summaryrefslogtreecommitdiffstats
path: root/Python
diff options
context:
space:
mode:
Diffstat (limited to 'Python')
-rw-r--r--Python/gc.c1958
1 files changed, 1958 insertions, 0 deletions
diff --git a/Python/gc.c b/Python/gc.c
new file mode 100644
index 0000000..f47c74f
--- /dev/null
+++ b/Python/gc.c
@@ -0,0 +1,1958 @@
+// This implements the reference cycle garbage collector.
+// The Python module inteface to the collector is in gcmodule.c.
+// See https://devguide.python.org/internals/garbage-collector/
+
+#include "Python.h"
+#include "pycore_ceval.h" // _Py_set_eval_breaker_bit()
+#include "pycore_context.h"
+#include "pycore_dict.h" // _PyDict_MaybeUntrack()
+#include "pycore_initconfig.h"
+#include "pycore_interp.h" // PyInterpreterState.gc
+#include "pycore_object.h"
+#include "pycore_pyerrors.h"
+#include "pycore_pystate.h" // _PyThreadState_GET()
+#include "pycore_weakref.h" // _PyWeakref_ClearRef()
+#include "pydtrace.h"
+
+typedef struct _gc_runtime_state GCState;
+
+#ifdef Py_DEBUG
+# define GC_DEBUG
+#endif
+
+#define GC_NEXT _PyGCHead_NEXT
+#define GC_PREV _PyGCHead_PREV
+
+// update_refs() set this bit for all objects in current generation.
+// subtract_refs() and move_unreachable() uses this to distinguish
+// visited object is in GCing or not.
+//
+// move_unreachable() removes this flag from reachable objects.
+// Only unreachable objects have this flag.
+//
+// No objects in interpreter have this flag after GC ends.
+#define PREV_MASK_COLLECTING _PyGC_PREV_MASK_COLLECTING
+
+// Lowest bit of _gc_next is used for UNREACHABLE flag.
+//
+// This flag represents the object is in unreachable list in move_unreachable()
+//
+// Although this flag is used only in move_unreachable(), move_unreachable()
+// doesn't clear this flag to skip unnecessary iteration.
+// move_legacy_finalizers() removes this flag instead.
+// Between them, unreachable list is not normal list and we can not use
+// most gc_list_* functions for it.
+#define NEXT_MASK_UNREACHABLE (1)
+
+#define AS_GC(op) _Py_AS_GC(op)
+#define FROM_GC(gc) _Py_FROM_GC(gc)
+
+// Automatically choose the generation that needs collecting.
+#define GENERATION_AUTO (-1)
+
+static inline int
+gc_is_collecting(PyGC_Head *g)
+{
+ return (g->_gc_prev & PREV_MASK_COLLECTING) != 0;
+}
+
+static inline void
+gc_clear_collecting(PyGC_Head *g)
+{
+ g->_gc_prev &= ~PREV_MASK_COLLECTING;
+}
+
+static inline Py_ssize_t
+gc_get_refs(PyGC_Head *g)
+{
+ return (Py_ssize_t)(g->_gc_prev >> _PyGC_PREV_SHIFT);
+}
+
+static inline void
+gc_set_refs(PyGC_Head *g, Py_ssize_t refs)
+{
+ g->_gc_prev = (g->_gc_prev & ~_PyGC_PREV_MASK)
+ | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
+}
+
+static inline void
+gc_reset_refs(PyGC_Head *g, Py_ssize_t refs)
+{
+ g->_gc_prev = (g->_gc_prev & _PyGC_PREV_MASK_FINALIZED)
+ | PREV_MASK_COLLECTING
+ | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
+}
+
+static inline void
+gc_decref(PyGC_Head *g)
+{
+ _PyObject_ASSERT_WITH_MSG(FROM_GC(g),
+ gc_get_refs(g) > 0,
+ "refcount is too small");
+ g->_gc_prev -= 1 << _PyGC_PREV_SHIFT;
+}
+
+
+#define GEN_HEAD(gcstate, n) (&(gcstate)->generations[n].head)
+
+
+static GCState *
+get_gc_state(void)
+{
+ PyInterpreterState *interp = _PyInterpreterState_GET();
+ return &interp->gc;
+}
+
+
+void
+_PyGC_InitState(GCState *gcstate)
+{
+#define INIT_HEAD(GEN) \
+ do { \
+ GEN.head._gc_next = (uintptr_t)&GEN.head; \
+ GEN.head._gc_prev = (uintptr_t)&GEN.head; \
+ } while (0)
+
+ for (int i = 0; i < NUM_GENERATIONS; i++) {
+ assert(gcstate->generations[i].count == 0);
+ INIT_HEAD(gcstate->generations[i]);
+ };
+ gcstate->generation0 = GEN_HEAD(gcstate, 0);
+ INIT_HEAD(gcstate->permanent_generation);
+
+#undef INIT_HEAD
+}
+
+
+PyStatus
+_PyGC_Init(PyInterpreterState *interp)
+{
+ GCState *gcstate = &interp->gc;
+
+ gcstate->garbage = PyList_New(0);
+ if (gcstate->garbage == NULL) {
+ return _PyStatus_NO_MEMORY();
+ }
+
+ gcstate->callbacks = PyList_New(0);
+ if (gcstate->callbacks == NULL) {
+ return _PyStatus_NO_MEMORY();
+ }
+
+ return _PyStatus_OK();
+}
+
+
+/*
+_gc_prev values
+---------------
+
+Between collections, _gc_prev is used for doubly linked list.
+
+Lowest two bits of _gc_prev are used for flags.
+PREV_MASK_COLLECTING is used only while collecting and cleared before GC ends
+or _PyObject_GC_UNTRACK() is called.
+
+During a collection, _gc_prev is temporary used for gc_refs, and the gc list
+is singly linked until _gc_prev is restored.
+
+gc_refs
+ At the start of a collection, update_refs() copies the true refcount
+ to gc_refs, for each object in the generation being collected.
+ subtract_refs() then adjusts gc_refs so that it equals the number of
+ times an object is referenced directly from outside the generation
+ being collected.
+
+PREV_MASK_COLLECTING
+ Objects in generation being collected are marked PREV_MASK_COLLECTING in
+ update_refs().
+
+
+_gc_next values
+---------------
+
+_gc_next takes these values:
+
+0
+ The object is not tracked
+
+!= 0
+ Pointer to the next object in the GC list.
+ Additionally, lowest bit is used temporary for
+ NEXT_MASK_UNREACHABLE flag described below.
+
+NEXT_MASK_UNREACHABLE
+ move_unreachable() then moves objects not reachable (whether directly or
+ indirectly) from outside the generation into an "unreachable" set and
+ set this flag.
+
+ Objects that are found to be reachable have gc_refs set to 1.
+ When this flag is set for the reachable object, the object must be in
+ "unreachable" set.
+ The flag is unset and the object is moved back to "reachable" set.
+
+ move_legacy_finalizers() will remove this flag from "unreachable" set.
+*/
+
+/*** list functions ***/
+
+static inline void
+gc_list_init(PyGC_Head *list)
+{
+ // List header must not have flags.
+ // We can assign pointer by simple cast.
+ list->_gc_prev = (uintptr_t)list;
+ list->_gc_next = (uintptr_t)list;
+}
+
+static inline int
+gc_list_is_empty(PyGC_Head *list)
+{
+ return (list->_gc_next == (uintptr_t)list);
+}
+
+/* Append `node` to `list`. */
+static inline void
+gc_list_append(PyGC_Head *node, PyGC_Head *list)
+{
+ PyGC_Head *last = (PyGC_Head *)list->_gc_prev;
+
+ // last <-> node
+ _PyGCHead_SET_PREV(node, last);
+ _PyGCHead_SET_NEXT(last, node);
+
+ // node <-> list
+ _PyGCHead_SET_NEXT(node, list);
+ list->_gc_prev = (uintptr_t)node;
+}
+
+/* Remove `node` from the gc list it's currently in. */
+static inline void
+gc_list_remove(PyGC_Head *node)
+{
+ PyGC_Head *prev = GC_PREV(node);
+ PyGC_Head *next = GC_NEXT(node);
+
+ _PyGCHead_SET_NEXT(prev, next);
+ _PyGCHead_SET_PREV(next, prev);
+
+ node->_gc_next = 0; /* object is not currently tracked */
+}
+
+/* Move `node` from the gc list it's currently in (which is not explicitly
+ * named here) to the end of `list`. This is semantically the same as
+ * gc_list_remove(node) followed by gc_list_append(node, list).
+ */
+static void
+gc_list_move(PyGC_Head *node, PyGC_Head *list)
+{
+ /* Unlink from current list. */
+ PyGC_Head *from_prev = GC_PREV(node);
+ PyGC_Head *from_next = GC_NEXT(node);
+ _PyGCHead_SET_NEXT(from_prev, from_next);
+ _PyGCHead_SET_PREV(from_next, from_prev);
+
+ /* Relink at end of new list. */
+ // list must not have flags. So we can skip macros.
