:mod:`ssl` --- TLS/SSL wrapper for socket objects ================================================= .. module:: ssl :synopsis: TLS/SSL wrapper for socket objects .. moduleauthor:: Bill Janssen .. sectionauthor:: Bill Janssen .. index:: single: OpenSSL; (use in module ssl) .. index:: TLS, SSL, Transport Layer Security, Secure Sockets Layer **Source code:** :source:`Lib/ssl.py` -------------- This module provides access to Transport Layer Security (often known as "Secure Sockets Layer") encryption and peer authentication facilities for network sockets, both client-side and server-side. This module uses the OpenSSL library. It is available on all modern Unix systems, Windows, Mac OS X, and probably additional platforms, as long as OpenSSL is installed on that platform. .. note:: Some behavior may be platform dependent, since calls are made to the operating system socket APIs. The installed version of OpenSSL may also cause variations in behavior. For example, TLSv1.1 and TLSv1.2 come with openssl version 1.0.1. .. warning:: Don't use this module without reading the :ref:`ssl-security`. Doing so may lead to a false sense of security, as the default settings of the ssl module are not necessarily appropriate for your application. This section documents the objects and functions in the ``ssl`` module; for more general information about TLS, SSL, and certificates, the reader is referred to the documents in the "See Also" section at the bottom. This module provides a class, :class:`ssl.SSLSocket`, which is derived from the :class:`socket.socket` type, and provides a socket-like wrapper that also encrypts and decrypts the data going over the socket with SSL. It supports additional methods such as :meth:`getpeercert`, which retrieves the certificate of the other side of the connection, and :meth:`cipher`,which retrieves the cipher being used for the secure connection. For more sophisticated applications, the :class:`ssl.SSLContext` class helps manage settings and certificates, which can then be inherited by SSL sockets created through the :meth:`SSLContext.wrap_socket` method. Functions, Constants, and Exceptions ------------------------------------ .. exception:: SSLError Raised to signal an error from the underlying SSL implementation (currently provided by the OpenSSL library). This signifies some problem in the higher-level encryption and authentication layer that's superimposed on the underlying network connection. This error is a subtype of :exc:`OSError`. The error code and message of :exc:`SSLError` instances are provided by the OpenSSL library. .. versionchanged:: 3.3 :exc:`SSLError` used to be a subtype of :exc:`socket.error`. .. attribute:: library A string mnemonic designating the OpenSSL submodule in which the error occurred, such as ``SSL``, ``PEM`` or ``X509``. The range of possible values depends on the OpenSSL version. .. versionadded:: 3.3 .. attribute:: reason A string mnemonic designating the reason this error occurred, for example ``CERTIFICATE_VERIFY_FAILED``. The range of possible values depends on the OpenSSL version. .. versionadded:: 3.3 .. exception:: SSLZeroReturnError A subclass of :exc:`SSLError` raised when trying to read or write and the SSL connection has been closed cleanly. Note that this doesn't mean that the underlying transport (read TCP) has been closed. .. versionadded:: 3.3 .. exception:: SSLWantReadError A subclass of :exc:`SSLError` raised by a :ref:`non-blocking SSL socket ` when trying to read or write data, but more data needs to be received on the underlying TCP transport before the request can be fulfilled. .. versionadded:: 3.3 .. exception:: SSLWantWriteError A subclass of :exc:`SSLError` raised by a :ref:`non-blocking SSL socket ` when trying to read or write data, but more data needs to be sent on the underlying TCP transport before the request can be fulfilled. .. versionadded:: 3.3 .. exception:: SSLSyscallError A subclass of :exc:`SSLError` raised when a system error was encountered while trying to fulfill an operation on a SSL socket. Unfortunately, there is no easy way to inspect the original errno number. .. versionadded:: 3.3 .. exception:: SSLEOFError A subclass of :exc:`SSLError` raised when the SSL connection has been terminated abruptly. Generally, you shouldn't try to reuse the underlying transport when this error is encountered. .. versionadded:: 3.3 .. exception:: CertificateError