From 1b383570945595b5552c37859f4e17fb02575d05 Mon Sep 17 00:00:00 2001 From: Tim Peters Date: Tue, 16 May 2006 23:24:08 +0000 Subject: Text files missing the SVN eol-style property. --- Doc/lib/sqlite3/adapter_datetime.py | 28 +- Doc/lib/sqlite3/adapter_point_1.py | 32 +- Doc/lib/sqlite3/adapter_point_2.py | 34 +- Doc/lib/sqlite3/collation_reverse.py | 30 +- Doc/lib/sqlite3/connect_db_1.py | 6 +- Doc/lib/sqlite3/connect_db_2.py | 6 +- Doc/lib/sqlite3/converter_point.py | 94 +- Doc/lib/sqlite3/countcursors.py | 30 +- Doc/lib/sqlite3/createdb.py | 56 +- Doc/lib/sqlite3/execsql_fetchonerow.py | 34 +- Doc/lib/sqlite3/execsql_printall_1.py | 26 +- Doc/lib/sqlite3/execute_1.py | 22 +- Doc/lib/sqlite3/execute_2.py | 24 +- Doc/lib/sqlite3/execute_3.py | 24 +- Doc/lib/sqlite3/executemany_1.py | 48 +- Doc/lib/sqlite3/executemany_2.py | 30 +- Doc/lib/sqlite3/executescript.py | 48 +- Doc/lib/sqlite3/insert_more_people.py | 32 +- Doc/lib/sqlite3/md5func.py | 22 +- Doc/lib/sqlite3/mysumaggr.py | 40 +- Doc/lib/sqlite3/parse_colnames.py | 16 +- Doc/lib/sqlite3/pysqlite_datetime.py | 40 +- Doc/lib/sqlite3/row_factory.py | 26 +- Doc/lib/sqlite3/shortcut_methods.py | 42 +- Doc/lib/sqlite3/simple_tableprinter.py | 52 +- Doc/lib/sqlite3/text_factory.py | 84 +- Lib/test/test_bigmem.py | 1928 ++++++++++++++++---------------- 27 files changed, 1427 insertions(+), 1427 deletions(-) diff --git a/Doc/lib/sqlite3/adapter_datetime.py b/Doc/lib/sqlite3/adapter_datetime.py index dc41ce8..3460498 100644 --- a/Doc/lib/sqlite3/adapter_datetime.py +++ b/Doc/lib/sqlite3/adapter_datetime.py @@ -1,14 +1,14 @@ -import sqlite3 -import datetime, time - -def adapt_datetime(ts): - return time.mktime(ts.timetuple()) - -sqlite3.register_adapter(datetime.datetime, adapt_datetime) - -con = sqlite3.connect(":memory:") -cur = con.cursor() - -now = datetime.datetime.now() -cur.execute("select ?", (now,)) -print cur.fetchone()[0] +import sqlite3 +import datetime, time + +def adapt_datetime(ts): + return time.mktime(ts.timetuple()) + +sqlite3.register_adapter(datetime.datetime, adapt_datetime) + +con = sqlite3.connect(":memory:") +cur = con.cursor() + +now = datetime.datetime.now() +cur.execute("select ?", (now,)) +print cur.fetchone()[0] diff --git a/Doc/lib/sqlite3/adapter_point_1.py b/Doc/lib/sqlite3/adapter_point_1.py index b4856d5..a741f6c 100644 --- a/Doc/lib/sqlite3/adapter_point_1.py +++ b/Doc/lib/sqlite3/adapter_point_1.py @@ -1,16 +1,16 @@ -import sqlite3 - -class Point(object): - def __init__(self, x, y): - self.x, self.y = x, y - - def __conform__(self, protocol): - if protocol is sqlite3.PrepareProtocol: - return "%f;%f" % (self.x, self.y) - -con = sqlite3.connect(":memory:") -cur = con.cursor() - -p = Point(4.0, -3.2) -cur.execute("select ?", (p,)) -print cur.fetchone()[0] +import sqlite3 + +class Point(object): + def __init__(self, x, y): + self.x, self.y = x, y + + def __conform__(self, protocol): + if protocol is sqlite3.PrepareProtocol: + return "%f;%f" % (self.x, self.y) + +con = sqlite3.connect(":memory:") +cur = con.cursor() + +p = Point(4.0, -3.2) +cur.execute("select ?", (p,)) +print cur.fetchone()[0] diff --git a/Doc/lib/sqlite3/adapter_point_2.py b/Doc/lib/sqlite3/adapter_point_2.py index 50e3692..200a064 100644 --- a/Doc/lib/sqlite3/adapter_point_2.py +++ b/Doc/lib/sqlite3/adapter_point_2.py @@ -1,17 +1,17 @@ -import sqlite3 - -class Point(object): - def __init__(self, x, y): - self.x, self.y = x, y - -def adapt_point(point): - return "%f;%f" % (point.x, point.y) - -sqlite3.register_adapter(Point, adapt_point) - -con = sqlite3.connect(":memory:") -cur = con.cursor() - -p = Point(4.0, -3.2) -cur.execute("select ?", (p,)) -print cur.fetchone()[0] +import sqlite3 + +class Point(object): + def __init__(self, x, y): + self.x, self.y = x, y + +def adapt_point(point): + return "%f;%f" % (point.x, point.y) + +sqlite3.register_adapter(Point, adapt_point) + +con = sqlite3.connect(":memory:") +cur = con.cursor() + +p = Point(4.0, -3.2) +cur.execute("select ?", (p,)) +print cur.fetchone()[0] diff --git a/Doc/lib/sqlite3/collation_reverse.py b/Doc/lib/sqlite3/collation_reverse.py index 107f49d..e956402 100644 --- a/Doc/lib/sqlite3/collation_reverse.py +++ b/Doc/lib/sqlite3/collation_reverse.py @@ -1,15 +1,15 @@ -import sqlite3 - -def collate_reverse(string1, string2): - return -cmp(string1, string2) - -con = sqlite3.connect(":memory:") -con.create_collation("reverse", collate_reverse) - -cur = con.cursor() -cur.execute("create table test(x)") -cur.executemany("insert into test(x) values (?)", [("a",), ("b",)]) -cur.execute("select x from test order by x collate reverse") -for row in cur: - print row -con.close() +import sqlite3 + +def collate_reverse(string1, string2): + return -cmp(string1, string2) + +con = sqlite3.connect(":memory:") +con.create_collation("reverse", collate_reverse) + +cur = con.cursor() +cur.execute("create table test(x)") +cur.executemany("insert into test(x) values (?)", [("a",), ("b",)]) +cur.execute("select x from test order by x collate reverse") +for row in cur: + print row +con.close() diff --git a/Doc/lib/sqlite3/connect_db_1.py b/Doc/lib/sqlite3/connect_db_1.py index 8a1437d..1b97523 100644 --- a/Doc/lib/sqlite3/connect_db_1.py +++ b/Doc/lib/sqlite3/connect_db_1.py @@ -1,3 +1,3 @@ -import sqlite3 - -con = sqlite3.connect("mydb") +import sqlite3 + +con = sqlite3.connect("mydb") diff --git a/Doc/lib/sqlite3/connect_db_2.py b/Doc/lib/sqlite3/connect_db_2.py index 303501d..f9728b36 100644 --- a/Doc/lib/sqlite3/connect_db_2.py +++ b/Doc/lib/sqlite3/connect_db_2.py @@ -1,3 +1,3 @@ -import sqlite3 - -con = sqlite3.connect(":memory:") +import sqlite3 + +con = sqlite3.connect(":memory:") diff --git a/Doc/lib/sqlite3/converter_point.py b/Doc/lib/sqlite3/converter_point.py index eecd1dc3..e220e9b 100644 --- a/Doc/lib/sqlite3/converter_point.py +++ b/Doc/lib/sqlite3/converter_point.py @@ -1,47 +1,47 @@ -import sqlite3 - -class Point(object): - def __init__(self, x, y): - self.x, self.y = x, y - - def __repr__(self): - return "(%f;%f)" % (self.x, self.y) - -def adapt_point(point): - return "%f;%f" % (point.x, point.y) - -def convert_point(s): - x, y = map(float, s.split(";")) - return Point(x, y) - -# Register the adapter -sqlite3.register_adapter(Point, adapt_point) - -# Register the converter -sqlite3.register_converter("point", convert_point) - -p = Point(4.0, -3.2) - -######################### -# 1) Using declared types -con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES) -cur = con.cursor() -cur.execute("create table test(p point)") - -cur.execute("insert into test(p) values (?)", (p,)) -cur.execute("select p from test") -print "with declared types:", cur.fetchone()[0] -cur.close() -con.close() - -####################### -# 1) Using column names -con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES) -cur = con.cursor() -cur.execute("create table test(p)") - -cur.execute("insert into test(p) values (?)", (p,)) -cur.execute('select p as "p [point]" from test') -print "with column names:", cur.fetchone()[0] -cur.close() -con.close() +import sqlite3 + +class Point(object): + def __init__(self, x, y): + self.x, self.y = x, y + + def __repr__(self): + return "(%f;%f)" % (self.x, self.y) + +def adapt_point(point): + return "%f;%f" % (point.x, point.y) + +def convert_point(s): + x, y = map(float, s.split(";")) + return Point(x, y) + +# Register the adapter +sqlite3.register_adapter(Point, adapt_point) + +# Register the converter +sqlite3.register_converter("point", convert_point) + +p = Point(4.0, -3.2) + +######################### +# 1) Using declared types +con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES) +cur = con.cursor() +cur.execute("create table test(p point)") + +cur.execute("insert into test(p) values (?)", (p,)) +cur.execute("select p from test") +print "with declared types:", cur.fetchone()[0] +cur.close() +con.close() + +####################### +# 1) Using column names +con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES) +cur = con.cursor() +cur.execute("create table test(p)") + +cur.execute("insert into test(p) values (?)", (p,)) +cur.execute('select p as "p [point]" from test') +print "with column names:", cur.fetchone()[0] +cur.close() +con.close() diff --git a/Doc/lib/sqlite3/countcursors.py b/Doc/lib/sqlite3/countcursors.py index 13ba6a6..df04cad 100644 --- a/Doc/lib/sqlite3/countcursors.py +++ b/Doc/lib/sqlite3/countcursors.py @@ -1,15 +1,15 @@ -import sqlite3 - -class CountCursorsConnection(sqlite3.Connection): - def __init__(self, *args, **kwargs): - sqlite3.Connection.__init__(self, *args, **kwargs) - self.numcursors = 0 - - def cursor(self, *args, **kwargs): - self.numcursors += 1 - return sqlite3.Connection.cursor(self, *args, **kwargs) - -con = sqlite3.connect(":memory:", factory=CountCursorsConnection) -cur1 = con.cursor() -cur2 = con.cursor() -print con.numcursors +import sqlite3 + +class CountCursorsConnection(sqlite3.Connection): + def __init__(self, *args, **kwargs): + sqlite3.Connection.__init__(self, *args, **kwargs) + self.numcursors = 0 + + def cursor(self, *args, **kwargs): + self.numcursors += 1 + return sqlite3.Connection.cursor(self, *args, **kwargs) + +con = sqlite3.connect(":memory:", factory=CountCursorsConnection) +cur1 = con.cursor() +cur2 = con.cursor() +print con.numcursors diff --git a/Doc/lib/sqlite3/createdb.py b/Doc/lib/sqlite3/createdb.py index 2fca21f2..ee2950b 100644 --- a/Doc/lib/sqlite3/createdb.py +++ b/Doc/lib/sqlite3/createdb.py @@ -1,28 +1,28 @@ -# Not referenced from the documentation, but builds the database file the other -# code snippets expect. - -import sqlite3 -import os - -DB_FILE = "mydb" - -if os.path.exists(DB_FILE): - os.remove(DB_FILE) - -con = sqlite3.connect(DB_FILE) -cur = con.cursor() -cur.execute(""" - create table people - ( - name_last varchar(20), - age integer - ) - """) - -cur.execute("insert into people (name_last, age) values ('Yeltsin', 72)") -cur.execute("insert into people (name_last, age) values ('Putin', 51)") - -con.commit() - -cur.close() -con.close() +# Not referenced from the documentation, but builds the database file the other +# code snippets expect. + +import sqlite3 +import os + +DB_FILE = "mydb" + +if os.path.exists(DB_FILE): + os.remove(DB_FILE) + +con = sqlite3.connect(DB_FILE) +cur = con.cursor() +cur.execute(""" + create table people + ( + name_last varchar(20), + age integer + ) + """) + +cur.execute("insert into people (name_last, age) values ('Yeltsin', 72)") +cur.execute("insert into people (name_last, age) values ('Putin', 51)") + +con.commit() + +cur.close() +con.close() diff --git a/Doc/lib/sqlite3/execsql_fetchonerow.py b/Doc/lib/sqlite3/execsql_fetchonerow.py index 51b206d..8044ecf 100644 --- a/Doc/lib/sqlite3/execsql_fetchonerow.py +++ b/Doc/lib/sqlite3/execsql_fetchonerow.py @@ -1,17 +1,17 @@ -import sqlite3 - -con = sqlite3.connect("mydb") - -cur = con.cursor() -SELECT = "select name_last, age from people order by age, name_last" - -# 1. Iterate over the rows available from the cursor, unpacking the -# resulting sequences to yield their elements (name_last, age): -cur.execute(SELECT) -for (name_last, age) in cur: - print '%s is %d years old.' % (name_last, age) - -# 2. Equivalently: -cur.execute(SELECT) -for row in cur: - print '%s is %d years