From 6fee0f8ea72fa68155a32b33b6c0ed9e5a740e45 Mon Sep 17 00:00:00 2001 From: Raymond Hettinger Date: Mon, 26 Aug 2019 11:25:58 -0700 Subject: bpo-37798: Minor code formatting and comment clean-ups. (GH-15526) --- Modules/_statisticsmodule.c | 35 ++++++++++++++++++++++------------- 1 file changed, 22 insertions(+), 13 deletions(-) diff --git a/Modules/_statisticsmodule.c b/Modules/_statisticsmodule.c index 78ec90a..676d3fb 100644 --- a/Modules/_statisticsmodule.c +++ b/Modules/_statisticsmodule.c @@ -1,4 +1,4 @@ -/* statistics accelerator C extensor: _statistics module. */ +/* statistics accelerator C extension: _statistics module. */ #include "Python.h" #include "structmember.h" @@ -10,11 +10,13 @@ module _statistics [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/ - -static PyMethodDef speedups_methods[] = { - _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF - {NULL, NULL, 0, NULL} -}; +/* + * There is no closed-form solution to the inverse CDF for the normal + * distribution, so we use a rational approximation instead: + * Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the + * Normal Distribution". Applied Statistics. Blackwell Publishing. 37 + * (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. + */ /*[clinic input] _statistics._normal_dist_inv_cdf -> double @@ -34,7 +36,7 @@ _statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu, // Algorithm AS 241: The Percentage Points of the Normal Distribution if(fabs(q) <= 0.425) { r = 0.180625 - q * q; - // Hash sum AB: 55.88319 28806 14901 4439 + // Hash sum-55.8831928806149014439 num = (((((((2.5090809287301226727e+3 * r + 3.3430575583588128105e+4) * r + 6.7265770927008700853e+4) * r + @@ -54,11 +56,11 @@ _statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu, x = num / den; return mu + (x * sigma); } - r = q <= 0.0? p : 1.0-p; + r = (q <= 0.0) ? p : (1.0 - p); r = sqrt(-log(r)); if (r <= 5.0) { r = r - 1.6; - // Hash sum CD: 49.33206 50330 16102 89036 + // Hash sum-49.33206503301610289036 num = (((((((7.74545014278341407640e-4 * r + 2.27238449892691845833e-2) * r + 2.41780725177450611770e-1) * r + @@ -77,7 +79,7 @@ _statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu, 1.0); } else { r -= 5.0; - // Hash sum EF: 47.52583 31754 92896 71629 + // Hash sum-47.52583317549289671629 num = (((((((2.01033439929228813265e-7 * r + 2.71155556874348757815e-5) * r + 1.24266094738807843860e-3) * r + @@ -96,23 +98,30 @@ _statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu, 1.0); } x = num / den; - if (q < 0.0) x = -x; + if (q < 0.0) { + x = -x; + } return mu + (x * sigma); } + +static PyMethodDef statistics_methods[] = { + _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF + {NULL, NULL, 0, NULL} +}; + static struct PyModuleDef statisticsmodule = { PyModuleDef_HEAD_INIT, "_statistics", _statistics__normal_dist_inv_cdf__doc__, -1, - speedups_methods, + statistics_methods, NULL, NULL, NULL, NULL }; - PyMODINIT_FUNC PyInit__statistics(void) { -- cgit v0.12