Raised to signal an error with a certificate (such as mismatching hostname). Certificate errors detected by OpenSSL, though, raise an :exc:`SSLError`. Socket creation ^^^^^^^^^^^^^^^ The following function allows for standalone socket creation. Starting from Python 3.2, it can be more flexible to use :meth:`SSLContext.wrap_socket` instead. .. function:: wrap_socket(sock, keyfile=None, certfile=None, server_side=False, cert_reqs=CERT_NONE, ssl_version={see docs}, ca_certs=None, do_handshake_on_connect=True, suppress_ragged_eofs=True, ciphers=None) Takes an instance ``sock`` of :class:`socket.socket`, and returns an instance of :class:`ssl.SSLSocket`, a subtype of :class:`socket.socket`, which wraps the underlying socket in an SSL context. ``sock`` must be a :data:`~socket.SOCK_STREAM` socket; other socket types are unsupported. For client-side sockets, the context construction is lazy; if the underlying socket isn't connected yet, the context construction will be performed after :meth:`connect` is called on the socket. For server-side sockets, if the socket has no remote peer, it is assumed to be a listening socket, and the server-side SSL wrapping is automatically performed on client connections accepted via the :meth:`accept` method. :func:`wrap_socket` may raise :exc:`SSLError`. The ``keyfile`` and ``certfile`` parameters specify optional files which contain a certificate to be used to identify the local side of the connection. See the discussion of :ref:`ssl-certificates` for more information on how the certificate is stored in the ``certfile``. The parameter ``server_side`` is a boolean which identifies whether server-side or client-side behavior is desired from this socket. The parameter ``cert_reqs`` specifies whether a certificate is required from the other side of the connection, and whether it will be validated if provided. It must be one of the three values :const:`CERT_NONE` (certificates ignored), :const:`CERT_OPTIONAL` (not required, but validated if provided), or :const:`CERT_REQUIRED` (required and validated). If the value of this parameter is not :const:`CERT_NONE`, then the ``ca_certs`` parameter must point to a file of CA certificates. The ``ca_certs`` file contains a set of concatenated "certification authority" certificates, which are used to validate certificates passed from the other end of the connection. See the discussion of :ref:`ssl-certificates` for more information about how to arrange the certificates in this file. The parameter ``ssl_version`` specifies which version of the SSL protocol to use. Typically, the server chooses a particular protocol version, and the client must adapt to the server's choice. Most of the versions are not interoperable with the other versions. If not specified, the default is :data:`PROTOCOL_SSLv23`; it provides the most compatibility with other versions. Here's a table showing which versions in a client (down the side) can connect to which versions in a server (along the top): .. table:: ======================== ========= ========= ========== ========= =========== =========== *client* / **server** **SSLv2** **SSLv3** **SSLv23** **TLSv1** **TLSv1.1** **TLSv1.2** ------------------------ --------- --------- ---------- --------- ----------- ----------- *SSLv2* yes no yes no no no *SSLv3* no yes yes no no no *SSLv23* yes no yes no no no *TLSv1* no no yes yes no no *TLSv1.1* no no yes no yes no *TLSv1.2* no no yes no no yes ======================== ========= ========= ========== ========= =========== =========== .. note:: Which connections succeed will vary depending on the version of OpenSSL. For instance, in some older versions of OpenSSL (such as 0.9.7l on OS X 10.4), an SSLv2 client could not connect to an SSLv23 server. Another example: beginning with OpenSSL 1.0.0, an SSLv23 client will not actually attempt SSLv2 connections unless you explicitly enable SSLv2 ciphers; for example, you might specify ``"ALL"`` or ``"SSLv2"`` as the *ciphers* parameter to enable them. The *ciphers* parameter sets the available ciphers for this SSL object. It should be a string in the `OpenSSL cipher list format `_. The parameter ``do_handshake_on_connect`` specifies whether to do the SSL handshake automatically after doing a :meth:`socket.connect`, or whether the application program will call it explicitly, by invoking the :meth:`SSLSocket.do_handshake` method. Calling :meth:`SSLSocket.do_handshake` explicitly gives the program control over the blocking behavior of the socket I/O involved in the handshake. The parameter ``suppress_ragged_eofs`` specifies how the :meth:`SSLSocket.recv` method should signal unexpected EOF from the other end of the connection. If specified as :const:`True` (the default), it returns a normal EOF (an empty bytes object) in response to unexpected EOF errors raised from the underlying socket; if :const:`False`, it will raise the exceptions back to the caller. .. versionchanged:: 3.2 New optional argument *ciphers*. Context creation ^^^^^^^^^^^^^^^^ A convenience function helps create :class:`SSLContext` objects for common purposes. .. function:: create_default_context(purpose=Purpose.SERVER_AUTH, cafile=None, capath=None, cadata=None) Return a new :class:`SSLContext` object with default settings for the given *purpose*. The settings are chosen by the :mod:`ssl` module, and usually represent a higher security level than when calling the :class:`SSLContext` constructor directly. *cafile*, *capath*, *cadata* represent optional CA certificates to trust for certificate verification, as in :meth:`SSLContext.load_verify_locations`. If all three are :const:`None`, this function can choose to trust the system's default CA certificates instead. The settings in Python 3.4 are: :data:`PROTOCOL_SSLv23`, :data:`OP_NO_SSLv2`, and :data:`OP_NO_SSLv3` with high encryption cipher suites without RC4 and without unauthenticated cipher suites. Passing :data:`~Purpose.SERVER_AUTH` as *purpose* sets :data:`~SSLContext.verify_mode` to :data:`CERT_REQUIRED` and either loads CA certificates (when at least one of *cafile*, *capath* or *cadata* is given) or uses :meth:`SSLContext.load_default_certs` to load default CA certificates. .. note:: The protocol, options, cipher and other settings may change to more restrictive values anytime without prior deprecation. The values represent a fair balance between compatibility and security. If your application needs specific settings, you should create a :class:`SSLContext` and apply the settings yourself. .. note:: If you find that when certain older clients or servers attempt to connect with a :class:`SSLContext` created by this function that they get an error stating "Protocol or cipher suite mismatch", it may be that they only support SSL3.0 which this function excludes using the :data:`OP_NO_SSLv3`. SSL3.0 has problematic security due to a number of poor implementations and it's reliance on MD5 within the protocol. If you wish to continue to use this function but still allow SSL 3.0 connections you can re-enable them using:: ctx = ssl.create_default_context(Purpose.CLIENT_AUTH) ctx.options &= ~ssl.OP_NO_SSLv3 .. versionadded:: 3.4 Random generation ^^^^^^^^^^^^^^^^^ .. function:: RAND_bytes(num) Returns *num* cryptographically strong pseudo-random bytes. Raises an :class:`SSLError` if the PRNG has not been seeded with enough data or if the operation is not supported by the current RAND method. :func:`RAND_status` can be used to check the status of the PRNG and :func:`RAND_add` can be used to seed the PRNG. Read the Wikipedia article, `Cryptographically secure pseudorandom number generator (CSPRNG) `_, to get the requirements of a cryptographically generator. .. versionadded:: 3.3 .. function:: RAND_pseudo_bytes(num) Returns (bytes, is_cryptographic): bytes are *num* pseudo-random bytes, is_cryptographic is ``True`` if the bytes generated are cryptographically strong. Raises an :class:`SSLError` if the operation is not supported by the current RAND method. Generated pseudo-random byte sequences will be unique if they are of sufficient length, but are not necessarily unpredictable. They can be used for non-cryptographic purposes and for certain purposes in cryptographic protocols, but usually not for key generation etc. .. versionadded:: 3.3 .. function:: RAND_status() Returns ``True`` if the SSL pseudo-random number generator has been seeded with 'enough' randomness, and ``False`` otherwise. You can use :func:`ssl.RAND_egd` and :func:`ssl.RAND_add` to increase the randomness of the pseudo-random number generator. .. function:: RAND_egd(path) If you are running an entropy-gathering daemon (EGD) somewhere, and *path* is the pathname of a socket connection open to it, this will read 256 bytes of randomness from the socket, and add it to the