old.' % (row[0], row[1]) +import sqlite3 + +con = sqlite3.connect("mydb") + +cur = con.cursor() +SELECT = "select name_last, age from people order by age, name_last" + +# 1. Iterate over the rows available from the cursor, unpacking the +# resulting sequences to yield their elements (name_last, age): +cur.execute(SELECT) +for (name_last, age) in cur: + print '%s is %d years old.' % (name_last, age) + +# 2. Equivalently: +cur.execute(SELECT) +for row in cur: + print '%s is %d years old.' % (row[0], row[1]) diff --git a/Doc/lib/sqlite3/execsql_printall_1.py b/Doc/lib/sqlite3/execsql_printall_1.py index b6b2e1e..d27d735 100644 --- a/Doc/lib/sqlite3/execsql_printall_1.py +++ b/Doc/lib/sqlite3/execsql_printall_1.py @@ -1,13 +1,13 @@ -import sqlite3 - -# Create a connection to the database file "mydb": -con = sqlite3.connect("mydb") - -# Get a Cursor object that operates in the context of Connection con: -cur = con.cursor() - -# Execute the SELECT statement: -cur.execute("select * from people order by age") - -# Retrieve all rows as a sequence and print that sequence: -print cur.fetchall() +import sqlite3 + +# Create a connection to the database file "mydb": +con = sqlite3.connect("mydb") + +# Get a Cursor object that operates in the context of Connection con: +cur = con.cursor() + +# Execute the SELECT statement: +cur.execute("select * from people order by age") + +# Retrieve all rows as a sequence and print that sequence: +print cur.fetchall() diff --git a/Doc/lib/sqlite3/execute_1.py b/Doc/lib/sqlite3/execute_1.py index a94cf89..fb3784f 100644 --- a/Doc/lib/sqlite3/execute_1.py +++ b/Doc/lib/sqlite3/execute_1.py @@ -1,11 +1,11 @@ -import sqlite3 - -con = sqlite3.connect("mydb") - -cur = con.cursor() - -who = "Yeltsin" -age = 72 - -cur.execute("select name_last, age from people where name_last=? and age=?", (who, age)) -print cur.fetchone() +import sqlite3 + +con = sqlite3.connect("mydb") + +cur = con.cursor() + +who = "Yeltsin" +age = 72 + +cur.execute("select name_last, age from people where name_last=? and age=?", (who, age)) +print cur.fetchone() diff --git a/Doc/lib/sqlite3/execute_2.py b/Doc/lib/sqlite3/execute_2.py index b4333d8..df6c894 100644 --- a/Doc/lib/sqlite3/execute_2.py +++ b/Doc/lib/sqlite3/execute_2.py @@ -1,12 +1,12 @@ -import sqlite3 - -con = sqlite3.connect("mydb") - -cur = con.cursor() - -who = "Yeltsin" -age = 72 - -cur.execute("select name_last, age from people where name_last=:who and age=:age", - {"who": who, "age": age}) -print cur.fetchone() +import sqlite3 + +con = sqlite3.connect("mydb") + +cur = con.cursor() + +who = "Yeltsin" +age = 72 + +cur.execute("select name_last, age from people where name_last=:who and age=:age", + {"who": who, "age": age}) +print cur.fetchone() diff --git a/Doc/lib/sqlite3/execute_3.py b/Doc/lib/sqlite3/execute_3.py index 9cd3deb..b64621f 100644 --- a/Doc/lib/sqlite3/execute_3.py +++ b/Doc/lib/sqlite3/execute_3.py @@ -1,12 +1,12 @@ -import sqlite3 - -con = sqlite3.connect("mydb") - -cur = con.cursor() - -who = "Yeltsin" -age = 72 - -cur.execute("select name_last, age from people where name_last=:who and age=:age", - locals()) -print cur.fetchone() +import sqlite3 + +con = sqlite3.connect("mydb") + +cur = con.cursor() + +who = "Yeltsin" +age = 72 + +cur.execute("select name_last, age from people where name_last=:who and age=:age", + locals()) +print cur.fetchone() diff --git a/Doc/lib/sqlite3/executemany_1.py b/Doc/lib/sqlite3/executemany_1.py index c0ab7c1..24357c5 100644 --- a/Doc/lib/sqlite3/executemany_1.py +++ b/Doc/lib/sqlite3/executemany_1.py @@ -1,24 +1,24 @@ -import sqlite3 - -class IterChars: - def __init__(self): - self.count = ord('a') - - def __iter__(self): - return self - - def next(self): - if self.count > ord('z'): - raise StopIteration - self.count += 1 - return (chr(self.count - 1),) # this is a 1-tuple - -con = sqlite3.connect(":memory:") -cur = con.cursor() -cur.execute("create table characters(c)") - -theIter = IterChars() -cur.executemany("insert into characters(c) values (?)", theIter) - -cur.execute("select c from characters") -print cur.fetchall() +import sqlite3 + +class IterChars: + def __init__(self): + self.count = ord('a') + + def __iter__(self): + return self + + def next(self): + if self.count > ord('z'): + raise StopIteration + self.count += 1 + return (chr(self.count - 1),) # this is a 1-tuple + +con = sqlite3.connect(":memory:") +cur = con.cursor() +cur.execute("create table characters(c)") + +theIter = IterChars() +cur.executemany("insert into characters(c) values (?)", theIter) + +cur.execute("select c from characters") +print cur.fetchall() diff --git a/Doc/lib/sqlite3/executemany_2.py b/Doc/lib/sqlite3/executemany_2.py index b16f93a..05857c0 100644 --- a/Doc/lib/sqlite3/executemany_2.py +++ b/Doc/lib/sqlite3/executemany_2.py @@ -1,15 +1,15 @@ -import sqlite3 - -def char_generator(): - import string - for c in string.letters[:26]: - yield (c,) - -con = sqlite3.connect(":memory:") -cur = con.cursor() -cur.execute("create table characters(c)") - -cur.executemany("insert into characters(c) values (?)", char_generator()) - -cur.execute("select c from characters") -print cur.fetchall() +import sqlite3 + +def char_generator(): + import string + for c in string.letters[:26]: + yield (c,) + +con = sqlite3.connect(":memory:") +cur = con.cursor() +cur.execute("create table characters(c)") + +cur.executemany("insert into characters(c) values (?)", char_generator()) + +cur.execute("select c from characters") +print cur.fetchall() diff --git a/Doc/lib/sqlite3/executescript.py b/Doc/lib/sqlite3/executescript.py index 2c04066..0795b47 100644 --- a/Doc/lib/sqlite3/executescript.py +++ b/Doc/lib/sqlite3/executescript.py @@ -1,24 +1,24 @@ -import sqlite3 - -con = sqlite3.connect(":memory:") -cur = con.cursor() -cur.executescript(""" - create table person( - firstname, - lastname, - age - ); - - create table book( - title, - author, - published - ); - - insert into book(title, author, published) - values ( - 'Dirk Gently''s Holistic Detective Agency - 'Douglas Adams', - 1987 - ); - """) +import sqlite3 + +con = sqlite3.connect(":memory:") +cur = con.cursor() +cur.executescript(""" + create table person( + firstname, + lastname, + age + ); + + create table book( + title, + author, + published + ); + + insert into book(title, author, published) + values ( + 'Dirk Gently''s Holistic Detective Agency + 'Douglas Adams', + 1987 + ); + """) diff --git a/Doc/lib/sqlite3/insert_more_people.py b/Doc/lib/sqlite3/insert_more_people.py index 430d942..edbc79e 100644 --- a/Doc/lib/sqlite3/insert_more_people.py +++ b/Doc/lib/sqlite3/insert_more_people.py @@ -1,16 +1,16 @@ -import sqlite3 - -con = sqlite3.connect("mydb") - -cur = con.cursor() - -newPeople = ( - ('Lebed' , 53), - ('Zhirinovsky' , 57), - ) - -for person in newPeople: - cur.execute("insert into people (name_last, age) values (?, ?)", person) - -# The changes will not be saved unless the transaction is committed explicitly: -con.commit() +import sqlite3 + +con = sqlite3.connect("mydb") + +cur = con.cursor() + +newPeople = ( + ('Lebed' , 53), + ('Zhirinovsky' , 57), + ) + +for person in newPeople: + cur.execute("insert into people (name_last, age) values (?, ?)", person) + +# The changes will not be saved unless the transaction is committed explicitly: +con.commit() diff --git a/Doc/lib/sqlite3/md5func.py b/Doc/lib/sqlite3/md5func.py index eeb41ea..5769687 100644 --- a/Doc/lib/sqlite3/md5func.py +++ b/Doc/lib/sqlite3/md5func.py @@ -1,11 +1,11 @@ -import sqlite3 -import md5 - -def md5sum(t): - return md5.md5(t).hexdigest() - -con = sqlite3.connect(":memory:") -con.create_function("md5", 1, md5sum) -cur = con.cursor() -cur.execute("select md5(?)", ("foo",)) -print cur.fetchone()[0] +import sqlite3 +import md5 + +def md5sum(t): + return md5.md5(t).hexdigest() + +con = sqlite3.connect(":memory:") +con.create_function("md5", 1, md5sum) +cur = con.cursor() +cur.execute("select md5(?)", ("foo",)) +print cur.fetchone()[0] diff --git a/Doc/lib/sqlite3/mysumaggr.py b/Doc/lib/sqlite3/mysumaggr.py index b398726..6d0cd55 100644 --- a/Doc/lib/sqlite3/mysumaggr.py +++ b/Doc/lib/sqlite3/mysumaggr.py @@ -1,20 +1,20 @@ -import sqlite3 - -class MySum: - def __init__(self): - self.count = 0 - - def step(self, value): - self.count += value - - def finalize(self): - return self.count - -con = sqlite3.connect(":memory:") -con.create_aggregate("mysum", 1, MySum) -cur = con.cursor() -cur.execute("create table test(i)") -cur.execute("insert into test(i) values (1)") -cur.execute("insert into test(i) values (2)") -cur.execute("select mysum(i) from test") -print cur.fetchone()[0] +import sqlite3 + +class MySum: + def __init__(self): + self.count = 0 + + def step(self, value): + self.count += value + + def finalize(self): + return self.count + +con = sqlite3.connect(":memory:") +con.create_aggregate("mysum", 1, MySum) +cur = con.cursor() +cur.execute("create table test(i)") +cur.execute("insert into test(i) values (1)") +cur.execute("insert into test(i) values (2)") +cur.execute("select mysum(i) from test") +print cur.fetchone()[0] diff --git a/Doc/lib/sqlite3/parse_colnames.py b/Doc/lib/sqlite3/parse_colnames.py index bbb93e9..fcded00 100644 --- a/Doc/lib/sqlite3/parse_colnames.py +++ b/Doc/lib/sqlite3/parse_colnames.py @@ -1,8 +1,8 @@ -import sqlite3 -import datetime - -con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES) -cur = con.cursor() -cur.execute('select ? as "x [timestamp]"', (datetime.datetime.now(),)) -dt = cur.fetchone()[0] -print dt, type(dt) +import sqlite3 +import datetime + +con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES) +cur = con.cursor() +cur.execute('select ? as "x [timestamp]"', (datetime.datetime.now(),)) +dt = cur.fetchone()[0] +print dt, type(dt) diff --git a/Doc/lib/sqlite3/pysqlite_datetime.py b/Doc/lib/sqlite3/pysqlite_datetime.py index f9dfa14..efa4b06 100644 --- a/Doc/lib/sqlite3/pysqlite_datetime.py +++ b/Doc/lib/sqlite3/pysqlite_datetime.py @@ -1,20 +1,20 @@ -import sqlite3 -import datetime - -con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES) -cur = con.cursor() -cur.execute("create table test(d date, ts timestamp)") - -today = datetime.date.today() -now = datetime.datetime.now() - -cur.execute("insert into test(d, ts) values (?, ?)", (today, now)) -cur.execute("select d, ts from test") -row = cur.fetchone() -print today, "=>", row[0], type(row[0]) -print now, "=>", row[1], type(row[1]) - -cur.execute('select current_date as "d [date]", current_timestamp as "ts [timestamp]"') -row = cur.fetchone() -print "current_date", row[0], type(row[0]) -print "current_timestamp", row[1], type(row[1]) +import sqlite3 +import datetime + +con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES) +cur = con.cursor() +cur.execute("create table test(d date, ts timestamp)") + +today = datetime.date.today() +now = datetime.datetime.now() + +cur.execute("insert into test(d, ts) values (?, ?)", (today, now)) +cur.execute("select d, ts from test") +row = cur.fetchone() +print today, "=>", row[0], type(row[0]) +print now, "=>", row[1], type(row[1]) + +cur.execute('select current_date as "d [date]", current_timestamp as "ts [timestamp]"') +row = cur.fetchone() +print "current_date", row[0], type(row[0]) +print "current_timestamp", row[1], type(row[1]) diff --git