| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
test dramatically:
class T(tuple): __dynamic__ = 1
t = T(range(1000))
for i in range(1000): tt = tuple(t)
The speedup was about 5x compared to the previous state of CVS (1.7
vs. 8.8, in arbitrary time units). But it's still more than twice as
slow as as the same test with __dynamic__ = 0 (0.8).
I'm not sure that I really want to go through the trouble of this kind
of speedup for every slot. Even doing it just for the most popular
slots will be a major effort (the new slot_sq_item is 40+ lines, while
the old one was one line with a powerful macro -- unfortunately the
speedup comes from expanding the macro and doing things in a way
specific to the slot signature).
An alternative that I'm currently considering is sketched in PLAN.txt:
trap setattr on type objects. But this will require keeping track of
all derived types using weak references.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instances).
Also added GC support to various auxiliary types: super, property,
descriptors, wrappers, dictproxy. (Only type objects have a tp_clear
field; the other types are.)
One change was necessary to the GC infrastructure. We have statically
allocated type objects that don't have a GC header (and can't easily
be given one) and heap-allocated type objects that do have a GC
header. Giving these different metatypes would be really ugly: I
tried, and I had to modify pickle.py, cPickle.c, copy.py, add a new
invent a new name for the new metatype and make it a built-in, change
affected tests... In short, a mess. So instead, we add a new type
slot tp_is_gc, which is a simple Boolean function that determines
whether a particular instance has GC headers or not. This slot is
only relevant for types that have the (new) GC flag bit set. If the
tp_is_gc slot is NULL (by far the most common case), all instances of
the type are deemed to have GC headers. This slot is called by the
PyObject_IS_GC() macro (which is only used twice, both times in
gcmodule.c).
I also changed the extern declarations for a bunch of GC-related
functions (_PyObject_GC_Del etc.): these always exist but objimpl.h
only declared them when WITH_CYCLE_GC was defined, but I needed to be
able to reference them without #ifdefs. (When WITH_CYCLE_GC is not
defined, they do the same as their non-GC counterparts anyway.)
|
|
|
|
|
|
| |
The patch repaired internal gcc compiler errors on BeOS.
This checkin repairs them in a simpler way, by explicitly casting the
platform INFINITY to double.
|
|
|
|
| |
PY_VERSION => "2.2a4+"
|
|
|
|
|
|
|
|
|
|
| |
no backwards compatibility to worry about, so I just pushed the
'closure' struct member to the back -- it's never used in the current
code base (I may eliminate it, but that's more work because the getter
and setter signatures would have to change.)
As examples, I added actual docstrings to the getset attributes of a
few types: file.closed, xxsubtype.spamdict.state.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
compatibility, this required all places where an array of "struct
memberlist" structures was declared that is referenced from a type's
tp_members slot to change the type of the structure to PyMemberDef;
"struct memberlist" is now only used by old code that still calls
PyMember_Get/Set. The code in PyObject_GenericGetAttr/SetAttr now
calls the new APIs PyMember_GetOne/SetOne, which take a PyMemberDef
argument.
As examples, I added actual docstrings to the attributes of a few
types: file, complex, instance method, super, and xxsubtype.spamlist.
Also converted the symtable to new style getattr.
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
hack, and it's even more disgusting than a PyInstance_Check() call.
If the tp_compare slot is the slot used for overrides in Python,
it's always called.
Add some tests that show what should work too.
|
|
|
|
|
|
| |
Renamed the 'readonly' field to 'flags' and defined some new flag
bits: READ_RESTRICTED and WRITE_RESTRICTED, as well as a shortcut
RESTRICTED that means both.
|
|
|
|
| |
Preliminary support. What's here works, but needs fine-tuning.
|
|
|
|
|
| |
Inhibited complex unary plus optimization when applied to a complex subtype.
Added PyComplex_CheckExact macro. Some comments and minor code fiddling.
|
|
|
|
|
| |
Changed unicode(i) to return a true Unicode object when i is an instance of
a unicode subclass. Added PyUnicode_CheckExact macro.
|
|
|
|
|
| |
Repaired str(i) to return a genuine string when i is an instance of a str
subclass. New PyString_CheckExact() macro.
|
|
|
|
|
|
|
|
| |
tuple(i) repaired to return a true tuple when i is an instance of a
tuple subclass.
