diff options
Diffstat (limited to 'Tools/scripts/summarize_stats.py')
-rw-r--r-- | Tools/scripts/summarize_stats.py | 72 |
1 files changed, 27 insertions, 45 deletions
diff --git a/Tools/scripts/summarize_stats.py b/Tools/scripts/summarize_stats.py index 55b6764..484dfe8 100644 --- a/Tools/scripts/summarize_stats.py +++ b/Tools/scripts/summarize_stats.py @@ -16,22 +16,6 @@ if os.name == "nt": else: DEFAULT_DIR = "/tmp/py_stats/" -#Create list of all instruction names -specialized = iter(opcode._specialized_opmap.keys()) -opname = ["<0>"] -for name in opcode.opname[1:]: - if name.startswith("<"): - try: - name = next(specialized) - except StopIteration: - pass - opname.append(name) - -# opcode_name --> opcode -# Sort alphabetically. -opmap = {name: i for i, name in enumerate(opname)} -opmap = dict(sorted(opmap.items())) - TOTAL = "specialization.hit", "specialization.miss", "execution_count" def format_ratio(num, den): @@ -200,12 +184,12 @@ def gather_stats(input): raise ValueError(f"{input:r} is not a file or directory path") def extract_opcode_stats(stats): - opcode_stats = [ {} for _ in range(256) ] + opcode_stats = collections.defaultdict(dict) for key, value in stats.items(): if not key.startswith("opcode"): continue - n, _, rest = key[7:].partition("]") - opcode_stats[int(n)][rest.strip(".")] = value + name, _, rest = key[7:].partition("]") + opcode_stats[name][rest.strip(".")] = value return opcode_stats def parse_kinds(spec_src, prefix="SPEC_FAIL"): @@ -246,11 +230,10 @@ def categorized_counts(opcode_stats): specialized_instructions = { op for op in opcode._specialized_opmap.keys() if "__" not in op} - for i, opcode_stat in enumerate(opcode_stats): + for name, opcode_stat in opcode_stats.items(): if "execution_count" not in opcode_stat: continue count = opcode_stat['execution_count'] - name = opname[i] if "specializable" in opcode_stat: not_specialized += count elif name in specialized_instructions: @@ -314,13 +297,13 @@ def emit_table(header, rows): def calculate_execution_counts(opcode_stats, total): counts = [] - for i, opcode_stat in enumerate(opcode_stats): + for name, opcode_stat in opcode_stats.items(): if "execution_count" in opcode_stat: count = opcode_stat['execution_count'] miss = 0 if "specializable" not in opcode_stat: miss = opcode_stat.get("specialization.miss") - counts.append((count, opname[i], miss)) + counts.append((count, name, miss)) counts.sort(reverse=True) cumulative = 0 rows = [] @@ -381,16 +364,17 @@ def get_defines(): def emit_specialization_stats(opcode_stats): defines = get_defines() with Section("Specialization stats", summary="specialization stats by family"): - for i, opcode_stat in enumerate(opcode_stats): - name = opname[i] + for name, opcode_stat in opcode_stats.items(): print_specialization_stats(name, opcode_stat, defines) def emit_comparative_specialization_stats(base_opcode_stats, head_opcode_stats): defines = get_defines() with Section("Specialization stats", summary="specialization stats by family"): - for i, (base_opcode_stat, head_opcode_stat) in enumerate(zip(base_opcode_stats, head_opcode_stats)): - name = opname[i] - print_comparative_specialization_stats(name, base_opcode_stat, head_opcode_stat, defines) + opcodes = set(base_opcode_stats.keys()) & set(head_opcode_stats.keys()) + for opcode in opcodes: + print_comparative_specialization_stats( + opcode, base_opcode_stats[opcode], head_opcode_stats[opcode], defines + ) def calculate_specialization_effectiveness(opcode_stats, total): basic, not_specialized, specialized = categorized_counts(opcode_stats) @@ -407,12 +391,12 @@ def emit_specialization_overview(opcode_stats, total): for title, field in (("Deferred", "specialization.deferred"), ("Misses", "specialization.miss")): total = 0 counts = [] - for i, opcode_stat in enumerate(opcode_stats): + for name, opcode_stat in opcode_stats.items(): # Avoid double counting misses if title == "Misses" and "specializable" in opcode_stat: continue value = opcode_stat.get(field, 0) - counts.append((value, opname[i])) + counts.append((value, name)) total += value counts.sort(reverse=True) if total: @@ -539,29 +523,27 @@ def emit_comparative_gc_stats(base_stats, head_stats): def get_total(opcode_stats): total = 0 - for opcode_stat in opcode_stats: + for opcode_stat in opcode_stats.values(): if "execution_count" in opcode_stat: total += opcode_stat['execution_count'] return total def emit_pair_counts(opcode_stats, total): pair_counts = [] - for i, opcode_stat in enumerate(opcode_stats): - if i == 0: - continue + for name_i, opcode_stat in opcode_stats.items(): for key, value in opcode_stat.items(): if key.startswith("pair_count"): - x, _, _ = key[11:].partition("]") + name_j, _, _ = key[11:].partition("]") if value: - pair_counts.append((value, (i, int(x)))) + pair_counts.append((value, (name_i, name_j))) with Section("Pair counts", summary="Pair counts for top 100 pairs"): pair_counts.sort(reverse=True) cumulative = 0 rows = [] for (count, pair) in itertools.islice(pair_counts, 100): - i, j = pair + name_i, name_j = pair cumulative += count - rows.append((opname[i] + " " + opname[j], count, format_ratio(count, total), + rows.append((f"{name_i} {name_j}", count, format_ratio(count, total), format_ratio(cumulative, total))) emit_table(("Pair", "Count:", "Self:", "Cumulative:"), rows @@ -577,18 +559,18 @@ def emit_pair_counts(opcode_stats, total): successors[first][second] = count total_predecessors[second] += count total_successors[first] += count - for name, i in opmap.items(): - total1 = total_predecessors[i] - total2 = total_successors[i] + for name in opcode_stats.keys(): + total1 = total_predecessors[name] + total2 = total_successors[name] if total1 == 0 and total2 == 0: continue pred_rows = succ_rows = () if total1: - pred_rows = [(opname[pred], count, f"{count/total1:.1%}") - for (pred, count) in predecessors[i].most_common(5)] + pred_rows = [(pred, count, f"{count/total1:.1%}") + for (pred, count) in predecessors[name].most_common(5)] if total2: - succ_rows = [(opname[succ], count, f"{count/total2:.1%}") - for (succ, count) in successors[i].most_common(5)] + succ_rows = [(succ, count, f"{count/total2:.1%}") + for (succ, count) in successors[name].most_common(5)] with Section(name, 3, f"Successors and predecessors for {name}"): emit_table(("Predecessors", "Count:", "Percentage:"), pred_rows |