+ PyGC_Head *to_prev = (PyGC_Head*)list->_gc_prev;
+ _PyGCHead_SET_PREV(node, to_prev);
+ _PyGCHead_SET_NEXT(to_prev, node);
+ list->_gc_prev = (uintptr_t)node;
+ _PyGCHead_SET_NEXT(node, list);
+}
+
+/* append list `from` onto list `to`; `from` becomes an empty list */
+static void
+gc_list_merge(PyGC_Head *from, PyGC_Head *to)
+{
+ assert(from != to);
+ if (!gc_list_is_empty(from)) {
+ PyGC_Head *to_tail = GC_PREV(to);
+ PyGC_Head *from_head = GC_NEXT(from);
+ PyGC_Head *from_tail = GC_PREV(from);
+ assert(from_head != from);
+ assert(from_tail != from);
+
+ _PyGCHead_SET_NEXT(to_tail, from_head);
+ _PyGCHead_SET_PREV(from_head, to_tail);
+
+ _PyGCHead_SET_NEXT(from_tail, to);
+ _PyGCHead_SET_PREV(to, from_tail);
+ }
+ gc_list_init(from);
+}
+
+static Py_ssize_t
+gc_list_size(PyGC_Head *list)
+{
+ PyGC_Head *gc;
+ Py_ssize_t n = 0;
+ for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
+ n++;
+ }
+ return n;
+}
+
+/* Walk the list and mark all objects as non-collecting */
+static inline void
+gc_list_clear_collecting(PyGC_Head *collectable)
+{
+ PyGC_Head *gc;
+ for (gc = GC_NEXT(collectable); gc != collectable; gc = GC_NEXT(gc)) {
+ gc_clear_collecting(gc);
+ }
+}
+
+/* Append objects in a GC list to a Python list.
+ * Return 0 if all OK, < 0 if error (out of memory for list)
+ */
+static int
+append_objects(PyObject *py_list, PyGC_Head *gc_list)
+{
+ PyGC_Head *gc;
+ for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
+ PyObject *op = FROM_GC(gc);
+ if (op != py_list) {
+ if (PyList_Append(py_list, op)) {
+ return -1; /* exception */
+ }
+ }
+ }
+ return 0;
+}
+
+// Constants for validate_list's flags argument.
+enum flagstates {collecting_clear_unreachable_clear,
+ collecting_clear_unreachable_set,
+ collecting_set_unreachable_clear,
+ collecting_set_unreachable_set};
+
+#ifdef GC_DEBUG
+// validate_list checks list consistency. And it works as document
+// describing when flags are expected to be set / unset.
+// `head` must be a doubly-linked gc list, although it's fine (expected!) if
+// the prev and next pointers are "polluted" with flags.
+// What's checked:
+// - The `head` pointers are not polluted.
+// - The objects' PREV_MASK_COLLECTING and NEXT_MASK_UNREACHABLE flags are all
+// `set or clear, as specified by the 'flags' argument.
+// - The prev and next pointers are mutually consistent.
+static void
+validate_list(PyGC_Head *head, enum flagstates flags)
+{
+ assert((head->_gc_prev & PREV_MASK_COLLECTING) == 0);
+ assert((head->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
+ uintptr_t prev_value = 0, next_value = 0;
+ switch (flags) {
+ case collecting_clear_unreachable_clear:
+ break;
+ case collecting_set_unreachable_clear:
+ prev_value = PREV_MASK_COLLECTING;
+ break;
+ case collecting_clear_unreachable_set:
+ next_value = NEXT_MASK_UNREACHABLE;
+ break;
+ case collecting_set_unreachable_set:
+ prev_value = PREV_MASK_COLLECTING;
+ next_value = NEXT_MASK_UNREACHABLE;
+ break;
+ default:
+ assert(! "bad internal flags argument");
+ }
+ PyGC_Head *prev = head;
+ PyGC_Head *gc = GC_NEXT(head);
+ while (gc != head) {
+ PyGC_Head *trueprev = GC_PREV(gc);
+ PyGC_Head *truenext = (PyGC_Head *)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
+ assert(truenext != NULL);
+ assert(trueprev == prev);
+ assert((gc->_gc_prev & PREV_MASK_COLLECTING) == prev_value);
+ assert((gc->_gc_next & NEXT_MASK_UNREACHABLE) == next_value);
+ prev = gc;
+ gc = truenext;
+ }
+ assert(prev == GC_PREV(head));
+}
+#else
+#define validate_list(x, y) do{}while(0)
+#endif
+
+/*** end of list stuff ***/
+
+
+/* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 and
+ * PREV_MASK_COLLECTING bit is set for all objects in containers.
+ */
+static void
+update_refs(PyGC_Head *containers)
+{
+ PyGC_Head *next;
+ PyGC_Head *gc = GC_NEXT(containers);
+
+ while (gc != containers) {
+ next = GC_NEXT(gc);
+ /* Move any object that might have become immortal to the
+ * permanent generation as the reference count is not accurately
+ * reflecting the actual number of live references to this object
+ */
+ if (_Py_IsImmortal(FROM_GC(gc))) {
+ gc_list_move(gc, &get_gc_state()->permanent_generation.head);
+ gc = next;
+ continue;
+ }
+ gc_reset_refs(gc, Py_REFCNT(FROM_GC(gc)));
+ /* Python's cyclic gc should never see an incoming refcount
+ * of 0: if something decref'ed to 0, it should have been
+ * deallocated immediately at that time.
+ * Possible cause (if the assert triggers): a tp_dealloc
+ * routine left a gc-aware object tracked during its teardown
+ * phase, and did something-- or allowed something to happen --
+ * that called back into Python. gc can trigger then, and may
+ * see the still-tracked dying object. Before this assert
+ * was added, such mistakes went on to allow gc to try to
+ * delete the object again. In a debug build, that caused
+ * a mysterious segfault, when _Py_ForgetReference tried
+ * to remove the object from the doubly-linked list of all
+ * objects a second time. In a release build, an actual
+ * double deallocation occurred, which leads to corruption
+ * of the allocator's internal bookkeeping pointers. That's
+ * so serious that maybe this should be a release-build
+ * check instead of an assert?
+ */
+ _PyObject_ASSERT(FROM_GC(gc), gc_get_refs(gc) != 0);
+ gc = next;
+ }
+}
+
+/* A traversal callback for subtract_refs. */
+static int
+visit_decref(PyObject *op, void *parent)
+{
+ OBJECT_STAT_INC(object_visits);
+ _PyObject_ASSERT(_PyObject_CAST(parent), !_PyObject_IsFreed(op));
+
+ if (_PyObject_IS_GC(op)) {
+ PyGC_Head *gc = AS_GC(op);
+ /* We're only interested in gc_refs for objects in the
+ * generation being collected, which can be recognized
+ * because only they have positive gc_refs.
+ */
+ if (gc_is_collecting(gc)) {
+ gc_decref(gc);
+ }
+ }
+ return 0;
+}
+
+/* Subtract internal references from gc_refs. After this, gc_refs is >= 0
+ * for all objects in containers, and is GC_REACHABLE for all tracked gc
+ * objects not in containers. The ones with gc_refs > 0 are directly
+ * reachable from outside containers, and so can't be collected.
+ */
+static void
+subtract_refs(PyGC_Head *containers)
+{
+ traverseproc traverse;
+ PyGC_Head *gc = GC_NEXT(containers);
+ for (; gc != containers; gc = GC_NEXT(gc)) {
+ PyObject *op = FROM_GC(gc);
+ traverse = Py_TYPE(op)->tp_traverse;
+ (void) traverse(op,
+ visit_decref,
+ op);
+ }
+}
+
+/* A traversal callback for move_unreachable. */
+static int
+visit_reachable(PyObject *op, void *arg)
+{
+ PyGC_Head *reachable = arg;
+ OBJECT_STAT_INC(object_visits);
+ if (!_PyObject_IS_GC(op)) {
+ return 0;
+ }
+
+ PyGC_Head *gc = AS_GC(op);
+ const Py_ssize_t gc_refs = gc_get_refs(gc);
+
+ // Ignore objects in other generation.
+ // This also skips objects "to the left" of the current position in
+ // move_unreachable's scan of the 'young' list - they've already been
+ // traversed, and no longer have the PREV_MASK_COLLECTING flag.
+ if (! gc_is_collecting(gc)) {
+ return 0;
+ }
+ // It would be a logic error elsewhere if the collecting flag were set on
+ // an untracked object.
+ assert(gc->_gc_next != 0);
+
+ if (gc->_gc_next & NEXT_MASK_UNREACHABLE) {
+ /* This had gc_refs = 0 when move_unreachable got
+ * to it, but turns out it's reachable after all.