a/Doc/lib/sqlite3/row_factory.py b/Doc/lib/sqlite3/row_factory.py index 3597459..64676c8 100644 --- a/Doc/lib/sqlite3/row_factory.py +++ b/Doc/lib/sqlite3/row_factory.py @@ -1,13 +1,13 @@ -import sqlite3 - -def dict_factory(cursor, row): - d = {} - for idx, col in enumerate(cursor.description): - d[col[0]] = row[idx] - return d - -con = sqlite3.connect(":memory:") -con.row_factory = dict_factory -cur = con.cursor() -cur.execute("select 1 as a") -print cur.fetchone()["a"] +import sqlite3 + +def dict_factory(cursor, row): + d = {} + for idx, col in enumerate(cursor.description): + d[col[0]] = row[idx] + return d + +con = sqlite3.connect(":memory:") +con.row_factory = dict_factory +cur = con.cursor() +cur.execute("select 1 as a") +print cur.fetchone()["a"] diff --git a/Doc/lib/sqlite3/shortcut_methods.py b/Doc/lib/sqlite3/shortcut_methods.py index 12ce0c0..72ed4b3 100644 --- a/Doc/lib/sqlite3/shortcut_methods.py +++ b/Doc/lib/sqlite3/shortcut_methods.py @@ -1,21 +1,21 @@ -import sqlite3 - -persons = [ - ("Hugo", "Boss"), - ("Calvin", "Klein") - ] - -con = sqlite3.connect(":memory:") - -# Create the table -con.execute("create table person(firstname, lastname)") - -# Fill the table -con.executemany("insert into person(firstname, lastname) values (?, ?)", persons) - -# Print the table contents -for row in con.execute("select firstname, lastname from person"): - print row - -# Using a dummy WHERE clause to not let SQLite take the shortcut table deletes. -print "I just deleted", con.execute("delete from person where 1=1").rowcount, "rows" +import sqlite3 + +persons = [ + ("Hugo", "Boss"), + ("Calvin", "Klein") + ] + +con = sqlite3.connect(":memory:") + +# Create the table +con.execute("create table person(firstname, lastname)") + +# Fill the table +con.executemany("insert into person(firstname, lastname) values (?, ?)", persons) + +# Print the table contents +for row in con.execute("select firstname, lastname from person"): + print row + +# Using a dummy WHERE clause to not let SQLite take the shortcut table deletes. +print "I just deleted", con.execute("delete from person where 1=1").rowcount, "rows" diff --git a/Doc/lib/sqlite3/simple_tableprinter.py b/Doc/lib/sqlite3/simple_tableprinter.py index 6368668..67ea6a2 100644 --- a/Doc/lib/sqlite3/simple_tableprinter.py +++ b/Doc/lib/sqlite3/simple_tableprinter.py @@ -1,26 +1,26 @@ -import sqlite3 - -FIELD_MAX_WIDTH = 20 -TABLE_NAME = 'people' -SELECT = 'select * from %s order by age, name_last' % TABLE_NAME - -con = sqlite3.connect("mydb") - -cur = con.cursor() -cur.execute(SELECT) - -# Print a header. -for fieldDesc in cur.description: - print fieldDesc[0].ljust(FIELD_MAX_WIDTH) , -print # Finish the header with a newline. -print '-' * 78 - -# For each row, print the value of each field left-justified within -# the maximum possible width of that field. -fieldIndices = range(len(cur.description)) -for row in cur: - for fieldIndex in fieldIndices: - fieldValue = str(row[fieldIndex]) - print fieldValue.ljust(FIELD_MAX_WIDTH) , - - print # Finish the row with a newline. +import sqlite3 + +FIELD_MAX_WIDTH = 20 +TABLE_NAME = 'people' +SELECT = 'select * from %s order by age, name_last' % TABLE_NAME + +con = sqlite3.connect("mydb") + +cur = con.cursor() +cur.execute(SELECT) + +# Print a header. +for fieldDesc in cur.description: + print fieldDesc[0].ljust(FIELD_MAX_WIDTH) , +print # Finish the header with a newline. +print '-' * 78 + +# For each row, print the value of each field left-justified within +# the maximum possible width of that field. +fieldIndices = range(len(cur.description)) +for row in cur: + for fieldIndex in fieldIndices: + fieldValue = str(row[fieldIndex]) + print fieldValue.ljust(FIELD_MAX_WIDTH) , + + print # Finish the row with a newline. diff --git a/Doc/lib/sqlite3/text_factory.py b/Doc/lib/sqlite3/text_factory.py index 13c832d..3e157a8 100644 --- a/Doc/lib/sqlite3/text_factory.py +++ b/Doc/lib/sqlite3/text_factory.py @@ -1,42 +1,42 @@ -import sqlite3 - -con = sqlite3.connect(":memory:") -cur = con.cursor() - -# Create the table -con.execute("create table person(lastname, firstname)") - -AUSTRIA = u"\xd6sterreich" - -# by default, rows are returned as Unicode -cur.execute("select ?", (AUSTRIA,)) -row = cur.fetchone() -assert row[0] == AUSTRIA - -# but we can make pysqlite always return bytestrings ... -con.text_factory = str -cur.execute("select ?", (AUSTRIA,)) -row = cur.fetchone() -assert type(row[0]) == str -# the bytestrings will be encoded in UTF-8, unless you stored garbage in the -# database ... -assert row[0] == AUSTRIA.encode("utf-8") - -# we can also implement a custom text_factory ... -# here we implement one that will ignore Unicode characters that cannot be -# decoded from UTF-8 -con.text_factory = lambda x: unicode(x, "utf-8", "ignore") -cur.execute("select ?", ("this is latin1 and would normally create errors" + u"\xe4\xf6\xfc".encode("latin1"),)) -row = cur.fetchone() -assert type(row[0]) == unicode - -# pysqlite offers a builtin optimized text_factory that will return bytestring -# objects, if the data is in ASCII only, and otherwise return unicode objects -con.text_factory = sqlite3.OptimizedUnicode -cur.execute("select ?", (AUSTRIA,)) -row = cur.fetchone() -assert type(row[0]) == unicode - -cur.execute("select ?", ("Germany",)) -row = cur.fetchone() -assert type(row[0]) == str +import sqlite3 + +con = sqlite3.connect(":memory:") +cur = con.cursor() + +# Create the table +con.execute("create table person(lastname, firstname)") + +AUSTRIA = u"\xd6sterreich" + +# by default, rows are returned as Unicode +cur.execute("select ?", (AUSTRIA,)) +row = cur.fetchone() +assert row[0] == AUSTRIA + +# but we can make pysqlite always return bytestrings ... +con.text_factory = str +cur.execute("select ?", (AUSTRIA,)) +row = cur.fetchone() +assert type(row[0]) == str +# the bytestrings will be encoded in UTF-8, unless you stored garbage in the +# database ... +assert row[0] == AUSTRIA.encode("utf-8") + +# we can also implement a custom text_factory ... +# here we implement one that will ignore Unicode characters that cannot be +# decoded from UTF-8 +con.text_factory = lambda x: unicode(x, "utf-8", "ignore") +cur.execute("select ?", ("this is latin1 and would normally create errors" + u"\xe4\xf6\xfc".encode("latin1"),)) +row = cur.fetchone() +assert type(row[0]) == unicode + +# pysqlite offers a builtin optimized text_factory that will return bytestring +# objects, if the data is in ASCII only, and otherwise return unicode objects +con.text_factory = sqlite3.OptimizedUnicode +cur.execute("select ?", (AUSTRIA,)) +row = cur.fetchone() +assert type(row[0]) == unicode + +cur.execute("select ?", ("Germany",)) +row = cur.fetchone() +assert type(row[0]) == str diff --git a/Lib/test/test_bigmem.py b/Lib/test/test_bigmem.py index f685d14..255428f 100644 --- a/Lib/test/test_bigmem.py +++ b/Lib/test/test_bigmem.py @@ -1,964 +1,964 @@ -from test import test_support -from test.test_support import bigmemtest, _1G, _2G - -import unittest -import operator -import string -import sys - -# Bigmem testing houserules: -# -# - Try not to allocate too many large objects. It's okay to rely on -# refcounting semantics, but don't forget that 's = create_largestring()' -# doesn't release the old 's' (if it exists) until well after its new -# value has been created. Use 'del s' before the create_largestring call. -# -# - Do *not* compare large objects using assertEquals or similar. It's a -# lengty operation and the errormessage will be utterly useless due to -# its size. To make sure whether a result has the right contents, better -# to use the strip or count methods, or compare meaningful slices. -# -# - Don't forget to test for large indices, offsets and results and such, -# in addition to large sizes. -# -# - When repeating an object (say, a substring, or a small list) to create -# a large object, make the subobject of a length that is not a power of -# 2. That way, int-wrapping problems are more easily detected. -# -# - While the bigmemtest decorator speaks of 'minsize', all tests will -# actually be called with a much smaller number too, in the normal -# test run (5Kb currently.) This is so the tests themselves get frequent -# testing Consequently, always make all large allocations based on the -# passed-in 'size', and don't rely on the size being very large. Also, -# memuse-per-size should remain sane (less than a few thousand); if your -# test uses more, adjust 'size' upward, instead. - -class StrTest(unittest.TestCase): - @bigmemtest(minsize=_2G, memuse=2) - def test_capitalize(self, size): - SUBSTR = ' abc def ghi' - s = '-' * size + SUBSTR - caps = s.capitalize() - self.assertEquals(caps[-len(SUBSTR):], - SUBSTR.capitalize()) - self.assertEquals(caps.lstrip('-'), SUBSTR) - - @bigmemtest(minsize=_2G + 10, memuse=1) - def test_center(self, size): - SUBSTR = ' abc def ghi' - s = SUBSTR.center(size) - self.assertEquals(len(s), size) - lpadsize = rpadsize = (len(s) - len(SUBSTR)) // 2 - if len(s) % 2: - lpadsize += 1 - self.assertEquals(s[lpadsize:-rpadsize], SUBSTR) - self.assertEquals(s.strip(), SUBSTR.strip()) - - @bigmemtest(minsize=_2G, memuse=2) - def test_count(self, size): - SUBSTR = ' abc def ghi' - s = '.' * size + SUBSTR - self.assertEquals(s.count('.'), size) - s += '.' - self.assertEquals(s.count('.'), size + 1) - self.assertEquals(s.count(' '), 3) - self.assertEquals(s.count('i'), 1) - self.assertEquals(s.count('j'), 0) - - @bigmemtest(minsize=0, memuse=1) - def test_decode(self, size): - pass - - @bigmemtest(minsize=0, memuse=1) - def test_encode(self, size): - pass - - @bigmemtest(minsize=_2G, memuse=2) - def test_endswith(self, size): - SUBSTR = ' abc def ghi' - s = '-' * size + SUBSTR - self.failUnless(s.endswith(SUBSTR)) - self.failUnless(s.endswith(s)) - s2 = '...' + s - self.failUnless(s2.endswith(s)) - self.failIf(s.endswith('a' + SUBSTR)) - self.failIf(SUBSTR.endswith(s)) - - @bigmemtest(minsize=_2G + 10, memuse=2) - def test_expandtabs(self, size): - s = '-' * size - tabsize = 8 - self.assertEquals(s.expandtabs(), s) - del s - slen, remainder = divmod(size, tabsize) - s = ' \t' * slen - s = s.expandtabs(tabsize) - self.assertEquals(len(s), size - remainder) - self.assertEquals(len(s.strip(' ')), 0) - - @bigmemtest(minsize=_2G, memuse=2) - def test_find(self, size): - SUBSTR = ' abc def ghi' - sublen = len(SUBSTR) - s = ''.join([SUBSTR, '-' * size, SUBSTR]) - self.assertEquals(s.find(' '), 0) - self.assertEquals(s.find(SUBSTR), 0) - self.assertEquals(s.find(' ', sublen), sublen + size) - self.assertEquals(s.find(SUBSTR, len(SUBSTR)), sublen + size) - self.assertEquals(s.find('i'), SUBSTR.find('i')) - self.assertEquals(s.find('i', sublen), - sublen + size + SUBSTR.find('i')) - self.assertEquals(s.find('i', size), - sublen + size + SUBSTR.find('i')) - self.assertEquals(s.find('j'), -1) - - @bigmemtest(minsize=_2G, memuse=2) - def test_index(self, size): - SUBSTR = ' abc def ghi' - sublen = len(SUBSTR) - s = ''.join([SUBSTR, '-' * size, SUBSTR]) - self.assertEquals(s.index(' '), 0) - self.assertEquals(s.index(SUBSTR), 0) - self.assertEquals(s.index(' ', sublen), sublen + size) - self.assertEquals(s.index(SUBSTR, sublen), sublen + size) - self.assertEquals(s.index('i'), SUBSTR.index('i')) - self.assertEquals(s.index('i', sublen), - sublen + size + SUBSTR.index('i')) - self.assertEquals(s.index('i', size), - sublen + size + SUBSTR.index('i')) - self.assertRaises(ValueError, s.index, 'j') - - @bigmemtest(minsize=_2G, memuse=2) - def test_isalnum(self, size): - SUBSTR = '123456' - s = 'a' * size + SUBSTR - self.failUnless(s.isalnum()) - s += '.' - self.failIf(s.isalnum()) - - @bigmemtest(minsize=_2G, memuse=2) - def test_isalpha(self, size): - SUBSTR = 'zzzzzzz' - s = 'a' * size + SUBSTR - self.failUnless(s.isalpha()) - s += '.' - self.failIf(s.isalpha()) - - @bigmemtest(minsize=_2G, memuse=2) - def test_isdigit(self, size): - SUBSTR = '123456' - s = '9' * size + SUBSTR - self.failUnless(s.isdigit()) - s += 'z' - self.failIf(s.isdigit()) - - @bigmemtest(minsize=_2G, memuse=2) - def test_islower(self, size): - chars = ''.join([ chr(c) for c in range(255) if not chr(c).isupper() ]) - repeats = size // len(chars) + 2 - s = chars * repeats - self.failUnless(s.islower()) - s += 'A' - self.failIf(s.islower()) - - @bigmemtest(minsize=_2G, memuse=2) - def test_isspace(self, size): - whitespace = ' \f\n\r\t\v' - repeats = size // len(whitespace) + 2 - s = whitespace * repeats - self.failUnless(s.isspace()) - s += 'j' - self.failIf(s.isspace()) - - @bigmemtest(minsize=_2G, memuse=2) - def test_istitle(self, size): - SUBSTR = '123456' - s = ''.join(['A', 'a' * size, SUBSTR]) - self.failUnless(s.istitle()) - s += 'A' - self.failUnless(s.istitle()) - s += 'aA' - self.failIf(s.istitle()) - - @bigmemtest(minsize=_2G, memuse=2) - def test_isupper(self, size): - chars = ''.join([ chr(c) for c in range(255) if not chr(c).islower() ]) - repeats = size // len(chars) + 2 - s = chars * repeats - self.failUnless(s.isupper()) - s += 'a' - self.failIf(s.isupper()) - - @bigmemtest(minsize=_2G, memuse=2) - def test_join(self, size): - s = 'A' * size - x = s.join(['aaaaa', 'bbbbb']) - self.assertEquals(x.count('a'), 5) - self.assertEquals(x.count('b'), 5) - self.failUnless(x.startswith('aaaaaA')) - self.failUnless(x.endswith('Abbbbb')) - - @bigmemtest(minsize=_2G + 10, memuse=1) - def test_ljust(self, size): - SUBSTR = ' abc def ghi' - s = SUBSTR.ljust(size) - self.failUnless(s.startswith(SUBSTR + ' ')) - self.assertEquals(len(s), size) - self.assertEquals(s.strip(), SUBSTR.strip()) - - @bigmemtest(minsize=_2G + 10, memuse=2) - def test_lower(self, size): - s = 'A' * size - s = s.lower() - self.assertEquals(len(s), size) - self.assertEquals(s.count('a'), size) - - @bigmemtest(minsize=_2G + 10, memuse=1) - def test_lstrip(self, size): - SUBSTR = 'abc def ghi' - s = SUBSTR.rjust(size) - self.assertEquals(len(s), size) - self.assertEquals(s.lstrip(), SUBSTR.lstrip()) - del s - s = SUBSTR.ljust(size) - self.assertEquals(len(s), size) - stripped = s.lstrip() - self.failUnless(stripped is s) - - @bigmemtest(minsize=_2G + 10, memuse=2) - def test_replace(self, size): - replacement = 'a' - s = ' ' * size - s = s.replace(' ', replacement) - self.assertEquals(len(s), size) - self.assertEquals(s.count(replacement), size) - s = s.replace(replacement, ' ', size - 4) - self.assertEquals(len(s), size) - self.assertEquals(s.count(replacement), 4) - self.assertEquals(s[-10:], ' aaaa') - - @bigmemtest(minsize=_2G, memuse=2) - def test_rfind(self, size): - SUBSTR = ' abc def ghi' - sublen = len(SUBSTR) - s = ''.join([SUBSTR, '-' * size, SUBSTR]) - self.assertEquals(s.rfind(' '), sublen + size + SUBSTR.rfind(' ')) - self.assertEquals(s.rfind(SUBSTR), sublen + size) - self.assertEquals(s.rfind(' ', 0, size), SUBSTR.rfind(' ')) - self.assertEquals(s.rfind(SUBSTR, 0, sublen + size), 0) - self.assertEquals(s.rfind('i'), sublen + size + SUBSTR.rfind('i')) - self.assertEquals(s.rfind('i', 0, sublen), SUBSTR.rfind('i')) - self.assertEquals(s.rfind('i', 0, sublen + size), - SUBSTR.rfind('i')) - self.assertEquals(s.rfind('j'), -1) - - @bigmemtest(minsize=_2G, memuse=2) - def test_rindex(self, size): - SUBSTR = ' abc def ghi' - sublen = len(SUBSTR) - s = ''.join([SUBSTR, '-' * size, SUBSTR]) - self.assertEquals(s.rindex(' '), - sublen + size + SUBSTR.rindex(' ')) - self.assertEquals(s.rindex(SUBSTR), sublen + size) - self.assertEquals(s.rindex(' ', 0, sublen + size - 1), - SUBSTR.rindex(' ')) - self.assertEquals(s.rindex(SUBSTR, 0, sublen + size), 0) - self.assertEquals(s.rindex('i'), - sublen + size + SUBSTR.rindex('i')) - self.assertEquals(s.rindex('i', 0, sublen), SUBSTR.rindex('i')) - self.assertEquals(s.rindex('i', 0, sublen + size), - SUBSTR.rindex('i')) - self.assertRaises(ValueError, s.rindex, 'j') - - @bigmemtest(minsize=_2G + 10, memuse=1) - def test_rjust(self, size): - SUBSTR = ' abc def ghi' - s = SUBSTR.ljust(size) - self.failUnless(s.startswith(SUBSTR + ' ')) - self.assertEquals(len(s), size) - self.assertEquals(s.strip(), SUBSTR.strip()) - - @bigmemtest(minsize=_2G + 10, memuse=1) - def test_rstrip(self, size): - SUBSTR = ' abc def ghi' - s = SUBSTR.ljust(size) - self.assertEquals(len(s), size) - self.assertEquals(s.rstrip(), SUBSTR.rstrip()) - del s - s = SUBSTR.rjust(size) - self.assertEquals(len(s), size) - stripped = s.rstrip() - self.failUnless(stripped is s) - - # The test takes about size bytes to build a string, and then about - # sqrt(size) substrings of sqrt(size) in size and a list to - # hold sqrt(size) items. It's close but just over 2x size. - @bigmemtest(minsize=_2G, memuse=2.1) - def test_split_small(self, size): - # Crudely calculate an estimate so that the result of s.split won't - # take up an inordinate amount of memory - chunksize = int(size ** 0.5 + 2) - SUBSTR = 'a' + ' ' * chunksize - s = SUBSTR * chunksize - l = s.split() - self.assertEquals(len(l), chunksize) - self.assertEquals(set(l), set(['a'])) - del l - l = s.split('a') - self.assertEquals(len(l), chunksize + 1) - self.assertEquals(set(l), set(['', ' ' * chunksize])) - - # Allocates a string of twice size (and briefly two) and a list of - # size. Because of internal affairs, the s.split() call produces a - # list of size times the same one-character string, so we only - # suffer for the list size. (Otherwise, it'd cost another 48 times - # size in bytes!) Nevertheless, a list of size takes - # 8*size bytes. - @bigmemtest(minsize=_2G + 5, memuse=10) - def test_split_large(self, size): - s = ' a' * size + ' ' - l = s.split() - self.assertEquals(len(l), size) - self.assertEquals(set(l), set(['a'])) - del l - l = s.split('a') - self.assertEquals(len(l), size + 1) - self.assertEquals(set(l), set([' '])) - - @bigmemtest(minsize=_2G, memuse=2.1) - def test_splitlines(self, size): - # Crudely calculate an estimate so that the result of s.split won't - # take up an inordinate amount of memory - chunksize = int(size ** 0.5 + 2) // 2 - SUBSTR = ' ' * chunksize + '\n' + ' ' * chunksize + '\r\n' - s = SUBSTR * chunksize - l = s.splitlines() - self.assertEquals(len(l), chunksize * 2) - self.assertEquals(set(l), set([' ' * chunksize])) - - @bigmemtest(minsize=_2G, memuse=2) - def test_startswith(self, size): - SUBSTR = ' abc def ghi' - s = '-' * size + SUBSTR - self.failUnless(s.startswith(s)) - self.failUnless(s.startswith('-' * size)) - self.failIf(s.startswith(SUBSTR)) - - @bigmemtest(minsize=_2G, memuse=1) - def test_strip(self, size): - SUBSTR = ' abc def ghi ' - s = SUBSTR.rjust(size) - self.assertEquals(len(s), size) - self.assertEquals(s.strip(), SUBSTR.strip()) - del s - s = SUBSTR.ljust(size) - self.assertEquals(len(s), size) - self.assertEquals(s.strip(), SUBSTR.strip()) - - @bigmemtest(minsize=_2G, memuse=2) - def test_swapcase(self, size): - SUBSTR = "aBcDeFG12.'\xa9\x00" - sublen = len(SUBSTR) - repeats = size // sublen + 2 - s = SUBSTR * repeats - s = s.swapcase() - self.assertEquals(len(s), sublen * repeats) - self.assertEquals(s[:sublen * 3], SUBSTR.swapcase() * 3) - self.assertEquals(s[-sublen * 3:], SUBSTR.swapcase() * 3) - - @bigmemtest(minsize=_2G, memuse=2) - def test_title(self, size): - SUBSTR = 'SpaaHAaaAaham' - s = SUBSTR * (size // len(SUBSTR) + 2) - s = s.title() - self.failUnless(s.startswith((SUBSTR * 3).title())) - self.failUnless(s.endswith(SUBSTR.lower() * 3)) - - @bigmemtest(minsize=_2G, memuse=2) - def test_translate(self, size): - trans = string.maketrans('.aZ', '-!$') - SUBSTR = 'aZz.z.Aaz.' - sublen = len(SUBSTR) - repeats = size // sublen + 2 - s = SUBSTR * repeats - s = s.translate(trans) - self.assertEquals(len(s), repeats * sublen) - self.assertEquals(s[:sublen], SUBSTR.translate(trans)) - self.assertEquals(s[-sublen:], SUBSTR.translate(trans)) - self.assertEquals(s.count('.'), 0) - self.assertEquals(s.count('!'), repeats * 2) - self.assertEquals(s.count('z'), repeats * 3) - - @bigmemtest(minsize=_2G + 5, memuse=2) - def test_upper(self, size): - s = 'a' * size - s = s.upper() - self.assertEquals(len(s), size) - self.assertEquals(s.count('A'), size) - - @bigmemtest(minsize=_2G + 20, memuse=1) - def test_zfill(self, size): - SUBSTR = '-568324723598234' - s = SUBSTR.zfill(size) - self.failUnless(s.endswith('0' + SUBSTR[1:])) - self.failUnless(s.startswith('-0')) - self.assertEquals(len(s), size) - self.assertEquals(s.count('0'), size - len(SUBSTR)) - - @bigmemtest(minsize=_2G + 10, memuse=2) - def test_format(self, size): - s = '-' * size - sf = '%s' % (s,) - self.failUnless(s == sf) - del sf - sf = '..%s..' % (s,) - self.assertEquals(len(sf), len(s) + 4) - self.failUnless(sf.startswith('..-')) - self.failUnless(sf.endswith('-..')) - del s, sf - - size //= 2 - edge = '-' * size - s = ''.join([edge, '%s', edge]) - del edge - s = s % '...' - self.assertEquals(len(s), size * 2 + 3) - self.assertEquals(s.count('.'), 3) - self.assertEquals(s.count('-'), size * 2) - - @bigmemtest(minsize=_2G + 10, memuse=2) - def test_repr_small(self, size): - s = '-' * size - s = repr(s) - self.assertEquals(len(s), size + 2) - self.assertEquals(s[0], "'") - self.assertEquals(s[-1], "'") - self.assertEquals(s.count('-'), size) - del s - # repr() will create a string four times as large as this 'binary - # string', but we don't want to allocate much more than twice - # size in total. (We do extra testing in test_repr_large()) - size = size // 5 * 2 - s = '\x00' * size - s = repr(s) - self.assertEquals(len(s), size * 4 + 2) - self.assertEquals(s[0], "'") - self.assertEquals(s[-1], "'") - self.assertEquals(s.count('\\'), size) - self.assertEquals(s.count('0'), size * 2) - - @bigmemtest(minsize=_2G + 10, memuse=5) - def test_repr_large(self, size): - s = '\x00' * size - s = repr(s) - self.assertEquals(len(s), size * 4 + 2) - self.assertEquals(s[0], "'") - self.assertEquals(s[-1], "'") - self.assertEquals(s.count('\\'), size) - self.assertEquals(s.count('0'), size * 2) - - # This test is meaningful even with size < 2G, as long as the - # doubled string is > 2G (but it tests more if both are > 2G :) - @bigmemtest(minsize=_1G + 2, memuse=3) - def test_concat(self, size): - s = '.' * size - self.assertEquals(len(s), size) - s = s + s - self.assertEquals(len(s), size * 2) - self.assertEquals(s.count('.'), size * 2) - - # This test is meaningful even with size < 2G, as long as the - # repeated string is > 2G (but it tests more if both are > 2G :) - @bigmemtest(minsize=_1G + 2, memuse=3) - def test_repeat(self, size): - s = '.' * size - self.assertEquals(len(s), size) - s = s * 2 - self.assertEquals(len(s), size * 2) - self.assertEquals(s.count('.'), size * 