summaryrefslogtreecommitdiffstats
path: root/Python/dtoa.c
diff options
context:
space:
mode:
Diffstat (limited to 'Python/dtoa.c')
-rw-r--r--Python/dtoa.c50
1 files changed, 45 insertions, 5 deletions
diff --git a/Python/dtoa.c b/Python/dtoa.c
index 82b6faa..83861ac 100644
--- a/Python/dtoa.c
+++ b/Python/dtoa.c
@@ -265,6 +265,16 @@ typedef union { double d; ULong L[2]; } U;
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
#define Big1 0xffffffff
+/* Standard NaN used by _Py_dg_stdnan. */
+
+#define NAN_WORD0 0x7ff80000
+#define NAN_WORD1 0
+
+/* Bits of the representation of positive infinity. */
+
+#define POSINF_WORD0 0x7ff00000
+#define POSINF_WORD1 0
+
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
typedef struct BCinfo BCinfo;
@@ -1486,6 +1496,36 @@ bigcomp(U *rv, const char *s0, BCinfo *bc)
return 0;
}
+/* Return a 'standard' NaN value.
+
+ There are exactly two quiet NaNs that don't arise by 'quieting' signaling
+ NaNs (see IEEE 754-2008, section 6.2.1). If sign == 0, return the one whose
+ sign bit is cleared. Otherwise, return the one whose sign bit is set.
+*/
+
+double
+_Py_dg_stdnan(int sign)
+{
+ U rv;
+ word0(&rv) = NAN_WORD0;
+ word1(&rv) = NAN_WORD1;
+ if (sign)
+ word0(&rv) |= Sign_bit;
+ return dval(&rv);
+}
+
+/* Return positive or negative infinity, according to the given sign (0 for
+ * positive infinity, 1 for negative infinity). */
+
+double
+_Py_dg_infinity(int sign)
+{
+ U rv;
+ word0(&rv) = POSINF_WORD0;
+ word1(&rv) = POSINF_WORD1;
+ return sign ? -dval(&rv) : dval(&rv);
+}
+
double
_Py_dg_strtod(const char *s00, char **se)
{
@@ -1886,20 +1926,20 @@ _Py_dg_strtod(const char *s00, char **se)
bd2++;
/* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
- and bs == 1, so:
+ and bs == 1, so:
tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
- 0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
+ 0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
- It follows that:
+ It follows that:
M * tdv = bd * 2**bd2 * 5**bd5
M * srv = bb * 2**bb2 * 5**bb5
M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
- for some constant M. (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
- this fact is not needed below.)
+ for some constant M. (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
+ this fact is not needed below.)
*/
/* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */