\section{\module{collections} --- High-performance container datatypes} \declaremodule{standard}{collections} \modulesynopsis{High-performance datatypes} \moduleauthor{Raymond Hettinger}{python@rcn.com} \sectionauthor{Raymond Hettinger}{python@rcn.com} \versionadded{2.4} This module implements high-performance container datatypes. Currently, the only datatype is a deque. Future additions may include B-trees and Fibonacci heaps. \begin{funcdesc}{deque}{\optional{iterable}} Returns a new deque objected initialized left-to-right (using \method{append()}) with data from \var{iterable}. If \var{iterable} is not specified, the new deque is empty. Deques are a generalization of stacks and queues (the name is pronounced ``deck'' and is short for ``double-ended queue''). Deques support thread-safe, memory efficient appends and pops from either side of the deque with approximately the same \code{O(1)} performance in either direction. Though \class{list} objects support similar operations, they are optimized for fast fixed-length operations and incur \code{O(n)} memory movement costs for \samp{pop(0)} and \samp{insert(0, v)} operations which change both the size and position of the underlying data representation. \versionadded{2.4} \end{funcdesc} Deque objects support the following methods: \begin{methoddesc}{append}{x} Add \var{x} to the right side of the deque. \end{methoddesc} \begin{methoddesc}{appendleft}{x} Add \var{x} to the left side of the deque. \end{methoddesc} \begin{methoddesc}{clear}{} Remove all elements from the deque leaving it with length 0. \end{methoddesc} \begin{methoddesc}{extend}{iterable} Extend the right side of the deque by appending elements from the iterable argument. \end{methoddesc} \begin{methoddesc}{extendleft}{iterable} Extend the left side of the deque by appending elements from \var{iterable}. Note, the series of left appends results in reversing the order of elements in the iterable argument. \end{methoddesc} \begin{methoddesc}{pop}{} Remove and return an element from the right side of the deque. If no elements are present, raises a \exception{IndexError}. \end{methoddesc} \begin{methoddesc}{popleft}{} Remove and return an element from the left side of the deque. If no elements are present, raises a \exception{IndexError}. \end{methoddesc} \begin{methoddesc}{rotate}{n} Rotate the deque \var{n} steps to the right. If \var{n} is negative, rotate to the left. Rotating one step to the right is equivalent to: \samp{d.appendleft(d.pop())}. \end{methoddesc} In addition to the above, deques support iteration, pickling, \samp{len(d)}, \samp{reversed(d)}, \samp{copy.copy(d)}, \samp{copy.deepcopy(d)}, membership testing with the \keyword{in} operator, and subscript references such as \samp{d[-1]}. Example: \begin{verbatim} >>> from collections import deque >>> d = deque('ghi') # make a new deque with three items >>> for elem in d: # iterate over the deque's elements ... print elem.upper() G H I >>> d.append('j') # add a new entry to the right side >>> d.appendleft('f') # add a new entry to the left side >>> d # show the representation of the deque deque(['f', 'g', 'h', 'i', 'j']) >>> d.pop() # return and remove the rightmost item 'j' >>> d.popleft() # return and remove the leftmost item 'f' >>> list(d) # list the contents of the deque ['g', 'h', 'i'] >>> d[0] # peek at leftmost item 'g' >>> d[-1] # peek at rightmost item 'i' >>> list(reversed(d)) # list the contents of a deque in reverse ['i', 'h', 'g'] >>> 'h' in d # search the deque True >>> d.extend('jkl') # add multiple elements at once >>> d deque(['g', 'h', 'i', 'j', 'k', 'l']) >>> d.rotate(1) # right rotation >>> d deque(['l', 'g', 'h', 'i', 'j', 'k']) >>> d.rotate(-1) # left rotation >>> d deque(['g', 'h', 'i', 'j', 'k', 'l']) >>> deque(reversed(d)) # make a new deque in reverse order deque(['l', 'k', 'j', 'i', 'h', 'g']) >>> d.clear() # empty the deque >>> d.pop() # cannot pop from an empty deque Traceback (most recent call last): File "", line 1, in -toplevel- d.pop() IndexError: pop from an empty deque >>> d.extendleft('abc') # extendleft() reverses the input order >>> d deque(['c', 'b', 'a']) \end{verbatim} \subsection{Recipes \label{deque-recipes}} This section shows various approaches to working with deques. The \method{rotate()} method provides a way to implement \class{deque} slicing and deletion: \begin{verbatim} def delete_nth(d, n): "del d[n]" d.rotate(-n) d.popleft() d.rotate(n) >>> d = deque('abcdef') >>> delete_nth(d, 2) # remove the entry at d[2] >>> d deque(['a', 'b', 'd', 'e', 'f']) \end{verbatim} For slicing, the idea is the same. Use \method{rotate()} to bring a target element to the left side of the deque. Remove old entries with \method{popleft()}, add new entries with \method{extend()}, and then reverse the rotation. With minor variations on that approach, it is easy to implement Forth style stack manipulations such as \code{dup}, \code{drop}, \code{swap}, \code{over}, \code{pick}, \code{rot}, and \code{roll}. A roundrobin task server can be built from a \class{deque} using \method{popleft()} to select the current task and \method{append()} to add it back to the tasklist if the input stream is not exhausted: \begin{verbatim} def roundrobin(*iterables): pending = deque(iter(i) for i in iterables) while pending: task = pending.popleft() try: yield task.next() except StopIteration: continue pending.append(task) >>> for value in roundrobin('abc', 'd', 'efgh'): ... print value a d e b f c g h \end{verbatim} Multi-pass data reduction algorithms can be succinctly expressed and efficiently coded by extracting elements using multiple calls to \method{popleft()}, applying the reduction function, and using \method{append()} for adding the result back to the queue. For example, building a balanced binary tree of nested lists entails reducing two adjacent nodes into one by grouping them in a list: \begin{verbatim} def maketree(iterable): d = deque(iterable) while len(d) > 1: pair = [d.popleft(), d.popleft()] d.append(pair) return list(d) >>> print maketree('abcdefgh') [[[['a', 'b'], ['c', 'd']], [['e', 'f'], ['g', 'h']]]] \end{verbatim}