From becad9a2a1b5f3deaad24759daec95014218e0db Mon Sep 17 00:00:00 2001 From: Raymond Hettinger Date: Thu, 14 Dec 2023 14:36:40 -0600 Subject: Remove itertool recipe with low pedagogical value (gh-113138) --- Doc/library/itertools.rst | 64 +++++++++++++++++++++++------------------------ 1 file changed, 32 insertions(+), 32 deletions(-) diff --git a/Doc/library/itertools.rst b/Doc/library/itertools.rst index 83e2a9f..36cea9a 100644 --- a/Doc/library/itertools.rst +++ b/Doc/library/itertools.rst @@ -1136,24 +1136,6 @@ The following recipes have a more mathematical flavor: n = n // p * (p - 1) return n - def nth_combination(iterable, r, index): - "Equivalent to list(combinations(iterable, r))[index]" - pool = tuple(iterable) - n = len(pool) - c = math.comb(n, r) - if index < 0: - index += c - if index < 0 or index >= c: - raise IndexError - result = [] - while r: - c, n, r = c*r//n, n-1, r-1 - while index >= c: - index -= c - c, n = c*(n-r)//n, n-1 - result.append(pool[-1-n]) - return tuple(result) - .. doctest:: :hide: @@ -1577,20 +1559,6 @@ The following recipes have a more mathematical flavor: >>> first_true('ABC0DEF1', '9', str.isdigit) '0' - >>> population = 'ABCDEFGH' - >>> for r in range(len(population) + 1): - ... seq = list(combinations(population, r)) - ... for i in range(len(seq)): - ... assert nth_combination(population, r, i) == seq[i] - ... for i in range(-len(seq), 0): - ... assert nth_combination(population, r, i) == seq[i] - - >>> iterable = 'abcde' - >>> r = 3 - >>> combos = list(combinations(iterable, r)) - >>> all(nth_combination(iterable, r, i) == comb for i, comb in enumerate(combos)) - True - .. testcode:: :hide: @@ -1617,6 +1585,24 @@ The following recipes have a more mathematical flavor: for (a, _), (b, c) in pairwise(pairwise(iterable)): yield a, b, c + def nth_combination(iterable, r, index): + "Equivalent to list(combinations(iterable, r))[index]" + pool = tuple(iterable) + n = len(pool) + c = math.comb(n, r) + if index < 0: + index += c + if index < 0 or index >= c: + raise IndexError + result = [] + while r: + c, n, r = c*r//n, n-1, r-1 + while index >= c: + index -= c + c, n = c*(n-r)//n, n-1 + result.append(pool[-1-n]) + return tuple(result) + .. doctest:: :hide: @@ -1632,3 +1618,17 @@ The following recipes have a more mathematical flavor: >>> list(triplewise('ABCDEFG')) [('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E'), ('D', 'E', 'F'), ('E', 'F', 'G')] + + >>> population = 'ABCDEFGH' + >>> for r in range(len(population) + 1): + ... seq = list(combinations(population, r)) + ... for i in range(len(seq)): + ... assert nth_combination(population, r, i) == seq[i] + ... for i in range(-len(seq), 0): + ... assert nth_combination(population, r, i) == seq[i] + + >>> iterable = 'abcde' + >>> r = 3 + >>> combos = list(combinations(iterable, r)) + >>> all(nth_combination(iterable, r, i) == comb for i, comb in enumerate(combos)) + True -- cgit v0.12