Added PyTuple_CheckExact macro.
PySequence_Tuple(): if a tuple-like object isn't exactly a tuple, it's
not safe to return the object as-is -- make a new tuple of it instead.
|
| |
|
|
|
|
|
| |
Repair float constructor to return a true float when passed a subclass
instance. New PyFloat_CheckExact macro.
|
|
|
|
|
|
|
|
|
|
|
| |
Given an immutable type M, and an instance I of a subclass of M, the
constructor call M(I) was just returning I as-is; but it should return a
new instance of M. This fixes it for M in {int, long}. Strings, floats
and tuples remain to be done.
Added new macros PyInt_CheckExact and PyLong_CheckExact, to more easily
distinguish between "is" and "is a" (i.e., only an int passes
PyInt_CheckExact, while any sublass of int passes PyInt_Check).
Added private API function _PyLong_Copy.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
iterable object. I'm not sure how that got overlooked before!
Got rid of the internal _PySequence_IterContains, introduced a new
internal _PySequence_IterSearch, and rewrote all the iteration-based
"count of", "index of", and "is the object in it or not?" routines to
just call the new function. I suppose it's slower this way, but the
code duplication was getting depressing.
|
| |
|
| |
|
|
|
|
|
|
| |
While not even documented, they were clearly part of the C API,
there's no great difficulty to support them, and it has the cool
effect of not requiring any changes to ExtensionClass.c.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
requires that errno ever get set, and it looks like glibc is already
playing that game. New rules:
+ Never use HUGE_VAL. Use the new Py_HUGE_VAL instead.
+ Never believe errno. If overflow is the only thing you're interested in,
use the new Py_OVERFLOWED(x) macro. If you're interested in any libm
errors, use the new Py_SET_ERANGE_IF_OVERFLOW(x) macro, which attempts
to set errno the way C89 said it worked.
Unfortunately, none of these are reliable, but they work on Windows and I
*expect* under glibc too.
|
| |
|
|
|
|
|
| |
overflow. Needs testing on Linux (test_long.py and test_long_future.py
especially).
|
|
|
|
| |
__builtin__.dir(). Moved the guts from bltinmodule.c to object.c.
|
|
|
|
|
|
|
|
|
|
| |
but will be the foundation for Good Things:
+ Speed PyLong_AsDouble.
+ Give PyLong_AsDouble the ability to detect overflow.
+ Make true division of long/long nearly as accurate as possible (no
spurious infinities or NaNs).
+ Return non-insane results from math.log and math.log10 when passing a
long that can't be approximated by a double better than HUGE_VAL.
|
|
|
|
| |
disabled. Obviously everyone enables the GC. :-)
|
|
|
|
| |
Moved the declarations to pymactoolbox.h.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PEP 238. Changes:
- add a new flag variable Py_DivisionWarningFlag, declared in
pydebug.h, defined in object.c, set in main.c, and used in
{int,long,float,complex}object.c. When this flag is set, the
classic division operator issues a DeprecationWarning message.
- add a new API PyRun_SimpleStringFlags() to match
PyRun_SimpleString(). The main() function calls this so that
commands run with -c can also benefit from -Dnew.
- While I was at it, I changed the usage message in main() somewhat:
alphabetized the options, split it in *four* parts to fit in under
512 bytes (not that I still believe this is necessary -- doc strings
elsewhere are much longer), and perhaps most visibly, don't display
the full list of options on each command line error. Instead, the
full list is only displayed when -h is used, and otherwise a brief
reminder of -h is displayed. When -h is used, write to stdout so
that you can do `python -h | more'.
Notes:
- I don't want to use the -W option to control whether the classic
division warning is issued or not, because the machinery to decide
whether to display the warning or not is very expensive (it involves
calling into the warnings.py module). You can use -Werror to turn
the warnings into exceptions though.
- The -Dnew option doesn't select future division for all of the
program -- only for the __main__ module. I don't know if I'll ever
change this -- it would require changes to the .pyc file magic
number to do it right, and a more global notion of compiler flags.
