From d5519ed7f4889060363673ec802177250299920e Mon Sep 17 00:00:00 2001 From: Tal Einat Date: Sun, 31 May 2015 22:05:00 +0300 Subject: Issue #19543: Implementation of isclose as per PEP 485 For details, see: PEP 0485 -- A Function for testing approximate equality Functions added: math.isclose() and cmath.isclose(). Original code by Chris Barker. Patch by Tal Einat. --- Doc/library/cmath.rst | 32 +++++++++++ Doc/library/math.rst | 32 +++++++++++ Doc/whatsnew/3.5.rst | 21 +++++++ Lib/test/test_cmath.py | 42 ++++++++++++++ Lib/test/test_math.py | 121 +++++++++++++++++++++++++++++++++++++++++ Misc/NEWS | 3 + Modules/clinic/cmathmodule.c.h | 53 +++++++++++++++++- Modules/cmathmodule.c | 68 +++++++++++++++++++++++ Modules/mathmodule.c | 79 +++++++++++++++++++++++++++ 9 files changed, 450 insertions(+), 1 deletion(-) diff --git a/Doc/library/cmath.rst b/Doc/library/cmath.rst index a981d94..ab619a0 100644 --- a/Doc/library/cmath.rst +++ b/Doc/library/cmath.rst @@ -207,6 +207,38 @@ Classification functions and ``False`` otherwise. +.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) + + Return ``True`` if the values *a* and *b* are close to each other and + ``False`` otherwise. + + Whether or not two values are considered close is determined according to + given absolute and relative tolerances. + + *rel_tol* is the relative tolerance -- it is the maximum allowed difference + between *a* and *b*, relative to the larger absolute value of *a* or *b*. + For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default + tolerance is ``1e-09``, which assures that the two values are the same + within about 9 decimal digits. *rel_tol* must be greater than zero. + + *abs_tol* is the minimum absolute tolerance -- useful for comparisons near + zero. *abs_tol* must be at least zero. + + If no errors occur, the result will be: + ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``. + + The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be + handled according to IEEE rules. Specifically, ``NaN`` is not considered + close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only + considered close to themselves. + + .. versionadded:: 3.5 + + .. seealso:: + + :pep:`485` -- A function for testing approximate equality + + Constants --------- diff --git a/Doc/library/math.rst b/Doc/library/math.rst index a88d1ac..244663e 100644 --- a/Doc/library/math.rst +++ b/Doc/library/math.rst @@ -110,6 +110,38 @@ Number-theoretic and representation functions .. versionadded:: 3.5 +.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) + + Return ``True`` if the values *a* and *b* are close to each other and + ``False`` otherwise. + + Whether or not two values are considered close is determined according to + given absolute and relative tolerances. + + *rel_tol* is the relative tolerance -- it is the maximum allowed difference + between *a* and *b*, relative to the larger absolute value of *a* or *b*. + For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default + tolerance is ``1e-09``, which assures that the two values are the same + within about 9 decimal digits. *rel_tol* must be greater than zero. + + *abs_tol* is the minimum absolute tolerance -- useful for comparisons near + zero. *abs_tol* must be at least zero. + + If no errors occur, the result will be: + ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``. + + The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be + handled according to IEEE rules. Specifically, ``NaN`` is not considered + close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only + considered close to themselves. + + .. versionadded:: 3.5 + + .. seealso:: + + :pep:`485` -- A function for testing approximate equality + + .. function:: isfinite(x) Return ``True`` if *x* is neither an infinity nor a NaN, and diff --git a/Doc/whatsnew/3.5.rst b/Doc/whatsnew/3.5.rst index ee0e5d1..085ade7 100644 --- a/Doc/whatsnew/3.5.rst +++ b/Doc/whatsnew/3.5.rst @@ -285,6 +285,18 @@ rather than being restricted to ASCII. :pep:`488` -- Multi-phase extension module initialization +PEP 485: A function for testing approximate equality +---------------------------------------------------- + +:pep:`485` adds the :func:`math.isclose` and :func:`cmath.isclose` +functions which tell whether two values are approximately equal or +"close" to each other. Whether or not two values are considered +close is determined according to given absolute and relative tolerances. + +.. seealso:: + + :pep:`485` -- A function for testing approximate equality + Other Language Changes ====================== @@ -346,6 +358,13 @@ cgi * :class:`~cgi.FieldStorage` now supports the context management protocol. (Contributed by Berker Peksag in :issue:`20289`.) +cmath +----- + +* :func:`cmath.isclose` function added. + (Contributed by Chris Barker and Tal Einat in :issue:`24270`.) + + code ---- @@ -578,6 +597,8 @@ math * :data:`math.inf` and :data:`math.nan` constants added. (Contributed by Mark Dickinson in :issue:`23185`.) +* :func:`math.isclose` function added. + (Contributed by Chris Barker and Tal Einat in :issue:`24270`.) shutil ------ diff --git a/Lib/test/test_cmath.py b/Lib/test/test_cmath.py index 78ec85a..25ab7c1 100644 --- a/Lib/test/test_cmath.py +++ b/Lib/test/test_cmath.py @@ -1,5 +1,6 @@ from test.support import requires_IEEE_754 from test.test_math import parse_testfile, test_file +import test.test_math as test_math import unittest import cmath, math from cmath import phase, polar, rect, pi @@ -529,5 +530,46 @@ class CMathTests(unittest.TestCase): self.assertComplexIdentical(cmath.atanh(z), z) +class IsCloseTests(test_math.IsCloseTests): + isclose = cmath.isclose + + def test_reject_complex_tolerances(self): + with self.assertRaises(TypeError): + self.isclose(1j, 1j, rel_tol=1j) + + with self.assertRaises(TypeError): + self.isclose(1j, 1j, abs_tol=1j) + + with self.assertRaises(TypeError): + self.isclose(1j, 1j, rel_tol=1j, abs_tol=1j) + + def test_complex_values(self): + # test complex values that are close to within 12 decimal places + complex_examples = [(1.0+1.0j, 1.000000000001+1.0j), + (1.0+1.0j, 1.0+1.000000000001j), + (-1.0+1.0j, -1.000000000001+1.0j), + (1.0-1.0j, 1.0-0.999999999999j), + ] + + self.assertAllClose(complex_examples, rel_tol=1e-12) + self.assertAllNotClose(complex_examples, rel_tol=1e-13) + + def test_complex_near_zero(self): + # test values near zero that are near to within three decimal places + near_zero_examples = [(0.001j, 0), + (0.001, 0), + (0.001+0.001j, 0), + (-0.001+0.001j, 0), + (0.001-0.001j, 0), + (-0.001-0.001j, 0), + ] + + self.assertAllClose(near_zero_examples, abs_tol=1.5e-03) + self.assertAllNotClose(near_zero_examples, abs_tol=0.5e-03) + + self.assertIsClose(0.001-0.001j, 0.001+0.001j, abs_tol=2e-03) + self.assertIsNotClose(0.001-0.001j, 0.001+0.001j, abs_tol=1e-03) + + if __name__ == "__main__": unittest.main() diff --git a/Lib/test/test_math.py b/Lib/test/test_math.py index fcd78d5..6c7b99d 100644 --- a/Lib/test/test_math.py +++ b/Lib/test/test_math.py @@ -1166,10 +1166,131 @@ class MathTests(unittest.TestCase): '\n '.join(failures)) +class IsCloseTests(unittest.TestCase): + isclose = math.isclose # sublcasses should override this + + def assertIsClose(self, a, b, *args, **kwargs): + self.assertTrue(self.isclose(a, b, *args, **kwargs), + msg="%s and %s should be close!" % (a, b)) + + def assertIsNotClose(self, a, b, *args, **kwargs): + self.assertFalse(self.isclose(a, b, *args, **kwargs), + msg="%s and %s should not be close!" % (a, b)) + + def assertAllClose(self, examples, *args, **kwargs): + for a, b in examples: + self.assertIsClose(a, b, *args, **kwargs) + + def assertAllNotClose(self, examples, *args, **kwargs): + for a, b in examples: + self.assertIsNotClose(a, b, *args, **kwargs) + + def test_negative_tolerances(self): + # ValueError