SSL pseudo-random number generator to increase the security of generated secret keys. This is typically only necessary on systems without better sources of randomness. See http://egd.sourceforge.net/ or http://prngd.sourceforge.net/ for sources of entropy-gathering daemons. .. function:: RAND_add(bytes, entropy) Mixes the given *bytes* into the SSL pseudo-random number generator. The parameter *entropy* (a float) is a lower bound on the entropy contained in string (so you can always use :const:`0.0`). See :rfc:`1750` for more information on sources of entropy. Certificate handling ^^^^^^^^^^^^^^^^^^^^ .. function:: match_hostname(cert, hostname) Verify that *cert* (in decoded format as returned by :meth:`SSLSocket.getpeercert`) matches the given *hostname*. The rules applied are those for checking the identity of HTTPS servers as outlined in :rfc:`2818` and :rfc:`6125`, except that IP addresses are not currently supported. In addition to HTTPS, this function should be suitable for checking the identity of servers in various SSL-based protocols such as FTPS, IMAPS, POPS and others. :exc:`CertificateError` is raised on failure. On success, the function returns nothing:: >>> cert = {'subject': ((('commonName', 'example.com'),),)} >>> ssl.match_hostname(cert, "example.com") >>> ssl.match_hostname(cert, "example.org") Traceback (most recent call last): File "", line 1, in File "/home/py3k/Lib/ssl.py", line 130, in match_hostname ssl.CertificateError: hostname 'example.org' doesn't match 'example.com' .. versionadded:: 3.2 .. versionchanged:: 3.3.3 The function now follows :rfc:`6125`, section 6.4.3 and does neither match multiple wildcards (e.g. ``*.*.com`` or ``*a*.example.org``) nor a wildcard inside an internationalized domain names (IDN) fragment. IDN A-labels such as ``www*.xn--pthon-kva.org`` are still supported, but ``x*.python.org`` no longer matches ``xn--tda.python.org``. .. function:: cert_time_to_seconds(timestring) Returns a floating-point value containing a normal seconds-after-the-epoch time value, given the time-string representing the "notBefore" or "notAfter" date from a certificate. Here's an example:: >>> import ssl >>> ssl.cert_time_to_seconds("May 9 00:00:00 2007 GMT") 1178694000.0 >>> import time >>> time.ctime(ssl.cert_time_to_seconds("May 9 00:00:00 2007 GMT")) 'Wed May 9 00:00:00 2007' .. function:: get_server_certificate(addr, ssl_version=PROTOCOL_SSLv3, ca_certs=None) Given the address ``addr`` of an SSL-protected server, as a (*hostname*, *port-number*) pair, fetches the server's certificate, and returns it as a PEM-encoded string. If ``ssl_version`` is specified, uses that version of the SSL protocol to attempt to connect to the server. If ``ca_certs`` is specified, it should be a file containing a list of root certificates, the same format as used for the same parameter in :func:`wrap_socket`. The call will attempt to validate the server certificate against that set of root certificates, and will fail if the validation attempt fails. .. versionchanged:: 3.3 This function is now IPv6-compatible. .. function:: DER_cert_to_PEM_cert(DER_cert_bytes) Given a certificate as a DER-encoded blob of bytes, returns a PEM-encoded string version of the same certificate. .. function:: PEM_cert_to_DER_cert(PEM_cert_string) Given a certificate as an ASCII PEM string, returns a DER-encoded sequence of bytes for that same certificate. .. function:: get_default_verify_paths() Returns a named tuple with paths to OpenSSL's default cafile and capath. The paths are the same as used by :meth:`SSLContext.set_default_verify_paths`. The return value is a :term:`named tuple` ``DefaultVerifyPaths``: * :attr:`cafile` - resolved path to cafile or None if the file doesn't exist, * :attr:`capath` - resolved path to capath or None if the directory doesn't exist, * :attr:`openssl_cafile_env` - OpenSSL's environment key that points to a cafile, * :attr:`openssl_cafile` - hard coded path to a cafile, * :attr:`openssl_capath_env` - OpenSSL's environment key that points to a capath, * :attr:`openssl_capath` - hard coded path to a capath directory .. versionadded:: 3.4 .. function:: enum_certificates(store_name) Retrieve certificates from Windows' system cert store. *store_name* may be one of ``CA``, ``ROOT`` or ``MY``. Windows may provide additional cert stores, too. The function returns a list of (cert_bytes, encoding_type, trust) tuples. The