- You can usefully combine -Dwarn and -Dnew: this gives the __main__
module new division, and warns about classic division everywhere
else.
|
| |
|
|
|
|
|
|
|
| |
the old flag to still compile. Remove the PyType_BASICSIZE and
PyType_SET_BASICSIZE macros. Add PyObject_GC_New, PyObject_GC_NewVar,
PyObject_GC_Resize, PyObject_GC_Del, PyObject_GC_Track,
PyObject_GC_UnTrack. Part of SF patch #421893.
|
|
|
|
| |
the old flag to still compile.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
pyport.h: typedef a new Py_intptr_t type.
DELICATE ASSUMPTION: That HAVE_UINTPTR_T implies intptr_t is
available as well as uintptr_t. If that turns out not to be
true, things must get uglier (C99 wants both, so I think it's
an assumption we're *likely* to get away with).
thread_nt.h, PyThread_start_new_thread: MS _beginthread is documented
as returning unsigned long; no idea why uintptr_t was being used.
Others: Always use Py_[u]intptr_t, never [u]intptr_t directly.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PyErr_Format() these new C API methods can be used instead of
sprintf()'s into hardcoded char* buffers. This allows us to fix
many situation where long package, module, or class names get
truncated in reprs.
PyString_FromFormat() is the varargs variety.
PyString_FromFormatV() is the va_list variety
Original PyErr_Format() code was modified to allow %p and %ld
expansions.
Many reprs were converted to this, checkins coming soo. Not
changed: complex_repr(), float_repr(), float_print(), float_str(),
int_repr(). There may be other candidates not yet converted.
Closes patch #454743.
|
| |
|
|
|
|
| |
This implements the 'getset' class from test_binop.py.
|
|
|
|
| |
are overflowing and a long int operation is substituted.
|
|
|
|
| |
level to 2.2a2+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CO_FUTURE_DIVISION flag. Redid this to use Jeremy's PyCF_MASK #define
instead, so we dont have to remember to fiddle individual feature names
here again.
pythonrun.h: Also #define a PyCF_MASK_OBSOLETE mask. This isn't used
yet, but will be as part of the PEP 264 implementation (compile() mustn't
raise an error just because old code uses a flag name that's become
obsolete; a warning may be appropriate, but not an error; so compile() has
to know about obsolete flags too, but nobody is going to remember to
update compile() with individual obsolete flag names across releases either
-- i.e., this is the flip side of PyEval_MergeCompilerFlags's oversight).
|
|
|
|
|
|
|
|
| |
- Do not compile unicodeobject, unicodectype, and unicodedata if Unicode is disabled
- check for Py_USING_UNICODE in all places that use Unicode functions
- disables unicode literals, and the builtin functions
- add the types.StringTypes list
- remove Unicode literals from most tests.
|
|
|
|
| |
- Change PY_VERSION (but not the numeric versions) to "2.2a1+".
|
|
|
|
|
| |
so the backward compatibility issues will be easier to understand. I only
added comments indicating additions and assignments back to Python 2.0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The descr changes moved the dispatch for calling objects from
call_object() in ceval.c to PyObject_Call() in abstract.c.
call_object() and the many functions it used in ceval.c were no longer
used, but were not removed.
Rename meth_call() as PyCFunction_Call() so that it can be called by
the CALL_FUNCTION opcode in ceval.c.
Also, fix error message that referred to PyEval_EvalCodeEx() by its
old name eval_code2(). (I'll probably refer to it by its old name,
too.)
|
|
|
|
|
|
|
| |
because nested scopes are always enabled.
(Accidentally checked in one small change along this path yesterday,
wreaking havoc in the Windows build.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Replace individual slots in PyFutureFeatures with a single bitmask
with one field per feature. The flags for this bitmask are the same
as the flags used in the co_flags slot of a code object.
XXX This means we waste several bits, because they are used
for co_flags but have no meaning for future statements. Don't
think this is an issue.
Remove the NESTED_SCOPES_DEFAULT define and others. Not sure what
they were for anyway.
Remove all the PyCF_xxx flags, but define PyCF_MASK in terms of the
CO_xxx flags that are relevant for this release.
Change definition of PyCompilerFlags so that cf_flags matches
co_flags.
|
|
|
|
|
|
| |
PyDict_Merge(a, b, 1) is the same as PyDict_Update(a, b).
PyDict_Merge(a, b, 0) does something similar but leaves existing items
unchanged.
|