2) - - @bigmemtest(minsize=_2G + 20, memuse=1) - def test_slice_and_getitem(self, size): - SUBSTR = '0123456789' - sublen = len(SUBSTR) - s = SUBSTR * (size // sublen) - stepsize = len(s) // 100 - stepsize = stepsize - (stepsize % sublen) - for i in range(0, len(s) - stepsize, stepsize): - self.assertEquals(s[i], SUBSTR[0]) - self.assertEquals(s[i:i + sublen], SUBSTR) - self.assertEquals(s[i:i + sublen:2], SUBSTR[::2]) - if i > 0: - self.assertEquals(s[i + sublen - 1:i - 1:-3], - SUBSTR[sublen::-3]) - # Make sure we do some slicing and indexing near the end of the - # string, too. - self.assertEquals(s[len(s) - 1], SUBSTR[-1]) - self.assertEquals(s[-1], SUBSTR[-1]) - self.assertEquals(s[len(s) - 10], SUBSTR[0]) - self.assertEquals(s[-sublen], SUBSTR[0]) - self.assertEquals(s[len(s):], '') - self.assertEquals(s[len(s) - 1:], SUBSTR[-1]) - self.assertEquals(s[-1:], SUBSTR[-1]) - self.assertEquals(s[len(s) - sublen:], SUBSTR) - self.assertEquals(s[-sublen:], SUBSTR) - self.assertEquals(len(s[:]), len(s)) - self.assertEquals(len(s[:len(s) - 5]), len(s) - 5) - self.assertEquals(len(s[5:-5]), len(s) - 10) - - self.assertRaises(IndexError, operator.getitem, s, len(s)) - self.assertRaises(IndexError, operator.getitem, s, len(s) + 1) - self.assertRaises(IndexError, operator.getitem, s, len(s) + 1<<31) - - @bigmemtest(minsize=_2G, memuse=2) - def test_contains(self, size): - SUBSTR = '0123456789' - edge = '-' * (size // 2) - s = ''.join([edge, SUBSTR, edge]) - del edge - self.failUnless(SUBSTR in s) - self.failIf(SUBSTR * 2 in s) - self.failUnless('-' in s) - self.failIf('a' in s) - s += 'a' - self.failUnless('a' in s) - - @bigmemtest(minsize=_2G + 10, memuse=2) - def test_compare(self, size): - s1 = '-' * size - s2 = '-' * size - self.failUnless(s1 == s2) - del s2 - s2 = s1 + 'a' - self.failIf(s1 == s2) - del s2 - s2 = '.' * size - self.failIf(s1 == s2) - - @bigmemtest(minsize=_2G + 10, memuse=1) - def test_hash(self, size): - # Not sure if we can do any meaningful tests here... Even if we - # start relying on the exact algorithm used, the result will be - # different depending on the size of the C 'long int'. Even this - # test is dodgy (there's no *guarantee* that the two things should - # have a different hash, even if they, in the current - # implementation, almost always do.) - s = '\x00' * size - h1 = hash(s) - del s - s = '\x00' * (size + 1) - self.failIf(h1 == hash(s)) - -class TupleTest(unittest.TestCase): - - # Tuples have a small, fixed-sized head and an array of pointers to - # data. Since we're testing 64-bit addressing, we can assume that the - # pointers are 8 bytes, and that thus that the tuples take up 8 bytes - # per size. - - # As a side-effect of testing long tuples, these tests happen to test - # having more than 2<<31 references to any given object. Hence the - # use of different types of objects as contents in different tests. - - @bigmemtest(minsize=_2G + 2, memuse=16) - def test_compare(self, size): - t1 = (u'',) * size - t2 = (u'',) * size - self.failUnless(t1 == t2) - del t2 - t2 = (u'',) * (size + 1) - self.failIf(t1 == t2) - del t2 - t2 = (1,) * size - self.failIf(t1 == t2) - - # Test concatenating into a single tuple of more than 2G in length, - # and concatenating a tuple of more than 2G in length separately, so - # the smaller test still gets run even if there isn't memory for the - # larger test (but we still let the tester know the larger test is - # skipped, in verbose mode.) - def basic_concat_test(self, size): - t = ((),) * size - self.assertEquals(len(t), size) - t = t + t - self.assertEquals(len(t), size * 2) - - @bigmemtest(minsize=_2G // 2 + 2, memuse=24) - def test_concat_small(self, size): - return self.basic_concat_test(size) - - @bigmemtest(minsize=_2G + 2, memuse=24) - def test_concat_large(self, size): - return self.basic_concat_test(size) - - @bigmemtest(minsize=_2G // 5 + 10, memuse=8 * 5) - def test_contains(self, size): - t = (1, 2, 3, 4, 5) * size - self.assertEquals(len(t), size * 5) - self.failUnless(5 in t) - self.failIf((1, 2, 3, 4, 5) in t) - self.failIf(0 in t) - - @bigmemtest(minsize=_2G + 10, memuse=8) - def test_hash(self, size): - t1 = (0,) * size - h1 = hash(t1) - del t1 - t2 = (0,) * (size + 1) - self.failIf(h1 == hash(t2)) - - @bigmemtest(minsize=_2G + 10, memuse=8) - def test_index_and_slice(self, size): - t = (None,) * size - self.assertEquals(len(t), size) - self.assertEquals(t[-1], None) - self.assertEquals(t[5], None) - self.assertEquals(t[size - 1], None) - self.assertRaises(IndexError, operator.getitem, t, size) - self.assertEquals(t[:5], (None,) * 5) - self.assertEquals(t[-5:], (None,) * 5) - self.assertEquals(t[20:25], (None,) * 5) - self.assertEquals(t[-25:-20], (None,) * 5) - self.assertEquals(t[size - 5:], (None,) * 5) - self.assertEquals(t[size - 5:size], (None,) * 5) - self.assertEquals(t[size - 6:size - 2], (None,) * 4) - self.assertEquals(t[size:size], ()) - self.assertEquals(t[size:size+5], ()) - - # Like test_concat, split in two. - def basic_test_repeat(self, size): - t = ('',) * size - self.assertEquals(len(t), size) - t = t * 2 - self.assertEquals(len(t), size * 2) - - @bigmemtest(minsize=_2G // 2 + 2, memuse=24) - def test_repeat_small(self, size): - return self.basic_test_repeat(size) - - @bigmemtest(minsize=_2G + 2, memuse=24) - def test_repeat_large(self, size): - return self.basic_test_repeat(size) - - # Like test_concat, split in two. - def basic_test_repr(self, size): - t = (0,) * size - s = repr(t) - # The repr of a tuple of 0's is exactly three times the tuple length. - self.assertEquals(len(s), size * 3) - self.assertEquals(s[:5], '(0, 0') - self.assertEquals(s[-5:], '0, 0)') - self.assertEquals(s.count('0'), size) - - @bigmemtest(minsize=_2G // 3 + 2, memuse=8 + 3) - def test_repr_small(self, size): - return self.basic_test_repr(size) - - @bigmemtest(minsize=_2G + 2, memuse=8 + 3) - def test_repr_large(self, size): - return self.basic_test_repr(size) - -class ListTest(unittest.TestCase): - - # Like tuples, lists have a small, fixed-sized head and an array of - # pointers to data, so 8 bytes per size. Also like tuples, we make the - # lists hold references to various objects to test their refcount - # limits. - - @bigmemtest(minsize=_2G + 2, memuse=16) - def test_compare(self, size): - l1 = [u''] * size - l2 = [u''] * size - self.failUnless(l1 == l2) - del l2 - l2 = [u''] * (size + 1) - self.failIf(l1 == l2) - del l2 - l2 = [2] * size - self.failIf(l1 == l2) - - # Test concatenating into a single list of more than 2G in length, - # and concatenating a list of more than 2G in length separately, so - # the smaller test still gets run even if there isn't memory for the - # larger test (but we still let the tester know the larger test is - # skipped, in verbose mode.) - def basic_test_concat(self, size): - l = [[]] * size - self.assertEquals(len(l), size) - l = l + l - self.assertEquals(len(l), size * 2) - - @bigmemtest(minsize=_2G // 2 + 2, memuse=24) - def test_concat_small(self, size): - return self.basic_test_concat(size) - - @bigmemtest(minsize=_2G + 2, memuse=24) - def test_concat_large(self, size): - return self.basic_test_concat(size) - - def basic_test_inplace_concat(self, size): - l = [sys.stdout] * size - l += l - self.assertEquals(len(l), size * 2) - self.failUnless(l[0] is l[-1]) - self.failUnless(l[size - 1] is l[size + 1]) - - @bigmemtest(minsize=_2G // 2 + 2, memuse=24) - def test_inplace_concat_small(self, size): - return self.basic_test_inplace_concat(size) - - @bigmemtest(minsize=_2G + 2, memuse=24) - def test_inplace_concat_large(self, size): - return self.basic_test_inplace_concat(size) - - @bigmemtest(minsize=_2G // 5 + 10, memuse=8 * 5) - def test_contains(self, size): - l = [1, 2, 3, 4, 5] * size - self.assertEquals(len(l), size * 5) - self.failUnless(5 in l) - self.failIf([1, 2, 3, 4, 5] in l) - self.failIf(0 in l) - - @bigmemtest(minsize=_2G + 10, memuse=8) - def test_hash(self, size): - l = [0] * size - self.failUnlessRaises(TypeError, hash, l) - - @bigmemtest(minsize=_2G + 10, memuse=8) - def test_index_and_slice(self, size): - l = [None] * size - self.assertEquals(len(l), size) - self.assertEquals(l[-1], None) - self.assertEquals(l[5], None) - self.assertEquals(l[size - 1], None) - self.assertRaises(IndexError, operator.getitem, l, size) - self.assertEquals(l[:5], [None] * 5) - self.assertEquals(l[-5:], [None] * 5) - self.assertEquals(l[20:25], [None] * 5) - self.assertEquals(l[-25:-20], [None] * 5) - self.assertEquals(l[size - 5:], [None] * 5) - self.assertEquals(l[size - 5:size], [None] * 5) - self.assertEquals(l[size - 6:size - 2], [None] * 4) - self.assertEquals(l[size:size], []) - self.assertEquals(l[size:size+5], []) - - l[size - 2] = 5 - self.assertEquals(len(l), size) - self.assertEquals(l[-3:], [None, 5, None]) - self.assertEquals(l.count(5), 1) - self.assertRaises(IndexError, operator.setitem, l, size, 6) - self.assertEquals(len(l), size) - - l[size - 7:] = [1, 2, 3, 4, 5] - size -= 2 - self.assertEquals(len(l), size) - self.assertEquals(l[-7:], [None, None, 1, 2, 3, 4, 5]) - - l[:7] = [1, 2, 3, 4, 5] - size -= 2 - self.assertEquals(len(l), size) - self.assertEquals(l[:7], [1, 2, 3, 4, 5, None, None]) - - del l[size - 1] - size -= 1 - self.assertEquals(len(l), size) - self.assertEquals(l[-1], 4) - - del l[-2:] - size -= 2 - self.assertEquals(len(l), size) - self.assertEquals(l[-1], 2) - - del l[0] - size -= 1 - self.assertEquals(len(l), size) - self.assertEquals(l[0], 2) - - del l[:2] - size -= 2 - self.assertEquals(len(l), size) - self.assertEquals(l[0], 4) - - # Like test_concat, split in two. - def basic_test_repeat(self, size): - l = [] * size - self.failIf(l) - l = [''] * size - self.assertEquals(len(l), size) - l = l * 2 - self.assertEquals(len(l), size * 2) - - @bigmemtest(minsize=_2G // 2 + 2, memuse=24) - def test_repeat_small(self, size): - return self.basic_test_repeat(size) - - @bigmemtest(minsize=_2G + 2, memuse=24) - def test_repeat_large(self, size): - return self.basic_test_repeat(size) - - def basic_test_inplace_repeat(self, size): - l = [''] - l *= size - self.assertEquals(len(l), size) - self.failUnless(l[0] is l[-1]) - del l - - l = [''] * size - l *= 2 - self.assertEquals(len(l), size * 2) - self.failUnless(l[size - 1] is l[-1]) - - @bigmemtest(minsize=_2G // 2 + 2, memuse=16) - def test_inplace_repeat_small(self, size): - return self.basic_test_inplace_repeat(size) - - @bigmemtest(minsize=_2G + 2, memuse=16) - def test_inplace_repeat_large(self, size): - return self.basic_test_inplace_repeat(size) - - def basic_test_repr(self, size): - l = [0] * size - s = repr(l) - # The repr of a list of 0's is exactly three times the list length. - self.assertEquals(len(s), size * 3) - self.assertEquals(s[:5], '[0, 0') - self.assertEquals(s[-5:], '0, 0]') - self.assertEquals(s.count('0'), size) - - @bigmemtest(minsize=_2G // 3 + 2, memuse=8 + 3) - def test_repr_small(self, size): - return self.basic_test_repr(size) - - @bigmemtest(minsize=_2G + 2, memuse=8 + 3) - def test_repr_large(self, size): - return self.basic_test_repr(size) - - # list overallocates ~1/8th of the total size (on first expansion) so - # the single list.append call puts memuse at 9 bytes per size. - @bigmemtest(minsize=_2G, memuse=9) - def test_append(self, size): - l = [object()] * size - l.append(object()) - self.assertEquals(len(l), size+1) - self.failUnless(l[-3] is l[-2]) - self.failIf(l[-2] is l[-1]) - - @bigmemtest(minsize=_2G // 5 + 2, memuse=8 * 5) - def test_count(self, size): - l = [1, 2, 3, 4, 5] * size - self.assertEquals(l.count(1), size) - self.assertEquals(l.count("1"), 0) - - def basic_test_extend(self, size): - l = [file] * size - l.extend(l) - self.assertEquals(len(l), size * 2) - self.failUnless(l[0] is l[-1]) - self.failUnless(l[size - 1] is l[size + 1]) - - @bigmemtest(minsize=_2G // 2 + 2, memuse=16) - def test_extend_small(self, size): - return self.basic_test_extend(size) - - @bigmemtest(minsize=_2G + 2, memuse=16) - def test_extend_large(self, size): - return self.basic_test_extend(size) - - @bigmemtest(minsize=_2G // 5 + 2, memuse=8 * 5) - def test_index(self, size): - l = [1L, 2L, 3L, 4L, 5L] * size - size *= 5 - self.assertEquals(l.index(1), 0) - self.assertEquals(l.index(5, size - 5), size - 1) - self.assertEquals(l.index(5, size - 5, size), size - 1) - self.assertRaises(ValueError, l.index, 1, size - 4, size) - self.assertRaises(ValueError, l.index, 6L) - - # This tests suffers from overallocation, just like test_append. - @bigmemtest(minsize=_2G + 10, memuse=9) - def test_insert(self, size): - l = [1.0] * size - l.insert(size - 1, "A") - size += 1 - self.assertEquals(len(l), size) - self.assertEquals(l[-3:], [1.0, "A", 1.0]) - - l.insert(size + 1, "B") - size += 1 - self.assertEquals(len(l), size) - self.assertEquals(l[-3:], ["A", 1.0, "B"]) - - l.insert(1, "C") - size += 1 - self.assertEquals(len(l), size) - self.assertEquals(l[:3], [1.0, "C", 1.0]) - self.assertEquals(l[size - 3:], ["A", 1.0, "B"]) - - @bigmemtest(minsize=_2G // 5 + 4, memuse=8 * 5) - def test_pop(self, size): - l = [u"a", u"b", u"c", u"d", u"e"] * size - size *= 5 - self.assertEquals(len(l), size) - - item = l.pop() - size -= 1 - self.assertEquals(len(l), size) - self.assertEquals(item, u"e") - self.assertEquals(l[-2:], [u"c", u"d"]) - - item = l.pop(0) - size -= 1 - self.assertEquals(len(l), size) - self.assertEquals(item, u"a") - self.assertEquals(l[:2], [u"b", u"c"]) - - item = l.pop(size - 2) - size -= 1 - self.assertEquals(len(l), size) - self.assertEquals(item, u"c") - self.assertEquals(l[-2:], [u"b", u"d"]) - - @bigmemtest(minsize=_2G + 10, memuse=8) - def test_remove(self, size): - l = [10] * size - self.assertEquals(len(l), size) - - l.remove(10) - size -= 1 - self.assertEquals(len(l), size) - - # Because of the earlier l.remove(), this append doesn't trigger - # a resize. - l.append(5) - size += 1 - self.assertEquals(len(l), size) - self.assertEquals(l[-2:], [10, 5]) - l.remove(5) - size -= 1 - self.assertEquals(len(l), size) - self.assertEquals(l[-2:], [10, 10]) - - @bigmemtest(minsize=_2G // 5 + 2, memuse=8 * 5) - def test_reverse(self, size): - l = [1, 2, 3, 4, 5] * size - l.reverse() - self.assertEquals(len(l), size * 5) - self.assertEquals(l[-5:], [5, 4, 3, 2, 1]) - self.assertEquals(l[:5], [5, 4, 3, 2, 1]) - - @bigmemtest(minsize=_2G // 5 + 2, memuse=8 * 5) - def test_sort(self, size): - l = [1, 2, 3, 4, 5] * size - l.sort() - self.assertEquals(len(l), size * 5) - self.assertEquals(l.count(1), size) - self.assertEquals(l[:10], [1] * 10) - self.assertEquals(l[-10:], [5] * 10) - -def test_main(): - test_support.run_unittest(StrTest, TupleTest, ListTest) - -if __name__ == '__main__': - if len(sys.argv) > 1: - test_support.set_memlimit(sys.argv[1]) - test_main() +from test import test_support +from test.test_support import bigmemtest, _1G, _2G + +import unittest +import operator +import string +import sys + +# Bigmem testing houserules: +# +# - Try not to allocate too many large objects. It's okay to rely on +# refcounting semantics, but don't forget that 's = create_largestring()' +# doesn't release the old 's' (if it exists) until well after its new +# value has been created. Use 'del s' before the create_largestring call. +# +# - Do *not* compare large objects using assertEquals or similar. It's a +# lengty operation and the errormessage will be utterly useless due to +# its size. To make sure whether a result has the right contents, better +# to use the strip or count methods, or compare meaningful slices. +# +# - Don't forget to test for large indices, offsets and results and such, +# in addition to large sizes. +# +# - When repeating an object (say, a substring, or a small list) to create +# a large object, make the subobject of a length that is not a power of +# 2. That way, int-wrapping problems are more easily detected. +# +# - While the bigmemtest decorator speaks of 'minsize', all tests will +# actually be called with a much smaller number too, in the normal +# test run (5Kb currently.) This is so the tests themselves get frequent +# testing Consequently, always make all large allocations based on the +# passed-in 'size', and don't rely on the size being very large. Also, +# memuse-per-size should remain sane (less than a few thousand); if your +# test uses more, adjust 'size' upward, instead. + +class StrTest(unittest.TestCase): + @bigmemtest(minsize=_2G, memuse=2) + def test_capitalize(self, size): + SUBSTR = ' abc def ghi' + s = '-' * size + SUBSTR + caps = s.capitalize() + self.assertEquals(caps[-len(SUBSTR):], + SUBSTR.capitalize()) + self.assertEquals(caps.lstrip('-'), SUBSTR) + + @bigmemtest(minsize=_2G + 10, memuse=1) + def test_center(self, size): + SUBSTR = ' abc def ghi' + s = SUBSTR.center(size) + self.assertEquals(len(s), size) + lpadsize = rpadsize = (len(s) - len(SUBSTR)) // 2 + if len(s) % 2: + lpadsize += 1 + self.assertEquals(s[lpadsize:-rpadsize], SUBSTR) + self.assertEquals(s.strip(), SUBSTR.strip()) + + @bigmemtest(minsize=_2G, memuse=2) + def test_count(self, size): + SUBSTR = ' abc def ghi' + s = '.' * size + SUBSTR + self.assertEquals(s.count('.'), size) + s += '.' + self.assertEquals(s.count('.'), size + 1) + self.assertEquals(s.count(' '), 3) + self.assertEquals(s.count('i'), 1) + self.assertEquals(s.count('j'), 0) + + @bigmemtest(minsize=0, memuse=1) + def test_decode(self, size): + pass + + @bigmemtest(minsize=0, memuse=1) + def test_encode(self, size): + pass + + @bigmemtest(minsize=_2G, memuse=2) + def test_endswith(self, size): + SUBSTR = ' abc def ghi' + s = '-' * size + SUBSTR + self.failUnless(s.endswith(SUBSTR)) + self.failUnless(s.endswith(s)) + s2 = '...' + s + self.failUnless(s2.endswith(s)) + self.failIf(s.endswith('a' + SUBSTR)) + self.failIf(SUBSTR.endswith(s)) + + @bigmemtest(minsize=_2G + 10, memuse=2) + def test_expandtabs(self, size): + s = '-' * size + tabsize = 8 + self.assertEquals(s.expandtabs(), s) + del s + slen, remainder = divmod(size, tabsize) + s = ' \t' * slen + s = s.expandtabs(tabsize) + self.assertEquals(len(s), size - remainder) + self.assertEquals(len(s.strip(' ')), 0) + + @bigmemtest(minsize=_2G, memuse=2) + def test_find(self, size): + SUBSTR = ' abc def ghi' + sublen = len(SUBSTR) + s = ''.join([SUBSTR, '-' * size, SUBSTR]) + self.assertEquals(s.find(' '), 0) + self.assertEquals(s.find(SUBSTR), 0) + self.assertEquals(s.find(' ', sublen), sublen + size) + self.assertEquals(s.find(SUBSTR, len(SUBSTR)), sublen + size) + self.assertEquals(s.find('i'), SUBSTR.find('i')) + self.assertEquals(s.find('i', sublen), + sublen + size + SUBSTR.find('i')) + self.assertEquals(s.find('i', size), + sublen + size + SUBSTR.find('i')) + self.assertEquals(s.find('j'), -1) + + @bigmemtest(minsize=_2G, memuse=2) + def test_index(self, size): + SUBSTR = ' abc def ghi' + sublen = len(SUBSTR) + s = ''.join([SUBSTR, '-' * size, SUBSTR]) + self.assertEquals(s.index(' '), 0) + self.assertEquals(s.index(SUBSTR), 0) + self.assertEquals(s.index(' ', sublen), sublen + size) + self.assertEquals(s.index(SUBSTR, sublen), sublen + size) + self.assertEquals(s.index('i'), SUBSTR.index('i')) + self.assertEquals(s.index('i', sublen), + sublen + size + SUBSTR.index('i')) + self.assertEquals(s.index('i', size), + sublen + size + SUBSTR.index('i')) + self.assertRaises(ValueError, s.index, 'j') + + @bigmemtest(minsize=_2G, memuse=2) + def test_isalnum(self, size): + SUBSTR = '123456' + s = 'a' * size + SUBSTR + self.failUnless(s.isalnum()) + s += '.' + self.failIf(s.isalnum()) + + @bigmemtest(minsize=_2G, memuse=2) + def test_isalpha(self, size): + SUBSTR = 'zzzzzzz' + s = 'a' * size + SUBSTR + self.failUnless(s.isalpha()) + s += '.' + self.failIf(s.isalpha()) + + @bigmemtest(minsize=_2G, memuse=2) + def test_isdigit(self, size): + SUBSTR = '123456' + s = '9' * size + SUBSTR + self.failUnless(s.isdigit()) + s += 'z' + self.failIf(s.isdigit()) + + @bigmemtest(minsize=_2G, memuse=2) + def test_islower(self, size): + chars = ''.join([ chr(c) for c in range(255) if not chr(c).isupper() ]) + repeats = size // len(chars) + 2 + s = chars * repeats + self.failUnless(s.islower()) + s += 'A' + self.failIf(s.islower()) + + @bigmemtest(minsize=_2G, memuse=2) + def test_isspace(self, size): + whitespace = ' \f\n\r\t\v' + repeats = size // len(whitespace) + 2 + s = whitespace * repeats + self.failUnless(s.isspace()) + s += 'j' + self.failIf(s.isspace()) + + @bigmemtest(minsize=_2G, memuse=2) + def test_istitle(self, size): + SUBSTR = '123456' + s = ''.join(['A', 'a' * size, SUBSTR]) + self.failUnless(s.istitle()) + s += 'A' + self.failUnless(s.istitle()) + s += 'aA' + self.failIf(s.istitle()) + + @bigmemtest(minsize=_2G, memuse=2) + def test_isupper(self, size): + chars = ''.join([ chr(c) for c in range(255) if not chr(c).islower() ]) + repeats = size // len(chars) + 2 + s = chars * repeats + self.failUnless(s.isupper()) + s += 'a' + self.failIf(s.isupper()) + + @bigmemtest(minsize=_2G, memuse=2) + def test_join(self, size): + s = 'A' * size + x = s.join(['aaaaa', 'bbbbb']) + self.assertEquals(x.count('a'), 5) + self.assertEquals(x.count('b'), 5) + self.failUnless(x.startswith('aaaaaA')) + self.failUnless(x.endswith('Abbbbb')) + + @bigmemtest(minsize=_2G + 10, memuse=1) + def test_ljust(self, size): + SUBSTR = ' abc def ghi' + s = SUBSTR.ljust(size) + self.failUnless(s.startswith(SUBSTR + ' ')) + self.assertEquals(len(s), size) + self.assertEquals(s.strip(), SUBSTR.strip()) + + @bigmemtest(minsize=_2G + 10, memuse=2) + def test_lower(self, size): + s = 'A' * size + s = s.lower() + self.assertEquals(len(s), size) + self.assertEquals(s.count('a'), size) + + @bigmemtest(minsize=_2G + 10, memuse=1) + def test_lstrip(self, size): + SUBSTR = 'abc def ghi' + s = SUBSTR.rjust(size) + self.assertEquals(len(s), size) + self.assertEquals(s.lstrip(), SUBSTR.lstrip()) + del s + s = SUBSTR.ljust(size) + self.assertEquals(len(s), size) + stripped = s.lstrip() + self.failUnless(stripped is s) + + @bigmemtest(minsize=_2G + 10, memuse=2) + def test_replace(self, size): + replacement = 'a' + s = ' ' * size + s = s.replace(' ', replacement) + self.assertEquals(len(s), size) + self.assertEquals(s.count(replacement), size) + s = s.replace(replacement, ' ', size - 4) + self.assertEquals(len(s), size) + self.assertEquals(s.count(replacement), 4) + self.assertEquals(s[-10:], ' aaaa') + + @bigmemtest(minsize=_2G, memuse=2) + def test_rfind(self, size): + SUBSTR = ' abc def ghi' + sublen = len(SUBSTR) + s = ''.join([SUBSTR, '-' * size, SUBSTR]) + self.assertEquals(s.rfind(' '), sublen + size + SUBSTR.rfind(' ')) + self.assertEquals(s.rfind(SUBSTR), sublen + size) + self.assertEquals(s.rfind(' ', 0, size), SUBSTR.rfind(' ')) + self.assertEquals(s.rfind(SUBSTR, 0, sublen + size), 0) + self.assertEquals(s.rfind('i'), sublen + size + SUBSTR.rfind('i')) + self.assertEquals(s.rfind('i', 0, sublen), SUBSTR.rfind('i')) + self.assertEquals(s.rfind('i', 0, sublen + size), + SUBSTR.rfind('i')) + self.assertEquals(s.rfind('j'), -1) + + @bigmemtest(minsize=_2G, memuse=2) + def test_rindex(self, size): + SUBSTR = ' abc def ghi' + sublen = len(SUBSTR) + s = ''.join([SUBSTR, '-' * size, SUBSTR]) + self.assertEquals(s.rindex(' '), + sublen + size + SUBSTR.rindex(' ')) + self.assertEquals(s.rindex(SUBSTR), sublen + size) + self.assertEquals(s.rindex(' ', 0, sublen + size - 1), + SUBSTR.rindex(' ')) + self.assertEquals(s.rindex(SUBSTR, 0, sublen + size), 0) + self.assertEquals(s.rindex('i'), + sublen + size + SUBSTR.rindex('i')) + self.assertEquals(s.rindex('i', 0, sublen), SUBSTR.rindex('i')) + self.assertEquals(s.rindex('i', 0, sublen + size), + SUBSTR.rindex('i')) + self.assertRaises(ValueError, s.rindex, 'j') + + @bigmemtest(minsize=_2G + 10, memuse=1) + def test_rjust(self, size): + SUBSTR = ' abc def ghi' + s = SUBSTR.ljust(size) + self.failUnless(s.startswith(SUBSTR + ' ')) + self.assertEquals(len(s), size) + self.assertEquals(s.strip(), SUBSTR.strip()) + + @bigmemtest(minsize=_2G + 10, memuse=1) + def test_rstrip(self, size): + SUBSTR = ' abc def ghi' + s = SUBSTR.ljust(size) + self.assertEquals(len(s), size) + self.assertEquals(s.rstrip(), SUBSTR.rstrip()) + del s + s = SUBSTR.rjust(size) + self.assertEquals(len(s), size) + stripped = s.rstrip() + self.failUnless(stripped is s) + + # The test takes about size bytes to build a string, and then about + # sqrt(size) substrings of sqrt(size) in size and a list to + # hold sqrt(size) items. It's close but just over 2x size. + @bigmemtest(minsize=_2G, memuse=2.1) + def test_split_small(self, size): + # Crudely calculate an estimate so that the result of s.split won't + # take up an inordinate amount of memory + chunksize = int(size ** 0.5 + 2) + SUBSTR = 'a' + ' ' * chunksize + s = SUBSTR * chunksize + l = s.split() + self.assertEquals(len(l), chunksize) + self.assertEquals(set(l), set(['a'])) + del l + l = s.split('a') + self.assertEquals(len(l), chunksize + 1) + self.assertEquals(set(l), set(['', ' ' * chunksize])) + + # Allocates a string of twice size (and briefly two) and a list of + # size. Because of internal affairs, the s.split() call produces a + # list of size times the same one-character string, so we only + # suffer for the list size. (Otherwise, it'd cost another 48 times + # size in bytes!) Nevertheless, a list of size takes + # 8*size bytes. + @bigmemtest(minsize=_2G + 5, memuse=10) + def test_split_large(self, size): + s = ' a' * size + ' ' + l = s.split() + self.assertEquals(len(l), size) + self.assertEquals(set(l), set(['a'])) + del l + l = s.split('a') + self.assertEquals(len(l), size + 1) + self.assertEquals(set(l), set([' '])) + + @bigmemtest(minsize=_2G, memuse=2.1) + def test_splitlines(self, size): + # Crudely calculate an estimate so that the result of s.split won't + # take up an inordinate amount of memory + chunksize = int(size ** 0.5 + 2) // 2 + SUBSTR = ' ' * chunksize + '\n' + ' ' * chunksize + '\r\n' + s = SUBSTR * chunksize + l = s.splitlines() + self.assertEquals(len(l), chunksize * 2) + self.assertEquals(set(l), set([' ' * chunksize])) + + @bigmemtest(minsize=_2G, memuse=2) + def test_startswith(self, size): + SUBSTR = ' abc def ghi' + s = '-' * size + SUBSTR + self.failUnless(s.startswith(s)) + self.failUnless(s.startswith('-' * size)) + self.failIf(s.startswith(SUBSTR)) + + @bigmemtest(minsize=_2G, memuse=1) + def test_strip(self, size): + SUBSTR = ' abc def ghi ' + s = SUBSTR.rjust(size) + self.assertEquals(len(s), size) + self.assertEquals(s.strip(), SUBSTR.strip()) + del s + s = SUBSTR.ljust(size) + self.assertEquals(len(s), size) + self.assertEquals(s.strip(), SUBSTR.strip()) + + @bigmemtest(minsize=_2G, memuse=2) + def test_swapcase(self, size): + SUBSTR = "aBcDeFG12.'\xa9\x00" + sublen = len(SUBSTR) + repeats = size // sublen + 2 + s = SUBSTR * repeats + s = s.swapcase() + self.assertEquals(len(s), sublen * repeats) + self.assertEquals(s[:sublen * 3], SUBSTR.swapcase() * 3) + self.assertEquals(s[-sublen * 3:], SUBSTR.swapcase() * 3) + + @bigmemtest(minsize=_2G, memuse=2) + def test_title(self, size): + SUBSTR = 'SpaaHAaaAaham' + s = SUBSTR * (size // len(SUBSTR) + 2) + s = s.title() + self.failUnless(s.startswith((SUBSTR * 3).title())) + self.failUnless(s.endswith(SUBSTR.lower() * 3)) + + @bigmemtest(minsize=_2G, memuse=2) + def test_translate(self, size): + trans = string.maketrans('.aZ', '-!$') + SUBSTR = 'aZz.z.Aaz.' + sublen = len(SUBSTR) + repeats = size // sublen + 2 + s = SUBSTR * repeats + s = s.translate(trans) + self.assertEquals(len(s), repeats * sublen) + self.assertEquals(s[:sublen], SUBSTR.translate(trans)) + self.assertEquals(s[-sublen:], SUBSTR.translate(trans)) + self.assertEquals(s.count('.'), 0) + self.assertEquals(s.count('!'), repeats * 2) + self.assertEquals(s.count('z'), repeats * 3) + + @bigmemtest(minsize=_2G + 5, memuse=2) + def test_upper(self, size): + s = 'a' * size + s = s.upper() + self.assertEquals(len(s), size) + self.assertEquals(s.count('A'), size) + + @bigmemtest(minsize=_2G + 20, memuse=1) + def test_zfill(self, size): + SUBSTR = '-568324723598234' + s = SUBSTR.zfill(size) + self.failUnless(s.endswith('0' + SUBSTR[1:])) + self.failUnless(s.startswith('-0')) + self.assertEquals(len(s), size) + self.assertEquals(s.count('0'), size - len(SUBSTR)) + + @bigmemtest(minsize=_2G + 10, memuse=2) + def test_format(self, size): + s = '-' * size + sf = '%s' % (s,) + self.failUnless(s == sf) + del sf + sf = '..%s..' % (s,) + self.assertEquals(len(sf), len(s) + 4) + self.failUnless(sf.startswith('..-')) + self.failUnless(sf.endswith('-..')) + del s, sf + + size //= 2 + edge = '-' * size + s = ''.join([edge, '%s', edge]) + del edge + s = s % '...' + self.assertEquals(len(s), size * 2 + 3) + self.assertEquals(s.count('.'), 3) + self.assertEquals(s.count('-'), size * 2) + + @bigmemtest(minsize=_2G + 10, memuse=2) + def test_repr_small(self, size): + s = '-' * size + s = repr(s) + self.assertEquals(len(s), size + 2) + self.assertEquals(s[0], "'") + self.assertEquals(s[-1], "'") + self.assertEquals(s.count('-'), size) + del s + # repr() will create a string four times as large as this 'binary + # string', but we don't want to allocate much more than twice + # size in total. (We do extra testing in test_repr_large()) + size = size // 5 * 2 + s = '\x00' * size + s = repr(s) + self.assertEquals(len(s), size * 4 + 2) + self.assertEquals(s[0], "'") + self.assertEquals(s[-1], "'") + self.assertEquals(s.count('\\'), size) + self.assertEquals(s.count('0'), size * 2) + + @bigmemtest(minsize=_2G + 10, memuse=5) + def test_repr_large(self, size): + s = '\x00' * size + s = repr(s) + self.assertEquals(len(s), size * 4 + 2) + self.assertEquals(s[0], "'") + self.assertEquals(s[-1], "'") + self.assertEquals(s.count('\\'), size) + self.assertEquals(s.count('0'), size * 2) + + # This test is meaningful even with size < 2G, as long as the + # doubled string is > 2G (but it tests more if both are > 2G :) + @bigmemtest(minsize=_1G + 2, memuse=3) + def test_concat(self, size): + s = '.' * size + self.assertEquals(len(s), size) + s = s + s + self.assertEquals(len(s), size * 2) + self.assertEquals(s.count('.'), size * 2) + + # This test is meaningful even with size < 2G, as long as the + # repeated string is > 2G (but it tests more if both are > 2G :) + @bigmemtest(minsize=_1G + 2, memuse=3) + def test_repeat(self, size): + s = '.' * size + self.assertEquals(len(s), size) + s = s * 2 + self.assertEquals(len(s), size * 2) + self.assertEquals(s.count('.'), size * 2) + + @bigmemtest(minsize=_2G + 20, memuse=1) + def test_slice_and_getitem(self, size): + SUBSTR = '0123456789' + sublen = len(SUBSTR) + s = SUBSTR * (size // sublen) + stepsize = len(s) // 100 + stepsize = stepsize - (stepsize % sublen) + for i in range(0, len(s) - stepsize, stepsize): + self.assertEquals(s[i], SUBSTR[0]) + self.assertEquals(s[i:i + sublen], SUBSTR) + self.assertEquals(s[i:i + sublen:2], SUBSTR[::2]) + if i > 0: + self.assertEquals(s[i + sublen - 1:i - 1:-3], + SUBSTR[sublen::-3]) + # Make sure we do some slicing and indexing near the end of the + # string, too. + self.assertEquals(s[len(s) - 1], SUBSTR[-1]) + self.assertEquals(s[-1], SUBSTR[-1]) + self.assertEquals(s[len(s) - 10], SUBSTR[0]) + self.assertEquals(s[-sublen], SUBSTR[0]) + self.assertEquals(s[len(s):], '') + self.assertEquals(s[len(s) - 1:], SUBSTR[-1]) + self.assertEquals(s[-1:], SUBSTR[-1]) + self.assertEquals(s[len(s) - sublen:], SUBSTR) + self.assertEquals(s[-sublen:], SUBSTR) + self.assertEquals(len(s[:]), len(s)) + self.assertEquals(len(s[:len(s) - 5]), len(s) - 5) + self.assertEquals(len(s[5:-5]), len(s) - 10) + + self.assertRaises(IndexError, operator.getitem, s, len(s)) + self.assertRaises(IndexError, operator.getitem, s, len(s) + 1) + self.assertRaises(IndexError, operator.getitem, s, len(s) + 1<<31) + + @bigmemtest(minsize=_2G, memuse=2) + def test_contains(self, size): + SUBSTR = '0123456789' + edge = '-' * (size // 2) + s = ''.join([edge, SUBSTR, edge]) + del edge + self.failUnless(SUBSTR in s) + self.failIf(SUBSTR * 2 in s) + self.failUnless('-' in s) + self.failIf('a' in s) + s += 'a' + self.failUnless('a' in s) + + @bigmemtest(minsize=_2G + 10, memuse=2) + def test_compare(self, size): + s1 = '-' * size + s2 = '-' * size + self.failUnless(s1 == s2) + del s2 + s2 = s1 + 'a' + self.failIf(s1 == s2) + del s2 + s2 = '.' * size + self.failIf(s1 == s2) + + @bigmemtest(minsize=_2G + 10, memuse=1) + def test_hash(self, size): + # Not sure if we can do any meaningful tests here... Even if we + # start relying on the exact algorithm used, the result will be + # different depending on the size of the C 'long int'. Even this + # test is dodgy (there's no *guarantee* that the two things should + # have a different hash, even if they, in the current + # implementation, almost always do.) + s = '\x00' * size + h1 = hash(s) + del s + s = '\x00' * (size + 1) + self.failIf(h1 == hash(s)) + +class TupleTest(unittest.TestCase): + + # Tuples have a small, fixed-sized head and an array of pointers to + # data. Since we're testing 64-bit addressing, we can assume that the + # pointers are 8 bytes, and that thus that the tuples take up 8 bytes + # per size. + + # As a side-effect of testing long tuples, these tests happen to test + # having more than 2<<31 references to any given object. Hence the + # use of different types of objects as contents in different tests. + + @bigmemtest(minsize=_2G + 2, memuse=16) + def test_compare(self, size): + t1 = (u'',) * size + t2 = (u'',) * size + self.failUnless(t1 == t2) + del t2 + t2 = (u'',) * (size + 1) + self.failIf(t1 == t2) + del t2 + t2 = (1,) * size + self.failIf(t1 == t2) + + # Test concatenating into a single tuple of more than 2G in length, + # and concatenating a tuple of more than 2G in length separately, so + # the smaller test still gets run even if there isn't memory for the + # larger test (but we still let the tester know the larger test is + # skipped, in verbose mode.) + def