encoding_type specifies the encoding of cert_bytes. It is either :const:`x509_asn` for X.509 ASN.1 data or :const:`pkcs_7_asn` for PKCS#7 ASN.1 data. Trust specifies the purpose of the certificate as a set of OIDS or exactly ``True`` if the certificate is trustworthy for all purposes. Example:: >>> ssl.enum_certificates("CA") [(b'data...', 'x509_asn', {'1.3.6.1.5.5.7.3.1', '1.3.6.1.5.5.7.3.2'}), (b'data...', 'x509_asn', True)] Availability: Windows. .. versionadded:: 3.4 .. function:: enum_crls(store_name) Retrieve CRLs from Windows' system cert store. *store_name* may be one of ``CA``, ``ROOT`` or ``MY``. Windows may provide additional cert stores, too. The function returns a list of (cert_bytes, encoding_type, trust) tuples. The encoding_type specifies the encoding of cert_bytes. It is either :const:`x509_asn` for X.509 ASN.1 data or :const:`pkcs_7_asn` for PKCS#7 ASN.1 data. Availability: Windows. .. versionadded:: 3.4 Constants ^^^^^^^^^ .. data:: CERT_NONE Possible value for :attr:`SSLContext.verify_mode`, or the ``cert_reqs`` parameter to :func:`wrap_socket`. In this mode (the default), no certificates will be required from the other side of the socket connection. If a certificate is received from the other end, no attempt to validate it is made. See the discussion of :ref:`ssl-security` below. .. data:: CERT_OPTIONAL Possible value for :attr:`SSLContext.verify_mode`, or the ``cert_reqs`` parameter to :func:`wrap_socket`. In this mode no certificates will be required from the other side of the socket connection; but if they are provided, validation will be attempted and an :class:`SSLError` will be raised on failure. Use of this setting requires a valid set of CA certificates to be passed, either to :meth:`SSLContext.load_verify_locations` or as a value of the ``ca_certs`` parameter to :func:`wrap_socket`. .. data:: CERT_REQUIRED Possible value for :attr:`SSLContext.verify_mode`, or the ``cert_reqs`` parameter to :func:`wrap_socket`. In this mode, certificates are required from the other side of the socket connection; an :class:`SSLError` will be raised if no certificate is provided, or if its validation fails. Use of this setting requires a valid set of CA certificates to be passed, either to :meth:`SSLContext.load_verify_locations` or as a value of the ``ca_certs`` parameter to :func:`wrap_socket`. .. data:: VERIFY_DEFAULT Possible value for :attr:`SSLContext.verify_flags`. In this mode, certificate revocation lists (CRLs) are not checked. By default OpenSSL does neither require nor verify CRLs. .. versionadded:: 3.4 .. data:: VERIFY_CRL_CHECK_LEAF Possible value for :attr:`SSLContext.verify_flags`. In this mode, only the peer cert is check but non of the intermediate CA certificates. The mode requires a valid CRL that is signed by the peer cert's issuer (its direct ancestor CA). If no proper has been loaded :attr:`SSLContext.load_verify_locations`, validation will fail. .. versionadded:: 3.4 .. data:: VERIFY_CRL_CHECK_CHAIN Possible value for :attr:`SSLContext.verify_flags`. In this mode, CRLs of all certificates in the peer cert chain are checked. .. versionadded:: 3.4 .. data:: VERIFY_X509_STRICT Possible value for :attr:`SSLContext.verify_flags` to disable workarounds for broken X.509 certificates. .. versionadded:: 3.4 .. data:: PROTOCOL_SSLv2 Selects SSL version 2 as the channel encryption protocol. This protocol is not available if OpenSSL is compiled with OPENSSL_NO_SSL2 flag. .. warning:: SSL version 2 is insecure. Its use is highly discouraged. .. data:: PROTOCOL_SSLv23 Selects SSL version 2 or 3 as the channel encryption protocol. This is a setting to use with servers for maximum compatibility with the other end of an SSL connection, but it may cause the specific ciphers chosen for the encryption to be of fairly low quality. .. data:: PROTOCOL_SSLv3 Selects SSL version 3 as the channel encryption protocol. For clients, this is the maximally compatible SSL variant. .. data:: PROTOCOL_TLSv1 Selects TLS version 1.0 as the channel encryption protocol. .. data:: PROTOCOL_TLSv1_1 Selects TLS version 1.1 as the channel encryption protocol. Available only with openssl version 1.0.1+. .. versionadded:: 3.4 .. data:: PROTOCOL_TLSv1_2 Selects TLS version 1.2 as the channel encryption protocol. This is the most modern version, and probably the best choice for maximum protection, if both sides can speak