+ * Move it back to move_unreachable's 'young' list,
+ * and move_unreachable will eventually get to it
+ * again.
+ */
+ // Manually unlink gc from unreachable list because the list functions
+ // don't work right in the presence of NEXT_MASK_UNREACHABLE flags.
+ PyGC_Head *prev = GC_PREV(gc);
+ PyGC_Head *next = (PyGC_Head*)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
+ _PyObject_ASSERT(FROM_GC(prev),
+ prev->_gc_next & NEXT_MASK_UNREACHABLE);
+ _PyObject_ASSERT(FROM_GC(next),
+ next->_gc_next & NEXT_MASK_UNREACHABLE);
+ prev->_gc_next = gc->_gc_next; // copy NEXT_MASK_UNREACHABLE
+ _PyGCHead_SET_PREV(next, prev);
+
+ gc_list_append(gc, reachable);
+ gc_set_refs(gc, 1);
+ }
+ else if (gc_refs == 0) {
+ /* This is in move_unreachable's 'young' list, but
+ * the traversal hasn't yet gotten to it. All
+ * we need to do is tell move_unreachable that it's
+ * reachable.
+ */
+ gc_set_refs(gc, 1);
+ }
+ /* Else there's nothing to do.
+ * If gc_refs > 0, it must be in move_unreachable's 'young'
+ * list, and move_unreachable will eventually get to it.
+ */
+ else {
+ _PyObject_ASSERT_WITH_MSG(op, gc_refs > 0, "refcount is too small");
+ }
+ return 0;
+}
+
+/* Move the unreachable objects from young to unreachable. After this,
+ * all objects in young don't have PREV_MASK_COLLECTING flag and
+ * unreachable have the flag.
+ * All objects in young after this are directly or indirectly reachable
+ * from outside the original young; and all objects in unreachable are
+ * not.
+ *
+ * This function restores _gc_prev pointer. young and unreachable are
+ * doubly linked list after this function.
+ * But _gc_next in unreachable list has NEXT_MASK_UNREACHABLE flag.
+ * So we can not gc_list_* functions for unreachable until we remove the flag.
+ */
+static void
+move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
+{
+ // previous elem in the young list, used for restore gc_prev.
+ PyGC_Head *prev = young;
+ PyGC_Head *gc = GC_NEXT(young);
+
+ /* Invariants: all objects "to the left" of us in young are reachable
+ * (directly or indirectly) from outside the young list as it was at entry.
+ *
+ * All other objects from the original young "to the left" of us are in
+ * unreachable now, and have NEXT_MASK_UNREACHABLE. All objects to the
+ * left of us in 'young' now have been scanned, and no objects here
+ * or to the right have been scanned yet.
+ */
+
+ while (gc != young) {
+ if (gc_get_refs(gc)) {
+ /* gc is definitely reachable from outside the
+ * original 'young'. Mark it as such, and traverse
+ * its pointers to find any other objects that may
+ * be directly reachable from it. Note that the
+ * call to tp_traverse may append objects to young,
+ * so we have to wait until it returns to determine
+ * the next object to visit.
+ */
+ PyObject *op = FROM_GC(gc);
+ traverseproc traverse = Py_TYPE(op)->tp_traverse;
+ _PyObject_ASSERT_WITH_MSG(op, gc_get_refs(gc) > 0,
+ "refcount is too small");
+ // NOTE: visit_reachable may change gc->_gc_next when
+ // young->_gc_prev == gc. Don't do gc = GC_NEXT(gc) before!
+ (void) traverse(op,
+ visit_reachable,
+ (void *)young);
+ // relink gc_prev to prev element.
+ _PyGCHead_SET_PREV(gc, prev);
+ // gc is not COLLECTING state after here.
+ gc_clear_collecting(gc);
+ prev = gc;
+ }
+ else {
+ /* This *may* be unreachable. To make progress,
+ * assume it is. gc isn't directly reachable from
+ * any object we've already traversed, but may be
+ * reachable from an object we haven't gotten to yet.
+ * visit_reachable will eventually move gc back into
+ * young if that's so, and we'll see it again.
+ */
+ // Move gc to unreachable.
+ // No need to gc->next->prev = prev because it is single linked.
+ prev->_gc_next = gc->_gc_next;
+
+ // We can't use gc_list_append() here because we use
+ // NEXT_MASK_UNREACHABLE here.
+ PyGC_Head *last = GC_PREV(unreachable);
+ // NOTE: Since all objects in unreachable set has
+ // NEXT_MASK_UNREACHABLE flag, we set it unconditionally.
+ // But this may pollute the unreachable list head's 'next' pointer
+ // too. That's semantically senseless but expedient here - the
+ // damage is repaired when this function ends.
+ last->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)gc);
+ _PyGCHead_SET_PREV(gc, last);
+ gc->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)unreachable);
+ unreachable->_gc_prev = (uintptr_t)gc;
+ }
+ gc = (PyGC_Head*)prev->_gc_next;
+ }
+ // young->_gc_prev must be last element remained in the list.
+ young->_gc_prev = (uintptr_t)prev;
+ // don't let the pollution of the list head's next pointer leak
+ unreachable->_gc_next &= ~NEXT_MASK_UNREACHABLE;
+}
+
+static void
+untrack_tuples(PyGC_Head *head)
+{
+ PyGC_Head *next, *gc = GC_NEXT(head);
+ while (gc != head) {
+ PyObject *op = FROM_GC(gc);
+ next = GC_NEXT(gc);
+ if (PyTuple_CheckExact(op)) {
+ _PyTuple_MaybeUntrack(op);
+ }
+ gc = next;
+ }
+}
+
+/* Try to untrack all currently tracked dictionaries */
+static void
+untrack_dicts(PyGC_Head *head)
+{
+ PyGC_Head *next, *gc = GC_NEXT(head);
+ while (gc != head) {
+ PyObject *op = FROM_GC(gc);
+ next = GC_NEXT(gc);
+ if (PyDict_CheckExact(op)) {
+ _PyDict_MaybeUntrack(op);
+ }
+ gc = next;
+ }
+}
+
+/* Return true if object has a pre-PEP 442 finalization method. */
+static int
+has_legacy_finalizer(PyObject *op)
+{
+ return Py_TYPE(op)->tp_del != NULL;
+}
+
+/* Move the objects in unreachable with tp_del slots into `finalizers`.
+ *
+ * This function also removes NEXT_MASK_UNREACHABLE flag
+ * from _gc_next in unreachable.
+ */
+static void
+move_legacy_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
+{
+ PyGC_Head *gc, *next;
+ assert((unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
+
+ /* March over unreachable. Move objects with finalizers into
+ * `finalizers`.
+ */
+ for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
+ PyObject *op = FROM_GC(gc);
+
+ _PyObject_ASSERT(op, gc->_gc_next & NEXT_MASK_UNREACHABLE);
+ gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
+ next = (PyGC_Head*)gc->_gc_next;
+
+ if (has_legacy_finalizer(op)) {
+ gc_clear_collecting(gc);
+ gc_list_move(gc, finalizers);
+ }
+ }
+}
+
+static inline void
+clear_unreachable_mask(PyGC_Head *unreachable)
+{
+ /* Check that the list head does not have the unreachable bit set */
+ assert(((uintptr_t)unreachable & NEXT_MASK_UNREACHABLE) == 0);
+
+ PyGC_Head *gc, *next;
+ assert((unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
+ for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
+ _PyObject_ASSERT((PyObject*)FROM_GC(gc), gc->_gc_next & NEXT_MASK_UNREACHABLE);
+ gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
+ next = (PyGC_Head*)gc->_gc_next;
+ }
+ validate_list(unreachable, collecting_set_unreachable_clear);
+}
+
+/* A traversal callback for move_legacy_finalizer_reachable. */
+static int
+visit_move(PyObject *op, void *arg)
+{
+ PyGC_Head *tolist = arg;
+ OBJECT_STAT_INC(object_visits);
+ if (_PyObject_IS_GC(op)) {
+ PyGC_Head *gc = AS_GC(op);
+ if (gc_is_collecting(gc)) {
+ gc_list_move(gc, tolist);
+ gc_clear_collecting(gc);
+ }
+ }
+ return 0;
+}
+
+/* Move objects that are reachable from finalizers, from the unreachable set
+ * into finalizers set.
+ */
+static void
+move_legacy_finalizer_reachable(PyGC_Head *finalizers)
+{
+ traverseproc traverse;
+ PyGC_Head *gc = GC_NEXT(finalizers);
+ for (; gc != finalizers; gc = GC_NEXT(gc)) {
+ /* Note that the finalizers list may grow during this. */
+ traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
+ (void) traverse(FROM_GC(gc),
+ visit_move,
+ (void *)finalizers);
+ }
+}
+
+/* Clear all weakrefs to unreachable objects, and if such a weakref has a
+ * callback, invoke it if necessary. Note that it's possible for such
+ * weakrefs to be outside the unreachable set -- indeed, those are precisely
+ * the weakrefs whose callbacks must be invoked. See gc_weakref.txt for
+ * overview & some details. Some weakrefs with callbacks may be reclaimed
+ * directly by this routine; the number reclaimed is the return value. Other
+ * weakrefs with callbacks may be moved into the `old` generation. Objects
+ * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
+ * unreachable are left at GC_TENTATIVELY_UNREACHABLE. When this returns,
+ * no object in `unreachable` is weakly referenced anymore.