basic_concat_test(self, size): + t = ((),) * size + self.assertEquals(len(t), size) + t = t + t + self.assertEquals(len(t), size * 2) + + @bigmemtest(minsize=_2G // 2 + 2, memuse=24) + def test_concat_small(self, size): + return self.basic_concat_test(size) + + @bigmemtest(minsize=_2G + 2, memuse=24) + def test_concat_large(self, size): + return self.basic_concat_test(size) + + @bigmemtest(minsize=_2G // 5 + 10, memuse=8 * 5) + def test_contains(self, size): + t = (1, 2, 3, 4, 5) * size + self.assertEquals(len(t), size * 5) + self.failUnless(5 in t) + self.failIf((1, 2, 3, 4, 5) in t) + self.failIf(0 in t) + + @bigmemtest(minsize=_2G + 10, memuse=8) + def test_hash(self, size): + t1 = (0,) * size + h1 = hash(t1) + del t1 + t2 = (0,) * (size + 1) + self.failIf(h1 == hash(t2)) + + @bigmemtest(minsize=_2G + 10, memuse=8) + def test_index_and_slice(self, size): + t = (None,) * size + self.assertEquals(len(t), size) + self.assertEquals(t[-1], None) + self.assertEquals(t[5], None) + self.assertEquals(t[size - 1], None) + self.assertRaises(IndexError, operator.getitem, t, size) + self.assertEquals(t[:5], (None,) * 5) + self.assertEquals(t[-5:], (None,) * 5) + self.assertEquals(t[20:25], (None,) * 5) + self.assertEquals(t[-25:-20], (None,) * 5) + self.assertEquals(t[size - 5:], (None,) * 5) + self.assertEquals(t[size - 5:size], (None,) * 5) + self.assertEquals(t[size - 6:size - 2], (None,) * 4) + self.assertEquals(t[size:size], ()) + self.assertEquals(t[size:size+5], ()) + + # Like test_concat, split in two. + def basic_test_repeat(self, size): + t = ('',) * size + self.assertEquals(len(t), size) + t = t * 2 + self.assertEquals(len(t), size * 2) + + @bigmemtest(minsize=_2G // 2 + 2, memuse=24) + def test_repeat_small(self, size): + return self.basic_test_repeat(size) + + @bigmemtest(minsize=_2G + 2, memuse=24) + def test_repeat_large(self, size): + return self.basic_test_repeat(size) + + # Like test_concat, split in two. + def basic_test_repr(self, size): + t = (0,) * size + s = repr(t) + # The repr of a tuple of 0's is exactly three times the tuple length. + self.assertEquals(len(s), size * 3) + self.assertEquals(s[:5], '(0, 0') + self.assertEquals(s[-5:], '0, 0)') + self.assertEquals(s.count('0'), size) + + @bigmemtest(minsize=_2G // 3 + 2, memuse=8 + 3) + def test_repr_small(self, size): + return self.basic_test_repr(size) + + @bigmemtest(minsize=_2G + 2, memuse=8 + 3) + def test_repr_large(self, size): + return self.basic_test_repr(size) + +class ListTest(unittest.TestCase): + + # Like tuples, lists have a small, fixed-sized head and an array of + # pointers to data, so 8 bytes per size. Also like tuples, we make the + # lists hold references to various objects to test their refcount + # limits. + + @bigmemtest(minsize=_2G + 2, memuse=16) + def test_compare(self, size): + l1 = [u''] * size + l2 = [u''] * size + self.failUnless(l1 == l2) + del l2 + l2 = [u''] * (size + 1) + self.failIf(l1 == l2) + del l2 + l2 = [2] * size + self.failIf(l1 == l2) + + # Test concatenating into a single list of more than 2G in length, + # and concatenating a list of more than 2G in length separately, so + # the smaller test still gets run even if there isn't memory for the + # larger test (but we still let the tester know the larger test is + # skipped, in verbose mode.) + def basic_test_concat(self, size): + l = [[]] * size + self.assertEquals(len(l), size) + l = l + l + self.assertEquals(len(l), size * 2) + + @bigmemtest(minsize=_2G // 2 + 2, memuse=24) + def test_concat_small(self, size): + return self.basic_test_concat(size) + + @bigmemtest(minsize=_2G + 2, memuse=24) + def test_concat_large(self, size): + return self.basic_test_concat(size) + + def basic_test_inplace_concat(self, size): + l = [sys.stdout] * size + l += l + self.assertEquals(len(l), size * 2) + self.failUnless(l[0] is l[-1]) + self.failUnless(l[size - 1] is l[size + 1]) + + @bigmemtest(minsize=_2G // 2 + 2, memuse=24) + def test_inplace_concat_small(self, size): + return self.basic_test_inplace_concat(size) + + @bigmemtest(minsize=_2G + 2, memuse=24) + def test_inplace_concat_large(self, size): + return self.basic_test_inplace_concat(size) + + @bigmemtest(minsize=_2G // 5 + 10, memuse=8 * 5) + def test_contains(self, size): + l = [1, 2, 3, 4, 5] * size + self.assertEquals(len(l), size * 5) + self.failUnless(5 in l) + self.failIf([1, 2, 3, 4, 5] in l) + self.failIf(0 in l) + + @bigmemtest(minsize=_2G + 10, memuse=8) + def test_hash(self, size): + l = [0] * size + self.failUnlessRaises(TypeError, hash, l) + + @bigmemtest(minsize=_2G + 10, memuse=8) + def test_index_and_slice(self, size): + l = [None] * size + self.assertEquals(len(l), size) + self.assertEquals(l[-1], None) + self.assertEquals(l[5], None) + self.assertEquals(l[size - 1], None) + self.assertRaises(IndexError, operator.getitem, l, size) + self.assertEquals(l[:5], [None] * 5) + self.assertEquals(l[-5:], [None] * 5) + self.assertEquals(l[20:25], [None] * 5) + self.assertEquals(l[-25:-20], [None] * 5) + self.assertEquals(l[size - 5:], [None] * 5) + self.assertEquals(l[size - 5:size], [None] * 5) + self.assertEquals(l[size - 6:size - 2], [None] * 4) + self.assertEquals(l[size:size], []) + self.assertEquals(l[size:size+5], []) + + l[size - 2] = 5 + self.assertEquals(len(l), size) + self.assertEquals(l[-3:], [None, 5, None]) + self.assertEquals(l.count(5), 1) + self.assertRaises(IndexError, operator.setitem, l, size, 6) + self.assertEquals(len(l), size) + + l[size - 7:] = [1, 2, 3, 4, 5] + size -= 2 + self.assertEquals(len(l), size) + self.assertEquals(l[-7:], [None, None, 1, 2, 3, 4, 5]) + + l[:7] = [1, 2, 3, 4, 5] + size -= 2 + self.assertEquals(len(l), size) + self.assertEquals(l[:7], [1, 2, 3, 4, 5, None, None]) + + del l[size - 1] + size -= 1 + self.assertEquals(len(l), size) + self.assertEquals(l[-1], 4) + + del l[-2:] + size -= 2 + self.assertEquals(len(l), size) + self.assertEquals(l[-1], 2) + + del l[0] + size -= 1 + self.assertEquals(len(l), size) + self.assertEquals(l[0], 2) + + del l[:2] + size -= 2 + self.assertEquals(len(l), size) + self.assertEquals(l[0], 4) + + # Like test_concat, split in two. + def basic_test_repeat(self, size): + l = [] * size + self.failIf(l) + l = [''] * size + self.assertEquals(len(l), size) + l = l * 2 + self.assertEquals(len(l), size * 2) + + @bigmemtest(minsize=_2G // 2 + 2, memuse=24) + def test_repeat_small(self, size): + return self.basic_test_repeat(size) + + @bigmemtest(minsize=_2G + 2, memuse=24) + def test_repeat_large(self, size): + return self.basic_test_repeat(size) + + def basic_test_inplace_repeat(self, size): + l = [''] + l *= size + self.assertEquals(len(l), size) + self.failUnless(l[0] is l[-1]) + del l + + l = [''] * size + l *= 2 + self.assertEquals(len(l), size * 2) + self.failUnless(l[size - 1] is l[-1]) + + @bigmemtest(minsize=_2G // 2 + 2, memuse=16) + def test_inplace_repeat_small(self, size): + return self.basic_test_inplace_repeat(size) + + @bigmemtest(minsize=_2G + 2, memuse=16) + def test_inplace_repeat_large(self, size): + return self.basic_test_inplace_repeat(size) + + def basic_test_repr(self, size): + l = [0] * size + s = repr(l) + # The repr of a list of 0's is exactly three times the list length. + self.assertEquals(len(s), size * 3) + self.assertEquals(s[:5], '[0, 0') + self.assertEquals(s[-5:], '0, 0]') + self.assertEquals(s.count('0'), size) + + @bigmemtest(minsize=_2G // 3 + 2, memuse=8 + 3) + def test_repr_small(self, size): + return self.basic_test_repr(size) + + @bigmemtest(minsize=_2G + 2, memuse=8 + 3) + def test_repr_large(self, size): + return self.basic_test_repr(size) + + # list overallocates ~1/8th of the total size (on first expansion) so + # the single list.append call puts memuse at 9 bytes per size. + @bigmemtest(minsize=_2G, memuse=9) + def test_append(self, size): + l = [object()] * size + l.append(object()) + self.assertEquals(len(l), size+1) + self.failUnless(l[-3] is l[-2]) + self.failIf(l[-2] is l[-1]) + + @bigmemtest(minsize=_2G // 5 + 2, memuse=8 * 5) + def test_count(self, size): + l = [1, 2, 3, 4, 5] * size + self.assertEquals(l.count(1), size) + self.assertEquals(l.count("1"), 0) + + def basic_test_extend(self, size): + l = [file] * size + l.extend(l) + self.assertEquals(len(l), size * 2) + self.failUnless(l[0] is l[-1]) + self.failUnless(l[size - 1] is l[size + 1]) + + @bigmemtest(minsize=_2G // 2 + 2, memuse=16) + def test_extend_small(self, size): + return self.basic_test_extend(size) + + @bigmemtest(minsize=_2G + 2, memuse=16) + def test_extend_large(self, size): + return self.basic_test_extend(size) + + @bigmemtest(minsize=_2G // 5 + 2, memuse=8 * 5) + def test_index(self, size): + l = [1L, 2L, 3L, 4L, 5L] * size + size *= 5 + self.assertEquals(l.index(1), 0) + self.assertEquals(l.index(5, size - 5), size - 1) + self.assertEquals(l.index(5, size - 5, size), size - 1) + self.assertRaises(ValueError, l.index, 1, size - 4, size) + self.assertRaises(ValueError, l.index, 6L) + + # This tests suffers from overallocation, just like test_append. + @bigmemtest(minsize=_2G + 10, memuse=9) + def test_insert(self, size): + l = [1.0] * size + l.insert(size - 1, "A") + size += 1 + self.assertEquals(len(l), size) + self.assertEquals(l[-3:], [1.0, "A", 1.0]) + + l.insert(size + 1, "B") + size += 1 + self.assertEquals(len(l), size) + self.assertEquals(l[-3:], ["A", 1.0, "B"]) + + l.insert(1, "C") + size += 1 + self.assertEquals(len(l), size) + self.assertEquals(l[:3], [1.0, "C", 1.0]) + self.assertEquals(l[size - 3:], ["A", 1.0, "B"]) + + @bigmemtest(minsize=_2G // 5 + 4, memuse=8 * 5) + def test_pop(self, size): + l = [u"a", u"b", u"c", u"d", u"e"] * size + size *= 5 + self.assertEquals(len(l), size) + + item = l.pop() + size -= 1 + self.assertEquals(len(l), size) + self.assertEquals(item, u"e") + self.assertEquals(l[-2:], [u"c", u"d"]) + + item = l.pop(0) + size -= 1 + self.assertEquals(len(l), size) + self.assertEquals(item, u"a") + self.assertEquals(l[:2], [u"b", u"c"]) + + item = l.pop(size - 2) + size -= 1 + self.assertEquals(len(l), size) + self.assertEquals(item, u"c") + self.assertEquals(l[-2:], [u"b", u"d"]) + + @bigmemtest(minsize=_2G + 10, memuse=8) + def test_remove(self, size): + l = [10] * size + self.assertEquals(len(l), size) + + l.remove(10) + size -= 1 + self.assertEquals(len(l), size) + + # Because of the earlier l.remove(), this append doesn't trigger + # a resize. + l.append(5) + size += 1 + self.assertEquals(len(l), size) + self.assertEquals(l[-2:], [10, 5]) + l.remove(5) + size -= 1 + self.assertEquals(len(l), size) + self.assertEquals(l[-2:], [10, 10]) + + @bigmemtest(minsize=_2G // 5 + 2, memuse=8 * 5) + def test_reverse(self, size): + l = [1, 2, 3, 4, 5] * size + l.reverse() + self.assertEquals(len(l), size * 5) + self.assertEquals(l[-5:], [5, 4, 3, 2, 1]) + self.assertEquals(l[:5], [5, 4, 3, 2, 1]) + + @bigmemtest(minsize=_2G // 5 + 2, memuse=8 * 5) + def test_sort(self, size): + l = [1, 2, 3, 4, 5] * size + l.sort() + self.assertEquals(len(l), size * 5) + self.assertEquals(l.count(1), size) + self.assertEquals(l[:10], [1] * 10) + self.assertEquals(l[-10:], [5] * 10) + +def test_main(): + test_support.run_unittest(StrTest, TupleTest, ListTest) + +if __name__ == '__main__': + if len(sys.argv) > 1: + test_support.set_memlimit(sys.argv[1]) + test_main() -- cgit v0.12