should be raised if either tolerance is less than zero + with self.assertRaises(ValueError): + self.assertIsClose(1, 1, rel_tol=-1e-100) + with self.assertRaises(ValueError): + self.assertIsClose(1, 1, rel_tol=1e-100, abs_tol=-1e10) + + def test_identical(self): + # identical values must test as close + identical_examples = [(2.0, 2.0), + (0.1e200, 0.1e200), + (1.123e-300, 1.123e-300), + (12345, 12345.0), + (0.0, -0.0), + (345678, 345678)] + self.assertAllClose(identical_examples, rel_tol=0.0, abs_tol=0.0) + + def test_eight_decimal_places(self): + # examples that are close to 1e-8, but not 1e-9 + eight_decimal_places_examples = [(1e8, 1e8 + 1), + (-1e-8, -1.000000009e-8), + (1.12345678, 1.12345679)] + self.assertAllClose(eight_decimal_places_examples, rel_tol=1e-8) + self.assertAllNotClose(eight_decimal_places_examples, rel_tol=1e-9) + + def test_near_zero(self): + # values close to zero + near_zero_examples = [(1e-9, 0.0), + (-1e-9, 0.0), + (-1e-150, 0.0)] + # these should not be close to any rel_tol + self.assertAllNotClose(near_zero_examples, rel_tol=0.9) + # these should be close to abs_tol=1e-8 + self.assertAllClose(near_zero_examples, abs_tol=1e-8) + + def test_identical_infinite(self): + # these are close regardless of tolerance -- i.e. they are equal + self.assertIsClose(INF, INF) + self.assertIsClose(INF, INF, abs_tol=0.0) + self.assertIsClose(NINF, NINF) + self.assertIsClose(NINF, NINF, abs_tol=0.0) + + def test_inf_ninf_nan(self): + # these should never be close (following IEEE 754 rules for equality) + not_close_examples = [(NAN, NAN), + (NAN, 1e-100), + (1e-100, NAN), + (INF, NAN), + (NAN, INF), + (INF, NINF), + (INF, 1.0), + (1.0, INF), + (INF, 1e308), + (1e308, INF)] + # use largest reasonable tolerance + self.assertAllNotClose(not_close_examples, abs_tol=0.999999999999999) + + def test_zero_tolerance(self): + # test with zero tolerance + zero_tolerance_close_examples = [(1.0, 1.0), + (-3.4, -3.4), + (-1e-300, -1e-300)] + self.assertAllClose(zero_tolerance_close_examples, rel_tol=0.0) + + zero_tolerance_not_close_examples = [(1.0, 1.000000000000001), + (0.99999999999999, 1.0), + (1.0e200, .999999999999999e200)] + self.assertAllNotClose(zero_tolerance_not_close_examples, rel_tol=0.0) + + def test_assymetry(self): + # test the assymetry example from PEP 485 + self.assertAllClose([(9, 10), (10, 9)], rel_tol=0.1) + + def test_integers(self): + # test with integer values + integer_examples = [(100000001, 100000000), + (123456789, 123456788)] + + self.assertAllClose(integer_examples, rel_tol=1e-8) + self.assertAllNotClose(integer_examples, rel_tol=1e-9) + + def test_decimals(self): + # test with Decimal values + from decimal import Decimal + + decimal_examples = [(Decimal('1.00000001'), Decimal('1.0')), + (Decimal('1.00000001e-20'), Decimal('1.0e-20')), + (Decimal('1.00000001e-100'), Decimal('1.0e-100'))] + self.assertAllClose(decimal_examples, rel_tol=1e-8) + self.assertAllNotClose(decimal_examples, rel_tol=1e-9) + + def test_fractions(self): + # test with Fraction values + from fractions import Fraction + + # could use some more examples here! + fraction_examples = [(Fraction(1, 100000000) + 1, Fraction(1))] + self.assertAllClose(fraction_examples, rel_tol=1e-8) + self.assertAllNotClose(fraction_examples, rel_tol=1e-9) + + def test_main(): from doctest import DocFileSuite suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(MathTests)) + suite.addTest(unittest.makeSuite(IsCloseTests)) suite.addTest(DocFileSuite("ieee754.txt")) run_unittest(suite) diff --git a/Misc/NEWS b/Misc/NEWS index b56cb49..aa3eaae 100644 --- a/Misc/NEWS +++ b/Misc/NEWS @@ -273,6 +273,9 @@ Library - Issue #24298: Fix inspect.signature() to correctly unwrap wrappers around bound methods. +- Issue #24270: Add math.isclose() and cmath.isclose() functions as per PEP 485. + Contributed by Chris Barker and Tal Einat. + IDLE ---- diff --git a/Modules/clinic/cmathmodule.c.h b/Modules/clinic/cmathmodule.c.h index e8fa6cb..7d61649 100644 --- a/Modules/clinic/cmathmodule.c.h +++ b/Modules/clinic/cmathmodule.c.h @@ -806,4 +806,55 @@ cmath_isinf(PyModuleDef *module, PyObject *arg) exit: return return_value; } -/*[clinic end generated code: output=274f59792cf4f418 input=a9049054013a1b77]*/ + +PyDoc_STRVAR(cmath_isclose__doc__, +"isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0)\n" +"--\n" +"\n" +"Determine whether two complex numbers are close in value.