diff options
Diffstat (limited to 'Python/pymath.c')
-rw-r--r-- | Python/pymath.c | 276 |
1 files changed, 138 insertions, 138 deletions
diff --git a/Python/pymath.c b/Python/pymath.c index db2920c..9159b6e 100644 --- a/Python/pymath.c +++ b/Python/pymath.c @@ -7,9 +7,9 @@ thus rounding from extended precision to double precision. */ double _Py_force_double(double x) { - volatile double y; - y = x; - return y; + volatile double y; + y = x; + return y; } #endif @@ -34,21 +34,21 @@ void _Py_set_387controlword(unsigned short cw) { #ifndef HAVE_HYPOT double hypot(double x, double y) { - double yx; + double yx; - x = fabs(x); - y = fabs(y); - if (x < y) { - double temp = x; - x = y; - y = temp; - } - if (x == 0.) - return 0.; - else { - yx = y/x; - return x*sqrt(1.+yx*yx); - } + x = fabs(x); + y = fabs(y); + if (x < y) { + double temp = x; + x = y; + y = temp; + } + if (x == 0.) + return 0.; + else { + yx = y/x; + return x*sqrt(1.+yx*yx); + } } #endif /* HAVE_HYPOT */ @@ -56,12 +56,12 @@ double hypot(double x, double y) double copysign(double x, double y) { - /* use atan2 to distinguish -0. from 0. */ - if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) { - return fabs(x); - } else { - return -fabs(x); - } + /* use atan2 to distinguish -0. from 0. */ + if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) { + return fabs(x); + } else { + return -fabs(x); + } } #endif /* HAVE_COPYSIGN */ @@ -73,7 +73,7 @@ round(double x) absx = fabs(x); y = floor(absx); if (absx - y >= 0.5) - y += 1.0; + y += 1.0; return copysign(y, x); } #endif /* HAVE_ROUND */ @@ -84,41 +84,41 @@ round(double x) double log1p(double x) { - /* For x small, we use the following approach. Let y be the nearest - float to 1+x, then + /* For x small, we use the following approach. Let y be the nearest + float to 1+x, then - 1+x = y * (1 - (y-1-x)/y) + 1+x = y * (1 - (y-1-x)/y) - so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny, - the second term is well approximated by (y-1-x)/y. If abs(x) >= - DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest - then y-1-x will be exactly representable, and is computed exactly - by (y-1)-x. + so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny, + the second term is well approximated by (y-1-x)/y. If abs(x) >= + DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest + then y-1-x will be exactly representable, and is computed exactly + by (y-1)-x. - If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be - round-to-nearest then this method is slightly dangerous: 1+x could - be rounded up to 1+DBL_EPSILON instead of down to 1, and in that - case y-1-x will not be exactly representable any more and the - result can be off by many ulps. But this is easily fixed: for a - floating-point number |x| < DBL_EPSILON/2., the closest - floating-point number to log(1+x) is exactly x. - */ + If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be + round-to-nearest then this method is slightly dangerous: 1+x could + be rounded up to 1+DBL_EPSILON instead of down to 1, and in that + case y-1-x will not be exactly representable any more and the + result can be off by many ulps. But this is easily fixed: for a + floating-point number |x| < DBL_EPSILON/2., the closest + floating-point number to log(1+x) is exactly x. + */ - double y; - if (fabs(x) < DBL_EPSILON/2.) { - return x; - } else if (-0.5 <= x && x <= 1.) { - /* WARNING: it's possible than an overeager compiler - will incorrectly optimize the following two lines - to the equivalent of "return log(1.+x)". If this - happens, then results from log1p will be inaccurate - for small x. */ - y = 1.+x; - return log(y)-((y-1.)-x)/y; - } else { - /* NaNs and infinities should end up here */ - return log(1.+x); - } + double y; + if (fabs(x) < DBL_EPSILON/2.) { + return x; + } else if (-0.5 <= x && x <= 1.) { + /* WARNING: it's possible than an overeager compiler + will incorrectly optimize the following two lines + to the equivalent of "return log(1.+x)". If this + happens, then results from log1p will be inaccurate + for small x. */ + y = 1.+x; + return log(y)-((y-1.)-x)/y; + } else { + /* NaNs and infinities should end up here */ + return log(1.