+ */
+static int
+handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
+{
+ PyGC_Head *gc;
+ PyObject *op; /* generally FROM_GC(gc) */
+ PyWeakReference *wr; /* generally a cast of op */
+ PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */
+ PyGC_Head *next;
+ int num_freed = 0;
+
+ gc_list_init(&wrcb_to_call);
+
+ /* Clear all weakrefs to the objects in unreachable. If such a weakref
+ * also has a callback, move it into `wrcb_to_call` if the callback
+ * needs to be invoked. Note that we cannot invoke any callbacks until
+ * all weakrefs to unreachable objects are cleared, lest the callback
+ * resurrect an unreachable object via a still-active weakref. We
+ * make another pass over wrcb_to_call, invoking callbacks, after this
+ * pass completes.
+ */
+ for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
+ PyWeakReference **wrlist;
+
+ op = FROM_GC(gc);
+ next = GC_NEXT(gc);
+
+ if (PyWeakref_Check(op)) {
+ /* A weakref inside the unreachable set must be cleared. If we
+ * allow its callback to execute inside delete_garbage(), it
+ * could expose objects that have tp_clear already called on
+ * them. Or, it could resurrect unreachable objects. One way
+ * this can happen is if some container objects do not implement
+ * tp_traverse. Then, wr_object can be outside the unreachable
+ * set but can be deallocated as a result of breaking the
+ * reference cycle. If we don't clear the weakref, the callback
+ * will run and potentially cause a crash. See bpo-38006 for
+ * one example.
+ */
+ _PyWeakref_ClearRef((PyWeakReference *)op);
+ }
+
+ if (! _PyType_SUPPORTS_WEAKREFS(Py_TYPE(op))) {
+ continue;
+ }
+
+ /* It supports weakrefs. Does it have any?
+ *
+ * This is never triggered for static types so we can avoid the
+ * (slightly) more costly _PyObject_GET_WEAKREFS_LISTPTR().
+ */
+ wrlist = _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(op);
+
+ /* `op` may have some weakrefs. March over the list, clear
+ * all the weakrefs, and move the weakrefs with callbacks
+ * that must be called into wrcb_to_call.
+ */
+ for (wr = *wrlist; wr != NULL; wr = *wrlist) {
+ PyGC_Head *wrasgc; /* AS_GC(wr) */
+
+ /* _PyWeakref_ClearRef clears the weakref but leaves
+ * the callback pointer intact. Obscure: it also
+ * changes *wrlist.
+ */
+ _PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
+ _PyWeakref_ClearRef(wr);
+ _PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
+ if (wr->wr_callback == NULL) {
+ /* no callback */
+ continue;
+ }
+
+ /* Headache time. `op` is going away, and is weakly referenced by
+ * `wr`, which has a callback. Should the callback be invoked? If wr
+ * is also trash, no:
+ *
+ * 1. There's no need to call it. The object and the weakref are
+ * both going away, so it's legitimate to pretend the weakref is
+ * going away first. The user has to ensure a weakref outlives its
+ * referent if they want a guarantee that the wr callback will get
+ * invoked.
+ *
+ * 2. It may be catastrophic to call it. If the callback is also in
+ * cyclic trash (CT), then although the CT is unreachable from
+ * outside the current generation, CT may be reachable from the
+ * callback. Then the callback could resurrect insane objects.
+ *
+ * Since the callback is never needed and may be unsafe in this case,
+ * wr is simply left in the unreachable set. Note that because we
+ * already called _PyWeakref_ClearRef(wr), its callback will never
+ * trigger.
+ *
+ * OTOH, if wr isn't part of CT, we should invoke the callback: the
+ * weakref outlived the trash. Note that since wr isn't CT in this
+ * case, its callback can't be CT either -- wr acted as an external
+ * root to this generation, and therefore its callback did too. So
+ * nothing in CT is reachable from the callback either, so it's hard
+ * to imagine how calling it later could create a problem for us. wr
+ * is moved to wrcb_to_call in this case.
+ */
+ if (gc_is_collecting(AS_GC((PyObject *)wr))) {
+ /* it should already have been cleared above */
+ assert(wr->wr_object == Py_None);
+ continue;
+ }
+
+ /* Create a new reference so that wr can't go away
+ * before we can process it again.
+ */
+ Py_INCREF(wr);
+
+ /* Move wr to wrcb_to_call, for the next pass. */
+ wrasgc = AS_GC((PyObject *)wr);
+ assert(wrasgc != next); /* wrasgc is reachable, but
+ next isn't, so they can't
+ be the same */
+ gc_list_move(wrasgc, &wrcb_to_call);
+ }
+ }
+
+ /* Invoke the callbacks we decided to honor. It's safe to invoke them
+ * because they can't reference unreachable objects.
+ */
+ while (! gc_list_is_empty(&wrcb_to_call)) {
+ PyObject *temp;
+ PyObject *callback;
+
+ gc = (PyGC_Head*)wrcb_to_call._gc_next;
+ op = FROM_GC(gc);
+ _PyObject_ASSERT(op, PyWeakref_Check(op));
+ wr = (PyWeakReference *)op;
+ callback = wr->wr_callback;
+ _PyObject_ASSERT(op, callback != NULL);
+
+ /* copy-paste of weakrefobject.c's handle_callback() */
+ temp = PyObject_CallOneArg(callback, (PyObject *)wr);
+ if (temp == NULL) {
+ PyErr_WriteUnraisable(callback);
+ }
+ else {
+ Py_DECREF(temp);
+ }
+
+ /* Give up the reference we created in the first pass. When
+ * op's refcount hits 0 (which it may or may not do right now),
+ * op's tp_dealloc will decref op->wr_callback too. Note
+ * that the refcount probably will hit 0 now, and because this
+ * weakref was reachable to begin with, gc didn't already
+ * add it to its count of freed objects. Example: a reachable
+ * weak value dict maps some key to this reachable weakref.
+ * The callback removes this key->weakref mapping from the
+ * dict, leaving no other references to the weakref (excepting
+ * ours).
+ */
+ Py_DECREF(op);
+ if (wrcb_to_call._gc_next == (uintptr_t)gc) {
+ /* object is still alive -- move it */
+ gc_list_move(gc, old);
+ }
+ else {
+ ++num_freed;
+ }
+ }
+
+ return num_freed;
+}
+
+static void
+debug_cycle(const char *msg, PyObject *op)
+{
+ PySys_FormatStderr("gc: %s <%s %p>\n",
+ msg, Py_TYPE(op)->tp_name, op);
+}
+
+/* Handle uncollectable garbage (cycles with tp_del slots, and stuff reachable
+ * only from such cycles).
+ * If _PyGC_DEBUG_SAVEALL, all objects in finalizers are appended to the module
+ * garbage list (a Python list), else only the objects in finalizers with
+ * __del__ methods are appended to garbage. All objects in finalizers are
+ * merged into the old list regardless.
+ */
+static void
+handle_legacy_finalizers(PyThreadState *tstate,
+ GCState *gcstate,
+ PyGC_Head *finalizers, PyGC_Head *old)
+{
+ assert(!_PyErr_Occurred(tstate));
+ assert(gcstate->garbage != NULL);
+
+ PyGC_Head *gc = GC_NEXT(finalizers);
+ for (; gc != finalizers; gc = GC_NEXT(gc)) {
+ PyObject *op = FROM_GC(gc);
+
+ if ((gcstate->debug & _PyGC_DEBUG_SAVEALL) || has_legacy_finalizer(op)) {
+ if (PyList_Append(gcstate->garbage, op) < 0) {
+ _PyErr_Clear(tstate);
+ break;
+ }
+ }
+ }
+
+ gc_list_merge(finalizers, old);
+}
+
+/* Run first-time finalizers (if any) on all the objects in collectable.
+ * Note that this may remove some (or even all) of the objects from the
+ * list, due to refcounts falling to 0.
+ */
+static void
+finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
+{
+ destructor finalize;
+ PyGC_Head seen;
+
+ /* While we're going through the loop, `finalize(op)` may cause op, or
+ * other objects, to be reclaimed via refcounts falling to zero. So
+ * there's little we can rely on about the structure of the input
+ * `collectable` list across iterations. For safety, we always take the
+ * first object in that list and move it to a temporary `seen` list.
+ * If objects vanish from the `collectable` and `seen` lists we don't
+ * care.
