diff options
Diffstat (limited to 'Python/pymath.c')
| -rw-r--r-- | Python/pymath.c | 199 | 
1 files changed, 0 insertions, 199 deletions
| diff --git a/Python/pymath.c b/Python/pymath.c index 9159b6e..827a773 100644 --- a/Python/pymath.c +++ b/Python/pymath.c @@ -77,202 +77,3 @@ round(double x)      return copysign(y, x);  }  #endif /* HAVE_ROUND */ - -#ifndef HAVE_LOG1P -#include <float.h> - -double -log1p(double x) -{ -    /* For x small, we use the following approach.  Let y be the nearest -       float to 1+x, then - -         1+x = y * (1 - (y-1-x)/y) - -       so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny, -       the second term is well approximated by (y-1-x)/y.  If abs(x) >= -       DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest -       then y-1-x will be exactly representable, and is computed exactly -       by (y-1)-x. - -       If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be -       round-to-nearest then this method is slightly dangerous: 1+x could -       be rounded up to 1+DBL_EPSILON instead of down to 1, and in that -       case y-1-x will not be exactly representable any more and the -       result can be off by many ulps.  But this is easily fixed: for a -       floating-point number |x| < DBL_EPSILON/2., the closest -       floating-point number to log(1+x) is exactly x. -    */ - -    double y; -    if (fabs(x) < DBL_EPSILON/2.) { -        return x; -    } else if (-0.5 <= x && x <= 1.) { -        /* WARNING: it's possible than an overeager compiler -           will incorrectly optimize the following two lines -           to the equivalent of "return log(1.+x)". If this -           happens, then results from log1p will be inaccurate -           for small x. */ -        y = 1.+x; -        return log(y)-((y-1.)-x)/y; -    } else { -        /* NaNs and infinities should end up here */ -        return log(1.+x); -    } -} -#endif /* HAVE_LOG1P */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -static const double ln2 = 6.93147180559945286227E-01; -static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */ -static const double two_pow_p28 = 268435456.0; /* 2**28 */ -static const double zero = 0.0; - -/* asinh(x) - * Method : - *      Based on - *              asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] - *      we have - *      asinh(x) := x  if  1+x*x=1, - *               := sign(x)*(log(x)+ln2)) for large |x|, else - *               := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else - *               := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) - */ - -#ifndef HAVE_ASINH -double -asinh(double x) -{ -    double w; -    double absx = fabs(x); - -    if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) { -        return x+x; -    } -    if (absx < two_pow_m28) {           /* |x| < 2**-28 */ -        return x;               /* return x inexact except 0 */ -    } -    if (absx > two_pow_p28) {           /* |x| > 2**28 */ -        w = log(absx)+ln2; -    } -    else if (absx > 2.0) {              /* 2 < |x| < 2**28 */ -        w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx)); -    } -    else {                              /* 2**-28 <= |x| < 2= */ -        double t = x*x; -        w = log1p(absx + t / (1.0 + sqrt(1.0 + t))); -    } -    return copysign(w, x); - -} -#endif /* HAVE_ASINH */ - -/* acosh(x) - * Method : - *      Based on - *            acosh(x) = log [ x + sqrt(x*x-1) ] - *      we have - *            acosh(x) := log(x)+ln2, if x is large; else - *            acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else - *            acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. - * - * Special cases: - *      acosh(x) is NaN with signal if x<1. - *      acosh(NaN) is NaN without signal. - */ - -#ifndef HAVE_ACOSH -double -acosh(double x) -{ -    if (Py_IS_NAN(x)) { -        return x+x; -    } -    if (x < 1.) {                       /* x < 1;  return a signaling NaN */ -        errno = EDOM; -#ifdef Py_NAN -        return Py_NAN; -#else -        return (x-x)/(x-x); -#endif -    } -    else if (x >= two_pow_p28) {        /* x > 2**28 */ -        if (Py_IS_INFINITY(x)) { -            return x+x; -        } else { -            return log(x)+ln2;                  /* acosh(huge)=log(2x) */ -        } -    } -    else if (x == 1.) { -        return 0.0;                             /* acosh(1) = 0 */ -    } -    else if (x > 2.) {                          /* 2 < x < 2**28 */ -        double t = x*x; -        return log(2.0*x - 1.0 / (x + sqrt(t - 1.0))); -    } -    else {                              /* 1 < x <= 2 */ -        double t = x - 1.0; -        return log1p(t + sqrt(2.0*t + t*t)); -    } -} -#endif /* HAVE_ACOSH */ - -/* atanh(x) - * Method : - *    1.Reduced x to positive by atanh(-x) = -atanh(x) - *    2.For x>=0.5 - *                1           2x                          x - *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) - *                2          1 - x                    1 - x - * - *      For x<0.5 - *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) - * - * Special cases: - *      atanh(x) is NaN if |x| >= 1 with signal; - *      atanh(NaN) is that NaN with no signal; - * - */ - -#ifndef HAVE_ATANH -double -atanh(double x) -{ -    double absx; -    double t; - -    if (Py_IS_NAN(x)) { -        return x+x; -    } -    absx = fabs(x); -    if (absx >= 1.) {                   /* |x| >= 1 */ -        errno = EDOM; -#ifdef Py_NAN -        return Py_NAN; -#else -        return x/zero; -#endif -    } -    if (absx < two_pow_m28) {           /* |x| < 2**-28 */ -        return x; -    } -    if (absx < 0.5) {                   /* |x| < 0.5 */ -        t = absx+absx; -        t = 0.5 * log1p(t + t*absx / (1.0 - absx)); -    } -    else {                              /* 0.5 <= |x| <= 1.0 */ -        t = 0.5 * log1p((absx + absx) / (1.0 - absx)); -    } -    return copysign(t, x); -} -#endif /* HAVE_ATANH */ | 