+x); + } } #endif /* HAVE_LOG1P */ @@ -128,7 +128,7 @@ log1p(double x) * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice + * software is freely granted, provided that this notice * is preserved. * ==================================================== */ @@ -140,51 +140,51 @@ static const double zero = 0.0; /* asinh(x) * Method : - * Based on - * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] - * we have - * asinh(x) := x if 1+x*x=1, - * := sign(x)*(log(x)+ln2)) for large |x|, else - * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else - * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) + * Based on + * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] + * we have + * asinh(x) := x if 1+x*x=1, + * := sign(x)*(log(x)+ln2)) for large |x|, else + * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else + * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) */ #ifndef HAVE_ASINH double asinh(double x) -{ - double w; - double absx = fabs(x); +{ + double w; + double absx = fabs(x); + + if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) { + return x+x; + } + if (absx < two_pow_m28) { /* |x| < 2**-28 */ + return x; /* return x inexact except 0 */ + } + if (absx > two_pow_p28) { /* |x| > 2**28 */ + w = log(absx)+ln2; + } + else if (absx > 2.0) { /* 2 < |x| < 2**28 */ + w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx)); + } + else { /* 2**-28 <= |x| < 2= */ + double t = x*x; + w = log1p(absx + t / (1.0 + sqrt(1.0 + t))); + } + return copysign(w, x); - if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) { - return x+x; - } - if (absx < two_pow_m28) { /* |x| < 2**-28 */ - return x; /* return x inexact except 0 */ - } - if (absx > two_pow_p28) { /* |x| > 2**28 */ - w = log(absx)+ln2; - } - else if (absx > 2.0) { /* 2 < |x| < 2**28 */ - w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx)); - } - else { /* 2**-28 <= |x| < 2= */ - double t = x*x; - w = log1p(absx + t / (1.0 + sqrt(1.0 + t))); - } - return copysign(w, x); - } #endif /* HAVE_ASINH */ /* acosh(x) * Method : * Based on - * acosh(x) = log [ x + sqrt(x*x-1) ] + * acosh(x) = log [ x + sqrt(x*x-1) ] * we have - * acosh(x) := log(x)+ln2, if x is large; else - * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else - * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. + * acosh(x) := log(x)+ln2, if x is large; else + * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else + * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. * * Special cases: * acosh(x) is NaN with signal if x<1. @@ -195,35 +195,35 @@ asinh(double x) double acosh(double x) { - if (Py_IS_NAN(x)) { - return x+x; - } - if (x < 1.) { /* x < 1; return a signaling NaN */ - errno = EDOM; + if (Py_IS_NAN(x)) { + return x+x; + } + if (x < 1.) { /* x < 1; return a signaling NaN */ + errno = EDOM; #ifdef Py_NAN - return Py_NAN; + return Py_NAN; #else - return (x-x)/(x-x); + return (x-x)/(x-x); #endif - } - else if (x >= two_pow_p28) { /* x > 2**28 */ - if (Py_IS_INFINITY(x)) { - return x+x; - } else { - return log(x)+ln2; /* acosh(huge)=log(2x) */ - } - } - else if (x == 1.) { - return 0.0; /* acosh(1) = 0 */ - } - else if (x > 2.) { /* 2 < x < 2**28 */ - double t = x*x; - return log(2.0*x - 1.0 / (x + sqrt(t - 1.0))); - } - else { /* 1 < x <= 2 */ - double t = x - 1.0; - return log1p(t + sqrt(2.0*t + t*t)); - } + } + else if (x >= two_pow_p28) { /* x > 2**28 */ + if (Py_IS_INFINITY(x)) { + return x+x; + } else { + return log(x)+ln2; /* acosh(huge)=log(2x) */ + } + } + else if (x == 1.) { + return 0.0; /* acosh(1) = 0 */ + } + else if (x > 2.) { /* 2 < x < 2**28 */ + double t = x*x; + return log(2.0*x - 1.0 / (x + sqrt(t - 1.0))); + } + else { /* 1 < x <= 2 */ + double t = x - 1.0; + return log1p(t + sqrt(2.0*t + t*t)); + } } #endif /* HAVE_ACOSH */ @@ -231,9 +231,9 @@ acosh(double x) * Method : * 1.Reduced x to positive by atanh(-x) = -atanh(x) * 2.For x>=0.5 - * 1 2x x + * 1 2x x * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) - * 2 1 - x 1 - x + * 2 1 - x 1 - x * * For x<0.5 * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) @@ -248,31 +248,31 @@ acosh(double x) double atanh(double x) { - double absx; - double t; + double absx; + double t; - if (Py_IS_NAN(x)) { - return x+x; - } - absx = fabs(x); - if (absx >= 1.) { /* |x| >= 1 */ - errno = EDOM; + if (Py_IS_NAN(x)) { + return x+x; + } + absx = fabs(x); + if (absx >= 1.) { /* |x| >= 1 */ + errno = EDOM; #ifdef Py_NAN - return Py_NAN; + return Py_NAN; #else - return x/zero; + return x/zero; #endif - } - if (absx < two_pow_m28) { /* |x| < 2**-28 */ - return x; - } - if (absx < 0.5) { /* |x| < 0.5 */ - t = absx+absx; - t = 0.5 * log1p(t + t*absx / (1.0 - absx)); - } - else { /* 0.5 <= |x| <= 1.0 */ - t = 0.5 * log1p((absx + absx) / (1.0 - absx)); - } - return copysign(t, x); + } + if (absx < two_pow_m28) { /* |x| < 2**-28 */ + return x; + } + if (absx < 0.5) { /* |x| < 0.5 */ + t = absx+absx; + t = 0.5 * log1p(t + t*absx / (1.0 - absx)); + } + else { /* 0.5 <= |x| <= 1.0 */ + t = 0.5 * log1p((absx + absx) / (1.0 - absx)); + } + return copysign(t, x); } #endif /* HAVE_ATANH */ |