+ */
+ gc_list_init(&seen);
+
+ while (!gc_list_is_empty(collectable)) {
+ PyGC_Head *gc = GC_NEXT(collectable);
+ PyObject *op = FROM_GC(gc);
+ gc_list_move(gc, &seen);
+ if (!_PyGCHead_FINALIZED(gc) &&
+ (finalize = Py_TYPE(op)->tp_finalize) != NULL)
+ {
+ _PyGCHead_SET_FINALIZED(gc);
+ Py_INCREF(op);
+ finalize(op);
+ assert(!_PyErr_Occurred(tstate));
+ Py_DECREF(op);
+ }
+ }
+ gc_list_merge(&seen, collectable);
+}
+
+/* Break reference cycles by clearing the containers involved. This is
+ * tricky business as the lists can be changing and we don't know which
+ * objects may be freed. It is possible I screwed something up here.
+ */
+static void
+delete_garbage(PyThreadState *tstate, GCState *gcstate,
+ PyGC_Head *collectable, PyGC_Head *old)
+{
+ assert(!_PyErr_Occurred(tstate));
+
+ while (!gc_list_is_empty(collectable)) {
+ PyGC_Head *gc = GC_NEXT(collectable);
+ PyObject *op = FROM_GC(gc);
+
+ _PyObject_ASSERT_WITH_MSG(op, Py_REFCNT(op) > 0,
+ "refcount is too small");
+
+ if (gcstate->debug & _PyGC_DEBUG_SAVEALL) {
+ assert(gcstate->garbage != NULL);
+ if (PyList_Append(gcstate->garbage, op) < 0) {
+ _PyErr_Clear(tstate);
+ }
+ }
+ else {
+ inquiry clear;
+ if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
+ Py_INCREF(op);
+ (void) clear(op);
+ if (_PyErr_Occurred(tstate)) {
+ PyErr_FormatUnraisable("Exception ignored in tp_clear of %s",
+ Py_TYPE(op)->tp_name);
+ }
+ Py_DECREF(op);
+ }
+ }
+ if (GC_NEXT(collectable) == gc) {
+ /* object is still alive, move it, it may die later */
+ gc_clear_collecting(gc);
+ gc_list_move(gc, old);
+ }
+ }
+}
+
+/* Clear all free lists
+ * All free lists are cleared during the collection of the highest generation.
+ * Allocated items in the free list may keep a pymalloc arena occupied.
+ * Clearing the free lists may give back memory to the OS earlier.
+ */
+static void
+clear_freelists(PyInterpreterState *interp)
+{
+ _PyTuple_ClearFreeList(interp);
+ _PyFloat_ClearFreeList(interp);
+ _PyList_ClearFreeList(interp);
+ _PyDict_ClearFreeList(interp);
+ _PyAsyncGen_ClearFreeLists(interp);
+ _PyContext_ClearFreeList(interp);
+}
+
+// Show stats for objects in each generations
+static void
+show_stats_each_generations(GCState *gcstate)
+{
+ char buf[100];
+ size_t pos = 0;
+
+ for (int i = 0; i < NUM_GENERATIONS && pos < sizeof(buf); i++) {
+ pos += PyOS_snprintf(buf+pos, sizeof(buf)-pos,
+ " %zd",
+ gc_list_size(GEN_HEAD(gcstate, i)));
+ }
+
+ PySys_FormatStderr(
+ "gc: objects in each generation:%s\n"
+ "gc: objects in permanent generation: %zd\n",
+ buf, gc_list_size(&gcstate->permanent_generation.head));
+}
+
+/* Deduce which objects among "base" are unreachable from outside the list
+ and move them to 'unreachable'. The process consist in the following steps:
+
+1. Copy all reference counts to a different field (gc_prev is used to hold
+ this copy to save memory).
+2. Traverse all objects in "base" and visit all referred objects using
+ "tp_traverse" and for every visited object, subtract 1 to the reference
+ count (the one that we copied in the previous step). After this step, all
+ objects that can be reached directly from outside must have strictly positive
+ reference count, while all unreachable objects must have a count of exactly 0.
+3. Identify all unreachable objects (the ones with 0 reference count) and move
+ them to the "unreachable" list. This step also needs to move back to "base" all
+ objects that were initially marked as unreachable but are referred transitively
+ by the reachable objects (the ones with strictly positive reference count).
+
+Contracts:
+
+ * The "base" has to be a valid list with no mask set.
+
+ * The "unreachable" list must be uninitialized (this function calls
+ gc_list_init over 'unreachable').
+
+IMPORTANT: This function leaves 'unreachable' with the NEXT_MASK_UNREACHABLE
+flag set but it does not clear it to skip unnecessary iteration. Before the
+flag is cleared (for example, by using 'clear_unreachable_mask' function or
+by a call to 'move_legacy_finalizers'), the 'unreachable' list is not a normal
+list and we can not use most gc_list_* functions for it. */
+static inline void
+deduce_unreachable(PyGC_Head *base, PyGC_Head *unreachable) {
+ validate_list(base, collecting_clear_unreachable_clear);
+ /* Using ob_refcnt and gc_refs, calculate which objects in the
+ * container set are reachable from outside the set (i.e., have a
+ * refcount greater than 0 when all the references within the
+ * set are taken into account).
+ */
+ update_refs(base); // gc_prev is used for gc_refs
+ subtract_refs(base);
+
+ /* Leave everything reachable from outside base in base, and move
+ * everything else (in base) to unreachable.
+ *
+ * NOTE: This used to move the reachable objects into a reachable
+ * set instead. But most things usually turn out to be reachable,
+ * so it's more efficient to move the unreachable things. It "sounds slick"
+ * to move the unreachable objects, until you think about it - the reason it
+ * pays isn't actually obvious.
+ *
+ * Suppose we create objects A, B, C in that order. They appear in the young
+ * generation in the same order. If B points to A, and C to B, and C is
+ * reachable from outside, then the adjusted refcounts will be 0, 0, and 1
+ * respectively.
+ *
+ * When move_unreachable finds A, A is moved to the unreachable list. The
+ * same for B when it's first encountered. Then C is traversed, B is moved
+ * _back_ to the reachable list. B is eventually traversed, and then A is
+ * moved back to the reachable list.
+ *
+ * So instead of not moving at all, the reachable objects B and A are moved
+ * twice each. Why is this a win? A straightforward algorithm to move the
+ * reachable objects instead would move A, B, and C once each.
+ *
+ * The key is that this dance leaves the objects in order C, B, A - it's
+ * reversed from the original order. On all _subsequent_ scans, none of
+ * them will move. Since most objects aren't in cycles, this can save an
+ * unbounded number of moves across an unbounded number of later collections.
+ * It can cost more only the first time the chain is scanned.
+ *
+ * Drawback: move_unreachable is also used to find out what's still trash
+ * after finalizers may resurrect objects. In _that_ case most unreachable
+ * objects will remain unreachable, so it would be more efficient to move
+ * the reachable objects instead. But this is a one-time cost, probably not
+ * worth complicating the code to speed just a little.
+ */
+ gc_list_init(unreachable);
+ move_unreachable(base, unreachable); // gc_prev is pointer again
+ validate_list(base, collecting_clear_unreachable_clear);
+ validate_list(unreachable, collecting_set_unreachable_set);
+}
+
+/* Handle objects that may have resurrected after a call to 'finalize_garbage', moving
+ them to 'old_generation' and placing the rest on 'still_unreachable'.
+
+ Contracts:
+ * After this function 'unreachable' must not be used anymore and 'still_unreachable'
+ will contain the objects that did not resurrect.
+
+ * The "still_unreachable" list must be uninitialized (this function calls
+ gc_list_init over 'still_unreachable').
+
+IMPORTANT: After a call to this function, the 'still_unreachable' set will have the
+PREV_MARK_COLLECTING set, but the objects in this set are going to be removed so
+we can skip the expense of clearing the flag to avoid extra iteration. */
+static inline void
+handle_resurrected_objects(PyGC_Head *unreachable, PyGC_Head* still_unreachable,
+ PyGC_Head *old_generation)
+{
+ // Remove the PREV_MASK_COLLECTING from unreachable
+ // to prepare it for a new call to 'deduce_unreachable'
+ gc_list_clear_collecting(unreachable);
+
+ // After the call to deduce_unreachable, the 'still_unreachable' set will
+ // have the PREV_MARK_COLLECTING set, but the objects are going to be
+ // removed so we can skip the expense of clearing the flag.
+ PyGC_Head* resurrected = unreachable;
+ deduce_unreachable(resurrected, still_unreachable);
+ clear_unreachable_mask(still_unreachable);
+
+ // Move the resurrected objects to the old generation for future collection.