\n" +"\n" +" rel_tol\n" +" maximum difference for being considered \"close\", relative to the\n" +" magnitude of the input values\n" +" abs_tol\n" +" maximum difference for being considered \"close\", regardless of the\n" +" magnitude of the input values\n" +"\n" +"Return True if a is close in value to b, and False otherwise.\n" +"\n" +"For the values to be considered close, the difference between them must be\n" +"smaller than at least one of the tolerances.\n" +"\n" +"-inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is\n" +"not close to anything, even itself. inf and -inf are only close to themselves."); + +#define CMATH_ISCLOSE_METHODDEF \ + {"isclose", (PyCFunction)cmath_isclose, METH_VARARGS|METH_KEYWORDS, cmath_isclose__doc__}, + +static int +cmath_isclose_impl(PyModuleDef *module, Py_complex a, Py_complex b, + double rel_tol, double abs_tol); + +static PyObject * +cmath_isclose(PyModuleDef *module, PyObject *args, PyObject *kwargs) +{ + PyObject *return_value = NULL; + static char *_keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL}; + Py_complex a; + Py_complex b; + double rel_tol = 1e-09; + double abs_tol = 0.0; + int _return_value; + + if (!PyArg_ParseTupleAndKeywords(args, kwargs, "DD|$dd:isclose", _keywords, + &a, &b, &rel_tol, &abs_tol)) + goto exit; + _return_value = cmath_isclose_impl(module, a, b, rel_tol, abs_tol); + if ((_return_value == -1) && PyErr_Occurred()) + goto exit; + return_value = PyBool_FromLong((long)_return_value); + +exit: + return return_value; +} +/*[clinic end generated code: output=229e9c48c9d27362 input=a9049054013a1b77]*/ diff --git a/Modules/cmathmodule.c b/Modules/cmathmodule.c index 921eaaa..d12e4c5 100644 --- a/Modules/cmathmodule.c +++ b/Modules/cmathmodule.c @@ -1114,6 +1114,73 @@ cmath_isinf_impl(PyModuleDef *module, Py_complex z) Py_IS_INFINITY(z.imag)); } +/*[clinic input] +cmath.isclose -> bool + + a: Py_complex + b: Py_complex + * + rel_tol: double = 1e-09 + maximum difference for being considered "close", relative to the + magnitude of the input values + abs_tol: double = 0.0 + maximum difference for being considered "close", regardless of the + magnitude of the input values + +Determine whether two complex numbers are close in value. + +Return True if a is close in value to b, and False otherwise. + +For the values to be considered close, the difference between them must be +smaller than at least one of the tolerances. + +-inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is +not close to anything, even itself. inf and -inf are only close to themselves. +[clinic start generated code]*/ + +static int +cmath_isclose_impl(PyModuleDef *module, Py_complex a, Py_complex b, + double rel_tol, double abs_tol) +/*[clinic end generated code: output=da0c535fb54e2310 input=df9636d7de1d4ac3]*/ +{ + double diff; + + /* sanity check on the inputs */ + if (rel_tol < 0.0 || abs_tol < 0.0 ) { + PyErr_SetString(PyExc_ValueError, + "tolerances must be non-negative"); + return -1; + } + + if ( (a.real == b.real) && (a.imag == b.imag) ) { + /* short circuit exact equality -- needed to catch two infinities of + the same sign. And perhaps speeds things up a bit sometimes. + */ + return 1; + } + + /* This catches the case of two infinities of opposite sign, or + one infinity and one finite number. Two infinities of opposite + sign would otherwise have an