
    int32_t lt;
};

struct AVLTreeAbstractorForArrayCompare {
    typedef int32_t handle; // Handle is an index into m_nodes vector.
    typedef JSValuePtr key;
    typedef int32_t size;

    Vector<AVLTreeNodeForArrayCompare> m_nodes;
    ExecState* m_exec;
    JSValuePtr m_compareFunction;
    CallType m_compareCallType;
    const CallData* m_compareCallData;
    JSValuePtr m_globalThisValue;

    handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
    void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
    handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
    void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }

    int get_balance_factor(handle h)
    {
        if (m_nodes[h].gt & 0x80000000)
            return -1;
        return static_cast<unsigned>(m_nodes[h].lt) >> 31;
    }

    void set_balance_factor(handle h, int bf)
    {
        if (bf == 0) {
            m_nodes[h].lt &= 0x7FFFFFFF;
            m_nodes[h].gt &= 0x7FFFFFFF;
        } else {
            m_nodes[h].lt |= 0x80000000;
            if (bf < 0)
                m_nodes[h].gt |= 0x80000000;
            else
                m_nodes[h].gt &= 0x7FFFFFFF;
        }
    }

    int compare_key_key(key va, key vb)
    {
        ASSERT(!va->isUndefined());
        ASSERT(!vb->isUndefined());

        if (m_exec->hadException())
            return 1;

        ArgList arguments;
        arguments.append(va);
        arguments.append(vb);
        double compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments)->toNumber(m_exec);
        return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
    }

    int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
    int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }

    static handle null() { return 0x7FFFFFFF; }
};

void JSArray::sort(ExecState* exec, JSValuePtr compareFunction, CallType callType, const CallData& callData)
{
    checkConsistency();

    // FIXME: This ignores exceptions raised in the compare function or in toNumber.

    // The maximum tree depth is compiled in - but the caller is clearly up to no good
    // if a larger array is passed.
    ASSERT(m_storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
    if (m_storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
        return;

    if (!m_storage->m_length)
        return;

    unsigned usedVectorLength = min(m_storage->m_length, m_storage->m_vectorLength);

    AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
    tree.abstractor().m_exec = exec;
    tree.abstractor().m_compareFunction = compareFunction;
    tree.abstractor().m_compareCallType = callType;
    tree.abstractor().m_compareCallData = &callData;
    tree.abstractor().m_globalThisValue = exec->globalThisValue();
    tree.abstractor().m_nodes.resize(usedVectorLength + (m_storage->m_sparseValueMap ? m_storage->m_sparseValueMap->size() : 0));

    if (!tree.abstractor().m_nodes.begin()) {
        throwOutOfMemoryError(exec);
        return;
    }

    // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
    // right out from under us while we're building the tree here.

    unsigned numDefined = 0;
    unsigned numUndefined = 0;

    // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
    for (; numDefined < usedVectorLength; ++numDefined) {
        JSValuePtr v = m_storage->m_vector[numDefined];
        if (!v || v->isUndefined())
            break;
        tree.abstractor().m_nodes[numDefined].value = v;
        tree.insert(numDefined);
    }
    for (unsigned i = numDefined; i < usedVectorLength; ++i) {
        JSValuePtr v = m_storage->m_vector[i];
        if (v) {
            if (v->isUndefined())
                ++numUndefined;
            else {
                tree.abstractor().m_nodes[numDefined].value = v;
                tree.insert(numDefined);
                ++numDefined;
            }
        }
    }

    unsigned newUsedVectorLength = numDefined + numUndefined;

    if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
        newUsedVectorLength += map->size();
        if (newUsedVectorLength > m_storage->m_vectorLength) {
            // Check that it is possible to allocate an array large enough to hold all the entries.
            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
                throwOutOfMemoryError(exec);
                return;
            }
        }

        SparseArrayValueMap::iterator end = map->end();
        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
            tree.abstractor().m_nodes[numDefined].value = it->second;
            tree.insert(numDefined);
            ++numDefined;
        }

        delete map;
        m_storage->m_sparseValueMap = 0;
    }

    ASSERT(tree.abstractor().m_nodes.size() >= numDefined);

    // FIXME: If the compare function changed the length of the array, the following might be
    // modifying the vector incorrectly.