+ gc_list_merge(resurrected, old_generation);
+}
+
+
+/* Invoke progress callbacks to notify clients that garbage collection
+ * is starting or stopping
+ */
+static void
+invoke_gc_callback(PyThreadState *tstate, const char *phase,
+ int generation, Py_ssize_t collected,
+ Py_ssize_t uncollectable)
+{
+ assert(!_PyErr_Occurred(tstate));
+
+ /* we may get called very early */
+ GCState *gcstate = &tstate->interp->gc;
+ if (gcstate->callbacks == NULL) {
+ return;
+ }
+
+ /* The local variable cannot be rebound, check it for sanity */
+ assert(PyList_CheckExact(gcstate->callbacks));
+ PyObject *info = NULL;
+ if (PyList_GET_SIZE(gcstate->callbacks) != 0) {
+ info = Py_BuildValue("{sisnsn}",
+ "generation", generation,
+ "collected", collected,
+ "uncollectable", uncollectable);
+ if (info == NULL) {
+ PyErr_FormatUnraisable("Exception ignored on invoking gc callbacks");
+ return;
+ }
+ }
+
+ PyObject *phase_obj = PyUnicode_FromString(phase);
+ if (phase_obj == NULL) {
+ Py_XDECREF(info);
+ PyErr_FormatUnraisable("Exception ignored on invoking gc callbacks");
+ return;
+ }
+
+ PyObject *stack[] = {phase_obj, info};
+ for (Py_ssize_t i=0; i<PyList_GET_SIZE(gcstate->callbacks); i++) {
+ PyObject *r, *cb = PyList_GET_ITEM(gcstate->callbacks, i);
+ Py_INCREF(cb); /* make sure cb doesn't go away */
+ r = PyObject_Vectorcall(cb, stack, 2, NULL);
+ if (r == NULL) {
+ PyErr_WriteUnraisable(cb);
+ }
+ else {
+ Py_DECREF(r);
+ }
+ Py_DECREF(cb);
+ }
+ Py_DECREF(phase_obj);
+ Py_XDECREF(info);
+ assert(!_PyErr_Occurred(tstate));
+}
+
+
+/* Find the oldest generation (highest numbered) where the count
+ * exceeds the threshold. Objects in the that generation and
+ * generations younger than it will be collected. */
+static int
+gc_select_generation(GCState *gcstate)
+{
+ for (int i = NUM_GENERATIONS-1; i >= 0; i--) {
+ if (gcstate->generations[i].count > gcstate->generations[i].threshold) {
+ /* Avoid quadratic performance degradation in number
+ of tracked objects (see also issue #4074):
+
+ To limit the cost of garbage collection, there are two strategies;
+ - make each collection faster, e.g. by scanning fewer objects
+ - do less collections
+ This heuristic is about the latter strategy.
+
+ In addition to the various configurable thresholds, we only trigger a
+ full collection if the ratio
+
+ long_lived_pending / long_lived_total
+
+ is above a given value (hardwired to 25%).
+
+ The reason is that, while "non-full" collections (i.e., collections of
+ the young and middle generations) will always examine roughly the same
+ number of objects -- determined by the aforementioned thresholds --,
+ the cost of a full collection is proportional to the total number of
+ long-lived objects, which is virtually unbounded.
+
+ Indeed, it has been remarked that doing a full collection every
+ <constant number> of object creations entails a dramatic performance
+ degradation in workloads which consist in creating and storing lots of
+ long-lived objects (e.g. building a large list of GC-tracked objects would
+ show quadratic performance, instead of linear as expected: see issue #4074).
+
+ Using the above ratio, instead, yields amortized linear performance in
+ the total number of objects (the effect of which can be summarized
+ thusly: "each full garbage collection is more and more costly as the
+ number of objects grows, but we do fewer and fewer of them").
+
+ This heuristic was suggested by Martin von Löwis on python-dev in
+ June 2008. His original analysis and proposal can be found at:
+ http://mail.python.org/pipermail/python-dev/2008-June/080579.html
+ */
+ if (i == NUM_GENERATIONS - 1
+ && gcstate->long_lived_pending < gcstate->long_lived_total / 4)
+ {
+ continue;
+ }
+ return i;
+ }
+ }
+ return -1;
+}
+
+
+/* This is the main function. Read this to understand how the
+ * collection process works. */
+static Py_ssize_t
+gc_collect_main(PyThreadState *tstate, int generation, _PyGC_Reason reason)
+{
+ int i;
+ Py_ssize_t m = 0; /* # objects collected */
+ Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
+ PyGC_Head *young; /* the generation we are examining */
+ PyGC_Head *old; /* next older generation */
+ PyGC_Head unreachable; /* non-problematic unreachable trash */
+ PyGC_Head finalizers; /* objects with, & reachable from, __del__ */
+ PyGC_Head *gc;
+ _PyTime_t t1 = 0; /* initialize to prevent a compiler warning */
+ GCState *gcstate = &tstate->interp->gc;
+
+ // gc_collect_main() must not be called before _PyGC_Init
+ // or after _PyGC_Fini()
+ assert(gcstate->garbage != NULL);
+ assert(!_PyErr_Occurred(tstate));
+
+ int expected = 0;
+ if (!_Py_atomic_compare_exchange_int(&gcstate->collecting, &expected, 1)) {
+ // Don't start a garbage collection if one is already in progress.
+ return 0;
+ }
+
+ if (generation == GENERATION_AUTO) {
+ // Select the oldest generation that needs collecting. We will collect
+ // objects from that generation and all generations younger than it.
+ generation = gc_select_generation(gcstate);
+ if (generation < 0) {
+ // No generation needs to be collected.
+ _Py_atomic_store_int(&gcstate->collecting, 0);
+ return 0;
+ }
+ }
+
+ assert(generation >= 0 && generation < NUM_GENERATIONS);
+
+#ifdef Py_STATS
+ if (_Py_stats) {
+ _Py_stats->object_stats.object_visits = 0;
+ }
+#endif
+ GC_STAT_ADD(generation, collections, 1);
+
+ if (reason != _Py_GC_REASON_SHUTDOWN) {
+ invoke_gc_callback(tstate, "start", generation, 0, 0);
+ }
+
+ if (gcstate->debug & _PyGC_DEBUG_STATS) {
+ PySys_WriteStderr("gc: collecting generation %d...\n", generation);
+ show_stats_each_generations(gcstate);
+ t1 = _PyTime_GetPerfCounter();
+ }
+
+ if (PyDTrace_GC_START_ENABLED()) {
+ PyDTrace_GC_START(generation);
+ }
+
+ /* update collection and allocation counters */
+ if (generation+1 < NUM_GENERATIONS) {
+ gcstate->generations[generation+1].count += 1;
+ }
+ for (i = 0; i <= generation; i++) {
+ gcstate->generations[i].count = 0;
+ }
+
+ /* merge younger generations with one we are currently collecting */
+ for (i = 0; i < generation; i++) {
+ gc_list_merge(GEN_HEAD(gcstate, i), GEN_HEAD(gcstate, generation));
+ }
+
+ /* handy references */
+ young = GEN_HEAD(gcstate, generation);
+ if (generation < NUM_GENERATIONS-1) {
+ old = GEN_HEAD(gcstate, generation+1);
+ }
+ else {
+ old = young;
+ }
+ validate_list(old, collecting_clear_unreachable_clear);
+
+ deduce_unreachable(young, &unreachable);
+
+ untrack_tuples(young);
+ /* Move reachable objects to next generation. */
+ if (young != old) {
+ if (generation == NUM_GENERATIONS - 2) {
+ gcstate->long_lived_pending += gc_list_size(young);
+ }
+ gc_list_merge(young, old);
+ }
+ else {
+ /* We only un-track dicts in full collections, to avoid quadratic
+ dict build-up. See issue #14775. */
+ untrack_dicts(young);
+ gcstate->long_lived_pending = 0;
+ gcstate->long_lived_total = gc_list_size(young);
+ }
+
+ /* All objects in unreachable are trash, but objects reachable from
+ * legacy finalizers (e.g. tp_del) can't safely be deleted.
+ */
+ gc_list_init(&finalizers);
+ // NEXT_MASK_UNREACHABLE is cleared here.
+ // After move_legacy_finalizers(), unreachable is normal list.
+ move_legacy_finalizers(&unreachable, &finalizers);
+ /* finalizers contains the unreachable objects with a legacy finalizer;
+ * unreachable objects reachable *from* those are also uncollectable,
+ * and we move those into the finalizers list too.