infinite relative tolerance. + Two infinities of the same sign are caught by the equality check + above. + */ + + if (Py_IS_INFINITY(a.real) || Py_IS_INFINITY(a.imag) || + Py_IS_INFINITY(b.real) || Py_IS_INFINITY(b.imag)) { + return 0; + } + + /* now do the regular computation + this is essentially the "weak" test from the Boost library + */ + + diff = _Py_c_abs(_Py_c_diff(a, b)); + + return (((diff <= rel_tol * _Py_c_abs(b)) || + (diff <= rel_tol * _Py_c_abs(a))) || + (diff <= abs_tol)); +} PyDoc_STRVAR(module_doc, "This module is always available. It provides access to mathematical\n" @@ -1129,6 +1196,7 @@ static PyMethodDef cmath_methods[] = { CMATH_COS_METHODDEF CMATH_COSH_METHODDEF CMATH_EXP_METHODDEF + CMATH_ISCLOSE_METHODDEF CMATH_ISFINITE_METHODDEF CMATH_ISINF_METHODDEF CMATH_ISNAN_METHODDEF diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c index a65de47..9359eb2 100644 --- a/Modules/mathmodule.c +++ b/Modules/mathmodule.c @@ -1990,6 +1990,83 @@ PyDoc_STRVAR(math_isinf_doc, "isinf(x) -> bool\n\n\ Return True if x is a positive or negative infinity, and False otherwise."); +static PyObject * +math_isclose(PyObject *self, PyObject *args, PyObject *kwargs) +{ + double a, b; + double rel_tol = 1e-9; + double abs_tol = 0.0; + double diff = 0.0; + long result = 0; + + static char *keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL}; + + + if (!PyArg_ParseTupleAndKeywords(args, kwargs, "dd|$dd:isclose", + keywords, + &a, &b, &rel_tol, &abs_tol + )) + return NULL; + + /* sanity check on the inputs */ + if (rel_tol < 0.0 || abs_tol < 0.0 ) { + PyErr_SetString(PyExc_ValueError, + "tolerances must be non-negative"); + return NULL; + } + + if ( a == b ) { + /* short circuit exact equality -- needed to catch two infinities of + the same sign. And perhaps speeds things up a bit sometimes. + */ + Py_RETURN_TRUE; + } + + /* This catches the case of two infinities of opposite sign, or + one infinity and one finite number. Two infinities of opposite + sign would otherwise have an infinite relative tolerance. + Two infinities of the same sign are caught by the equality check + above. + */ + + if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) { + Py_RETURN_FALSE; + } + + /* now do the regular computation + this is essentially the "weak" test from the Boost library + */ + + diff = fabs(b - a); + + result = (((diff <= fabs(rel_tol * b)) || + (diff <= fabs(rel_tol * a))) || + (diff <= abs_tol)); + + return PyBool_FromLong(result); +} + +PyDoc_STRVAR(math_isclose_doc, +"is_close(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool\n" +"\n" +"Determine whether two floating point numbers are close in value.\n" +"\n" +" rel_tol\n" +" maximum difference for being considered \"close\", relative to the\n" +" magnitude of the input values\n" +" abs_tol\n" +" maximum difference for being considered \"close\", regardless of the\n" +" magnitude of the input values\n" +"\n" +"Return True if a is close in value to b, and False otherwise.\n" +"\n" +"For the values to be considered close, the difference between them\n" +"must be smaller than at least one of the tolerances.\n" +"\n" +"-inf, inf and NaN behave similarly to the IEEE 754 Standard. That\n" +"is, NaN is not close to anything, even itself. inf and -inf are\n" +"only close to themselves."); + static PyMethodDef math_methods[] = { {"acos", math_acos, METH_O, math_acos_doc}, {"acosh", math_acosh, METH_O, math_acosh_doc}, @@ -2016,6 +2093,8 @@ static PyMethodDef math_methods[] = { {"gamma", math_gamma, METH_O, math_gamma_doc}, {"gcd", math_gcd, METH_VARARGS, math_gcd_doc}, {"hypot", math_hypot, METH_VARARGS, math_hypot_doc}, + {"isclose", (PyCFunction) math_isclose, METH_VARARGS | METH_KEYWORDS, + math_isclose_doc}, {"isfinite", math_isfinite, METH_O, math_isfinite_doc}, {"isinf", math_isinf, METH_O, math_isinf_doc}, {"isnan", math_isnan, METH_O, math_isnan_doc}, -- cgit v0.12