    // Copy the values back into m_storage.
    AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
    iter.start_iter_least(tree);
    for (unsigned i = 0; i < numDefined; ++i) {
        m_storage->m_vector[i] = tree.abstractor().m_nodes[*iter].value;
        ++iter;
    }

    // Put undefined values back in.
    for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
        m_storage->m_vector[i] = jsUndefined();

    // Ensure that unused values in the vector are zeroed out.
    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
        m_storage->m_vector[i] = noValue();

    m_fastAccessCutoff = newUsedVectorLength;
    m_storage->m_numValuesInVector = newUsedVectorLength;

    checkConsistency(SortConsistencyCheck);
}

void JSArray::fillArgList(ExecState* exec, ArgList& args)
{
    unsigned fastAccessLength = min(m_storage->m_length, m_fastAccessCutoff);
    unsigned i = 0;
    for (; i < fastAccessLength; ++i)
        args.append(getIndex(i));
    for (; i < m_storage->m_length; ++i)
        args.append(get(exec, i));
}

unsigned JSArray::compactForSorting()
{
    checkConsistency();

    ArrayStorage* storage = m_storage;

    unsigned usedVectorLength = min(m_storage->m_length, storage->m_vectorLength);

    unsigned numDefined = 0;
    unsigned numUndefined = 0;

    for (; numDefined < usedVectorLength; ++numDefined) {
        JSValuePtr v = storage->m_vector[numDefined];
        if (!v || v->isUndefined())
            break;
    }
    for (unsigned i = numDefined; i < usedVectorLength; ++i) {
        JSValuePtr v = storage->m_vector[i];
        if (v) {
            if (v->isUndefined())
                ++numUndefined;
            else
                storage->m_vector[numDefined++] = v;
        }
    }

    unsigned newUsedVectorLength = numDefined + numUndefined;

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        newUsedVectorLength += map->size();
        if (newUsedVectorLength > storage->m_vectorLength) {
            // Check that it is possible to allocate an array large enough to hold all the entries - if not,
            // exception is thrown by caller.
            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
                return 0;
            storage = m_storage;
        }

        SparseArrayValueMap::iterator end = map->end();
        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
            storage->m_vector[numDefined++] = it->second;

        delete map;
        storage->m_sparseValueMap = 0;
    }

    for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
        storage->m_vector[i] = jsUndefined();
    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
        storage->m_vector[i] = noValue();

    m_fastAccessCutoff = newUsedVectorLength;
    storage->m_numValuesInVector = newUsedVectorLength;

    checkConsistency(SortConsistencyCheck);

    return numDefined;
}

void* JSArray::lazyCreationData()
{
    return m_storage->lazyCreationData;
}

void JSArray::setLazyCreationData(void* d)
{
    m_storage->lazyCreationData = d;
}

#if CHECK_ARRAY_CONSISTENCY

void JSArray::checkConsistency(ConsistencyCheckType type)
{
    ASSERT(m_storage);
    if (type == SortConsistencyCheck)
        ASSERT(!m_storage->m_sparseValueMap);

    ASSERT(m_fastAccessCutoff <= m_storage->m_length);
    ASSERT(m_fastAccessCutoff <= m_storage->m_numValuesInVector);

    unsigned numValuesInVector = 0;
    for (unsigned i = 0; i < m_storage->m_vectorLength; ++i) {
        if (JSValuePtr value = m_storage->m_vector[i]) {
            ASSERT(i < m_storage->m_length);
            if (type != DestructorConsistencyCheck)
                value->type(); // Likely to crash if the object was deallocated.
            ++numValuesInVector;
        } else {
            ASSERT(i >= m_fastAccessCutoff);
            if (type == SortConsistencyCheck)
                ASSERT(i >= m_storage->m_numValuesInVector);
        }
    }
    ASSERT(numValuesInVector == m_storage->m_numValuesInVector);

    if (m_storage->m_sparseValueMap) {
        SparseArrayValueMap::iterator end = m_storage->m_sparseValueMap->end();
        for (SparseArrayValueMap::iterator it = m_storage->m_sparseValueMap->begin(); it != end; ++it) {
            unsigned index = it->first;
            ASSERT(index < m_storage->m_length);
            ASSERT(index >= m_storage->m_vectorLength);
            ASSERT(index <= MAX_ARRAY_INDEX);
            ASSERT(it->second);
            if (type != DestructorConsistencyCheck)
                it->second->type(); // Likely to crash if the object was deallocated.
        }
    }
}

#endif

JSArray* constructEmptyArray(ExecState* exec)
{
    return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure());
}

JSArray* constructEmptyArray(ExecState* exec, unsigned initialLength)
{
    return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure(), initialLength);
}

JSArray* constructArray(ExecState* exec, JSValuePtr singleItemValue)
{
    ArgList values;
    values.append(singleItemValue);
    return new (exec) JSArray(exec, exec->lexicalGlobalObject()->arrayStructure(), values);
}

JSArray* constructArray(ExecState* exec, const ArgList& values)
{
    return new (exec) JSArray(exec, exec->lexicalGlobalObject()->arrayStructure(), values);
}

} // namespace JSC