+ */
+ move_legacy_finalizer_reachable(&finalizers);
+
+ validate_list(&finalizers, collecting_clear_unreachable_clear);
+ validate_list(&unreachable, collecting_set_unreachable_clear);
+
+ /* Print debugging information. */
+ if (gcstate->debug & _PyGC_DEBUG_COLLECTABLE) {
+ for (gc = GC_NEXT(&unreachable); gc != &unreachable; gc = GC_NEXT(gc)) {
+ debug_cycle("collectable", FROM_GC(gc));
+ }
+ }
+
+ /* Clear weakrefs and invoke callbacks as necessary. */
+ m += handle_weakrefs(&unreachable, old);
+
+ validate_list(old, collecting_clear_unreachable_clear);
+ validate_list(&unreachable, collecting_set_unreachable_clear);
+
+ /* Call tp_finalize on objects which have one. */
+ finalize_garbage(tstate, &unreachable);
+
+ /* Handle any objects that may have resurrected after the call
+ * to 'finalize_garbage' and continue the collection with the
+ * objects that are still unreachable */
+ PyGC_Head final_unreachable;
+ handle_resurrected_objects(&unreachable, &final_unreachable, old);
+
+ /* Call tp_clear on objects in the final_unreachable set. This will cause
+ * the reference cycles to be broken. It may also cause some objects
+ * in finalizers to be freed.
+ */
+ m += gc_list_size(&final_unreachable);
+ delete_garbage(tstate, gcstate, &final_unreachable, old);
+
+ /* Collect statistics on uncollectable objects found and print
+ * debugging information. */
+ for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
+ n++;
+ if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE)
+ debug_cycle("uncollectable", FROM_GC(gc));
+ }
+ if (gcstate->debug & _PyGC_DEBUG_STATS) {
+ double d = _PyTime_AsSecondsDouble(_PyTime_GetPerfCounter() - t1);
+ PySys_WriteStderr(
+ "gc: done, %zd unreachable, %zd uncollectable, %.4fs elapsed\n",
+ n+m, n, d);
+ }
+
+ /* Append instances in the uncollectable set to a Python
+ * reachable list of garbage. The programmer has to deal with
+ * this if they insist on creating this type of structure.
+ */
+ handle_legacy_finalizers(tstate, gcstate, &finalizers, old);
+ validate_list(old, collecting_clear_unreachable_clear);
+
+ /* Clear free list only during the collection of the highest
+ * generation */
+ if (generation == NUM_GENERATIONS-1) {
+ clear_freelists(tstate->interp);
+ }
+
+ if (_PyErr_Occurred(tstate)) {
+ if (reason == _Py_GC_REASON_SHUTDOWN) {
+ _PyErr_Clear(tstate);
+ }
+ else {
+ PyErr_FormatUnraisable("Exception ignored in garbage collection");
+ }
+ }
+
+ /* Update stats */
+ struct gc_generation_stats *stats = &gcstate->generation_stats[generation];
+ stats->collections++;
+ stats->collected += m;
+ stats->uncollectable += n;
+
+ GC_STAT_ADD(generation, objects_collected, m);
+#ifdef Py_STATS
+ if (_Py_stats) {
+ GC_STAT_ADD(generation, object_visits,
+ _Py_stats->object_stats.object_visits);
+ _Py_stats->object_stats.object_visits = 0;
+ }
+#endif
+
+ if (PyDTrace_GC_DONE_ENABLED()) {
+ PyDTrace_GC_DONE(n + m);
+ }
+
+ if (reason != _Py_GC_REASON_SHUTDOWN) {
+ invoke_gc_callback(tstate, "stop", generation, m, n);
+ }
+
+ assert(!_PyErr_Occurred(tstate));
+ _Py_atomic_store_int(&gcstate->collecting, 0);
+ return n + m;
+}
+
+static int
+referrersvisit(PyObject* obj, void *arg)
+{
+ PyObject *objs = arg;
+ Py_ssize_t i;
+ for (i = 0; i < PyTuple_GET_SIZE(objs); i++) {
+ if (PyTuple_GET_ITEM(objs, i) == obj) {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+static int
+gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
+{
+ PyGC_Head *gc;
+ PyObject *obj;
+ traverseproc traverse;
+ for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
+ obj = FROM_GC(gc);
+ traverse = Py_TYPE(obj)->tp_traverse;
+ if (obj == objs || obj == resultlist) {
+ continue;
+ }
+ if (traverse(obj, referrersvisit, objs)) {
+ if (PyList_Append(resultlist, obj) < 0) {
+ return 0; /* error */
+ }
+ }
+ }
+ return 1; /* no error */
+}
+
+PyObject *
+_PyGC_GetReferrers(PyInterpreterState *interp, PyObject *objs)
+{
+ PyObject *result = PyList_New(0);
+ if (!result) {
+ return NULL;
+ }
+
+ GCState *gcstate = &interp->gc;
+ for (int i = 0; i < NUM_GENERATIONS; i++) {
+ if (!(gc_referrers_for(objs, GEN_HEAD(gcstate, i), result))) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ }
+ return result;
+}
+
+PyObject *
+_PyGC_GetObjects(PyInterpreterState *interp, Py_ssize_t generation)
+{
+ assert(generation >= -1 && generation < NUM_GENERATIONS);
+ GCState *gcstate = &interp->gc;
+
+ PyObject *result = PyList_New(0);
+ if (result == NULL) {
+ return NULL;
+ }
+
+ if (generation == -1) {
+ /* If generation is -1, get all objects from all generations */
+ for (int i = 0; i < NUM_GENERATIONS; i++) {
+ if (append_objects(result, GEN_HEAD(gcstate, i))) {
+ goto error;
+ }
+ }
+ }
+ else {
+ if (append_objects(result, GEN_HEAD(gcstate, generation))) {
+ goto error;
+ }
+ }
+
+ return result;
+error:
+ Py_DECREF(result);
+ return NULL;
+}
+
+void
+_PyGC_Freeze(PyInterpreterState *interp)
+{
+ GCState *gcstate = &interp->gc;
+ for (int i = 0; i < NUM_GENERATIONS; ++i) {
+ gc_list_merge(GEN_HEAD(gcstate, i), &gcstate->permanent_generation.head);
+ gcstate->generations[i].count = 0;
+ }
+}
+
+void
+_PyGC_Unfreeze(PyInterpreterState *interp)
+{
+ GCState *gcstate = &interp->gc;
+ gc_list_merge(&gcstate->permanent_generation.head,
+ GEN_HEAD(gcstate, NUM_GENERATIONS-1));
+}
+
+Py_ssize_t
+_PyGC_GetFreezeCount(PyInterpreterState *interp)
+{
+ GCState *gcstate = &interp->gc;
+ return gc_list_size(&gcstate->permanent_generation.head);
+}
+
+/* C API for controlling the state of the garbage collector */
+int
+PyGC_Enable(void)
+{
+ GCState *gcstate = get_gc_state();
+ int old_state = gcstate->enabled;
+ gcstate->enabled = 1;
+ return old_state;
+}
+
+int
+PyGC_Disable(void)
+{
+ GCState *gcstate = get_gc_state();
+ int old_state = gcstate->enabled;
+ gcstate->enabled = 0;
+ return old_state;
+}
+
+int
+PyGC_IsEnabled(void)
+{
+ GCState *gcstate = get_gc_state();
+ return gcstate->enabled;
+}
+
+/* Public API to invoke gc.collect() from C */
+Py_ssize_t
+PyGC_Collect(void)
+{
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+
+ if (!gcstate->enabled) {
+ return 0;
+ }
+
+ Py_ssize_t n;
+ PyObject *exc = _PyErr_GetRaisedException(tstate);
+ n = gc_collect_main(tstate, NUM_GENERATIONS - 1, _Py_GC_REASON_MANUAL);
+ _PyErr_SetRaisedException(tstate, exc);
+
+ return n;
+}
+
+Py_ssize_t
+_PyGC_Collect(PyThreadState *tstate, int generation, _PyGC_Reason reason)
+{
+ return gc_collect_main(tstate, generation, reason);
+}
+
+Py_ssize_t
+_PyGC_CollectNoFail(PyThreadState *tstate)
+{
+ /* Ideally, this function is only called on interpreter shutdown,
+ and therefore not recursively. Unfortunately, when there are daemon
+ threads, a daemon thread can start a cyclic garbage collection
+ during interpreter shutdown (and then never finish it).
+ See http://bugs.python.org/issue8713#msg195178 for an example.
+ */
+ return gc_collect_main(tstate, NUM_GENERATIONS - 1, _Py_GC_REASON_SHUTDOWN);
+}
+
+void
+_PyGC_DumpShutdownStats(PyInterpreterState *interp)
+{
+ GCState *gcstate = &interp->gc;
+ if (!(gcstate->debug & _PyGC_DEBUG_SAVEALL)
+ && gcstate->garbage != NULL && PyList_GET_SIZE(gcstate->garbage) > 0) {
+ const char *message;
+ if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
+ message = "gc: %zd uncollectable objects at shutdown";
+ }
+ else {
+ message = "gc: %zd uncollectable objects at shutdown; " \
+ "use gc.set_debug(gc.DEBUG_UNCOLLECTABLE) to list them";
+ }
+ /* PyErr_WarnFormat does too many things and we are at shutdown,
+ the warnings module's dependencies (e.g. linecache) may be gone
+ already. */
+ if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
+ "gc", NULL, message,
+ PyList_GET_SIZE(gcstate->garbage)))
+ {
+ PyErr_WriteUnraisable(NULL);
+ }
+ if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
+ PyObject *repr = NULL, *bytes = NULL;
+ repr = PyObject_Repr(gcstate->garbage);
+ if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr))) {
+ PyErr_WriteUnraisable(gcstate->garbage);
+ }
+ else {
+ PySys_WriteStderr(
+ " %s\n",
+ PyBytes_AS_STRING(bytes)
+ );
+ }
+ Py_XDECREF(repr);
+ Py_XDECREF(bytes);
+ }
+ }
+}
+
+
+void
+_PyGC_Fini(PyInterpreterState *interp)
+{
+ GCState *gcstate = &interp->gc;
+ Py_CLEAR(gcstate->garbage);
+ Py_CLEAR(gcstate->callbacks);
+
+ /* We expect that none of this interpreters objects are shared
+ with other interpreters.
+ See https://github.com/python/cpython/issues/90228. */
+}
+
+/* for debugging */
+void
+_PyGC_Dump(PyGC_Head *g)
+{
+ _PyObject_Dump(FROM_GC(g));
+}
+
+
+#ifdef Py_DEBUG
+static int
+visit_validate(PyObject *op, void *parent_raw)
+{
+ PyObject *parent = _PyObject_CAST(parent_raw);
+ if (_PyObject_IsFreed(op)) {
+ _PyObject_ASSERT_FAILED_MSG(parent,
+ "PyObject_GC_Track() object is not valid");
+ }
+ return 0;
+}
+#endif
+
+
+/* extension modules might be compiled with GC support so these
+ functions must always be available */
+
+void
+PyObject_GC_Track(void *op_raw)
+{
+ PyObject *op = _PyObject_CAST(op_raw);
+ if (_PyObject_GC_IS_TRACKED(op)) {
+ _PyObject_ASSERT_FAILED_MSG(op,
+ "object already tracked "
+ "by the garbage collector");
+ }
+ _PyObject_GC_TRACK(op);
+
+#ifdef Py_DEBUG
+ /* Check that the object is valid: validate objects traversed
+ by tp_traverse() */
+ traverseproc traverse = Py_TYPE(op)->tp_traverse;
+ (void)traverse(op, visit_validate, op);
+#endif
+}
+
+void
+PyObject_GC_UnTrack(void *op_raw)
+{
+ PyObject *op = _PyObject_CAST(op_raw);
+ /* Obscure: the Py_TRASHCAN mechanism requires that we be able to
+ * call PyObject_GC_UnTrack twice on an object.
+ */
+ if (_PyObject_GC_IS_TRACKED(op)) {
+ _PyObject_GC_UNTRACK(op);
+ }
+}
+
+int
+PyObject_IS_GC(PyObject *obj)
+{
+ return _PyObject_IS_GC(obj);
+}
+
+void
+_Py_ScheduleGC(PyInterpreterState *interp)
+{
+ _Py_set_eval_breaker_bit(interp, _PY_GC_SCHEDULED_BIT, 1);
+}
+
+void
+_PyObject_GC_Link(PyObject *op)
+{
+ PyGC_Head *g = AS_GC(op);
+ assert(((uintptr_t)g & (sizeof(uintptr_t)-1)) == 0); // g must be correctly aligned
+
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+ g->_gc_next = 0;
+ g->_gc_prev = 0;
+ gcstate->generations[0].count++; /* number of allocated GC objects */
+ if (gcstate->generations[0].count > gcstate->generations[0].threshold &&
+ gcstate->enabled &&
+ gcstate->generations[0].threshold &&
+ !_Py_atomic_load_int_relaxed(&gcstate->collecting) &&
+ !_PyErr_Occurred(tstate))
+ {
+ _Py_ScheduleGC(tstate->interp);
+ }
+}
+
+void
+_Py_RunGC(PyThreadState *tstate)
+{
+ gc_collect_main(tstate, GENERATION_AUTO, _Py_GC_REASON_HEAP);
+}
+
+static PyObject *
+gc_alloc(size_t basicsize, size_t presize)
+{
+ PyThreadState *tstate = _PyThreadState_GET();
+ if (basicsize > PY_SSIZE_T_MAX - presize) {
+ return _PyErr_NoMemory(tstate);
+ }
+ size_t size = presize + basicsize;
+ char *mem = PyObject_Malloc(size);
+ if (mem == NULL) {
+ return _PyErr_NoMemory(tstate);
+ }
+ ((PyObject **)mem)[0] = NULL;
+ ((PyObject **)mem)[1] = NULL;
+ PyObject *op = (PyObject *)(mem + presize);
+ _PyObject_GC_Link(op);
+ return op;
+}
+
+PyObject *
+_PyObject_GC_New(PyTypeObject *tp)
+{
+ size_t presize = _PyType_PreHeaderSize(tp);
+ PyObject *op = gc_alloc(_PyObject_SIZE(tp), presize);
+ if (op == NULL) {
+ return NULL;
+ }
+ _PyObject_Init(op, tp);
+ return op;
+}
+
+PyVarObject *
+_PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
+{
+ PyVarObject *op;
+
+ if (nitems < 0) {
+ PyErr_BadInternalCall();
+ return NULL;
+ }
+ size_t presize = _PyType_PreHeaderSize(tp);
+ size_t size = _PyObject_VAR_SIZE(tp, nitems);
+ op = (PyVarObject *)gc_alloc(size, presize);
+ if (op == NULL) {
+ return NULL;
+ }
+ _PyObject_InitVar(op, tp, nitems);
+ return op;
+}
+
+PyObject *
+PyUnstable_Object_GC_NewWithExtraData(PyTypeObject *tp, size_t extra_size)
+{
+ size_t presize = _PyType_PreHeaderSize(tp);
+ PyObject *op = gc_alloc(_PyObject_SIZE(tp) + extra_size, presize);
+ if (op == NULL) {
+ return NULL;
+ }
+ memset(op, 0, _PyObject_SIZE(tp) + extra_size);
+ _PyObject_Init(op, tp);
+ return op;
+}
+
+PyVarObject *
+_PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
+{
+ const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
+ const size_t presize = _PyType_PreHeaderSize(((PyObject *)op)->ob_type);
+ _PyObject_ASSERT((PyObject *)op, !_PyObject_GC_IS_TRACKED(op));
+ if (basicsize > (size_t)PY_SSIZE_T_MAX - presize) {
+ return (PyVarObject *)PyErr_NoMemory();
+ }
+ char *mem = (char *)op - presize;
+ mem = (char *)PyObject_Realloc(mem, presize + basicsize);
+ if (mem == NULL) {
+ return (PyVarObject *)PyErr_NoMemory();
+ }
+ op = (PyVarObject *) (mem + presize);
+ Py_SET_SIZE(op, nitems);
+ return op;
+}
+
+void
+PyObject_GC_Del(void *op)
+{
+ size_t presize = _PyType_PreHeaderSize(((PyObject *)op)->ob_type);
+ PyGC_Head *g = AS_GC(op);
+ if (_PyObject_GC_IS_TRACKED(op)) {
+ gc_list_remove(g);
+#ifdef Py_DEBUG
+ PyObject *exc = PyErr_GetRaisedException();
+ if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
+ "gc", NULL, "Object of type %s is not untracked before destruction",
+ ((PyObject*)op)->ob_type->tp_name)) {
+ PyErr_WriteUnraisable(NULL);
+ }
+ PyErr_SetRaisedException(exc);
+#endif
+ }
+ GCState *gcstate = get_gc_state();
+ if (gcstate->generations[0].count > 0) {
+ gcstate->generations[0].count--;
+ }
+ PyObject_Free(((char *)op)-presize);
+}
+
+int
+PyObject_GC_IsTracked(PyObject* obj)
+{
+ if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj)) {
+ return 1;
+ }
+ return 0;
+}
+
+int
+PyObject_GC_IsFinalized(PyObject *obj)
+{
+ if (_PyObject_IS_GC(obj) && _PyGC_FINALIZED(obj)) {
+ return 1;
+ }
+ return 0;
+}
+
+void
+PyUnstable_GC_VisitObjects(gcvisitobjects_t callback, void *arg)
+{
+ size_t i;
+ GCState *gcstate = get_gc_state();
+ int origenstate = gcstate->enabled;
+ gcstate->enabled = 0;
+ for (i = 0; i < NUM_GENERATIONS; i++) {
+ PyGC_Head *gc_list, *gc;
+ gc_list = GEN_HEAD(gcstate, i);
+ for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
+ PyObject *op = FROM_GC(gc);
+ Py_INCREF(op);
+ int res = callback(op, arg);
+ Py_DECREF(op);
+ if (!res) {
+ goto done;
+ }
+ }
+ }
+done:
+ gcstate->enabled = origenstate;
+}