it. Available only with openssl version 1.0.1+. .. versionadded:: 3.4 .. data:: OP_ALL Enables workarounds for various bugs present in other SSL implementations. This option is set by default. It does not necessarily set the same flags as OpenSSL's ``SSL_OP_ALL`` constant. .. versionadded:: 3.2 .. data:: OP_NO_SSLv2 Prevents an SSLv2 connection. This option is only applicable in conjunction with :const:`PROTOCOL_SSLv23`. It prevents the peers from choosing SSLv2 as the protocol version. .. versionadded:: 3.2 .. data:: OP_NO_SSLv3 Prevents an SSLv3 connection. This option is only applicable in conjunction with :const:`PROTOCOL_SSLv23`. It prevents the peers from choosing SSLv3 as the protocol version. .. versionadded:: 3.2 .. data:: OP_NO_TLSv1 Prevents a TLSv1 connection. This option is only applicable in conjunction with :const:`PROTOCOL_SSLv23`. It prevents the peers from choosing TLSv1 as the protocol version. .. versionadded:: 3.2 .. data:: OP_NO_TLSv1_1 Prevents a TLSv1.1 connection. This option is only applicable in conjunction with :const:`PROTOCOL_SSLv23`. It prevents the peers from choosing TLSv1.1 as the protocol version. Available only with openssl version 1.0.1+. .. versionadded:: 3.4 .. data:: OP_NO_TLSv1_2 Prevents a TLSv1.2 connection. This option is only applicable in conjunction with :const:`PROTOCOL_SSLv23`. It prevents the peers from choosing TLSv1.2 as the protocol version. Available only with openssl version 1.0.1+. .. versionadded:: 3.4 .. data:: OP_CIPHER_SERVER_PREFERENCE Use the server's cipher ordering preference, rather than the client's. This option has no effect on client sockets and SSLv2 server sockets. .. versionadded:: 3.3 .. data:: OP_SINGLE_DH_USE Prevents re-use of the same DH key for distinct SSL sessions. This improves forward secrecy but requires more computational resources. This option only applies to server sockets. .. versionadded:: 3.3 .. data:: OP_SINGLE_ECDH_USE Prevents re-use of the same ECDH key for distinct SSL sessions. This improves forward secrecy but requires more computational resources. This option only applies to server sockets. .. versionadded:: 3.3 .. data:: OP_NO_COMPRESSION Disable compression on the SSL channel. This is useful if the application protocol supports its own compression scheme. This option is only available with OpenSSL 1.0.0 and later. .. versionadded:: 3.3 .. data:: HAS_ECDH Whether the OpenSSL library has built-in support for Elliptic Curve-based Diffie-Hellman key exchange. This should be true unless the feature was explicitly disabled by the distributor. .. versionadded:: 3.3 .. data:: HAS_SNI Whether the OpenSSL library has built-in support for the *Server Name Indication* extension to the SSLv3 and TLSv1 protocols (as defined in :rfc:`4366`). When true, you can use the *server_hostname* argument to :meth:`SSLContext.wrap_socket`. .. versionadded:: 3.2 .. data:: HAS_NPN Whether the OpenSSL library has built-in support for *Next Protocol Negotiation* as described in the `NPN draft specification `_. When true, you can use the :meth:`SSLContext.set_npn_protocols` method to advertise which protocols you want to support. .. versionadded:: 3.3 .. data:: CHANNEL_BINDING_TYPES List of supported TLS channel binding types. Strings in this list can be used as arguments to :meth:`SSLSocket.get_channel_binding`. .. versionadded:: 3.3 .. data:: OPENSSL_VERSION The version string of the OpenSSL library loaded by the interpreter:: >>> ssl.OPENSSL_VERSION 'OpenSSL 0.9.8k 25 Mar 2009' .. versionadded:: 3.2 .. data:: OPENSSL_VERSION_INFO A tuple of five integers representing version information about the OpenSSL library:: >>> ssl.OPENSSL_VERSION_INFO (0, 9, 8, 11, 15) .. versionadded:: 3.2 .. data:: OPENSSL_VERSION_NUMBER The raw version number of the OpenSSL library, as a single integer:: >>> ssl.OPENSSL_VERSION_NUMBER 9470143 >>> hex(ssl.OPENSSL_VERSION_NUMBER) '0x9080bf' .. versionadded:: 3.2 .. data:: ALERT_DESCRIPTION_HANDSHAKE_FAILURE ALERT_DESCRIPTION_INTERNAL_ERROR ALERT_DESCRIPTION_* Alert Descriptions from :rfc:`5246` and others. The `IANA TLS Alert Registry `_ contains this list and references to the RFCs where their meaning is defined. Used as the return value of the callback function in :meth:`SSLContext.set_servername_callback`. .. versionadded:: 3.4 .. data:: Purpose.SERVER_AUTH Option for :func:`create_default_context` and :meth:`SSLContext.load_default_certs`. This value indicates that the context may be used to authenticate Web servers (therefore, it will be used to create client-side sockets). .. versionadded:: 3.4 .. data:: Purpose.CLIENT_AUTH Option for :func:`create_default_context` and :meth:`SSLContext.load_default_certs`. This value indicates that the context may be used to authenticate Web clients (therefore, it will be used to create server-side sockets). .. versionadded:: 3.4 SSL Sockets ----------- .. class:: SSLSocket(socket.socket) SSL sockets provide the following methods of :ref:`socket-objects`: - :meth:`~socket.socket.accept()` - :meth:`~socket.socket.bind()` - :meth:`~socket.socket.close()` - :meth:`~socket.socket.connect()` - :meth:`~socket.socket.detach()` - :meth:`~socket.socket.fileno()` - :meth:`~socket.socket.getpeername()`, :meth:`~socket.socket.getsockname()` - :meth:`~socket.socket.getsockopt()`, :meth:`~socket.socket.setsockopt()` - :meth:`~socket.socket.gettimeout()`, :meth:`~socket.socket.settimeout()`, :meth:`~socket.socket.setblocking()` - :meth:`~socket.socket.listen()` - :meth:`~socket.socket.makefile()` - :meth:`~socket.socket.recv()`, :meth:`~socket.socket.recv_into()` (but passing a non-zero ``flags`` argument is not allowed) - :meth:`~socket.socket.send()`, :meth:`~socket.socket.sendall()` (with the same limitation) - :meth:`~socket.socket.shutdown()` However, since the SSL (and TLS) protocol has its own framing atop of TCP, the SSL sockets abstraction can, in certain respects, diverge from the specification of normal, OS-level sockets. See especially the :ref:`notes on non-blocking sockets `. Usually, :class:`SSLSocket` are not created directly, but using the :func:`wrap_socket` function or the :meth:`SSLContext.wrap_socket` method. SSL sockets also have the following additional methods and attributes: .. method:: SSLSocket.read(len=0, buffer=None) Read up to *len* bytes of data from the SSL socket and return the result as a ``bytes`` instance. If *buffer* is specified, then read into the buffer instead, and return the number of bytes read. Raise :exc:`SSLWantReadError` or :exc:`SSLWantWriteError` if the socket is :ref:`non-blocking ` and the read would block. As at any time a re-negotiation is possible, a call to :meth:`read` can also cause write operations. .. method:: SSLSocket.write(buf) Write *buf* to the SSL socket and return the number of bytes written. The *buf* argument must be an object supporting the buffer interface. Raise :exc:`SSLWantReadError` or :exc:`SSLWantWriteError` if the socket is :ref:`non-blocking ` and the write would block. As at any time a re-negotiation is possible, a call to :meth:`write` can also cause read operations. .. note:: The :meth:`~SSLSocket.read` and :meth:`~SSLSocket.write` methods are the low-level methods that read and write unencrypted, application-level data and and decrypt/encrypt it to encrypted, wire-level data. These methods require an active SSL connection, i.e. the handshake was completed and :meth:`SSLSocket.unwrap` was not called. Normally you should use the socket API methods like :meth:`~socket.socket.recv` and :meth:`~socket.socket.send` instead of these methods. .. method:: SSLSocket.do_handshake() Perform the SSL setup handshake. .. versionchanged:: 3.4 The handshake method also performs :func:`match_hostname` when the :attr:`~SSLContext.check_hostname` attribute of the socket's :attr:`~SSLSocket.context` is true. .. method:: SSLSocket.getpeercert(binary_form=False) If there is no certificate for the peer on the other end of the connection, return ``None``. If the SSL handshake hasn't been done yet, raise :exc:`ValueError`. If the ``binary_form`` parameter is :const:`False`, and a certificate was received from the peer, this method returns a :class:`dict` instance. If the certificate was not validated, the dict is empty. If the certificate was validated, it returns a dict with several keys, amongst them ``subject`` (the principal for which the certificate was issued) and ``issuer`` (the principal issuing the certificate). If a certificate contains an instance of the *Subject Alternative Name* extension (see :rfc:`3280`), there will also be a ``subjectAltName`` key in the dictionary. The ``subject`` and ``issuer`` fields are tuples containing the sequence of relative distinguished names (RDNs) given in the certificate's data structure for the respective fields, and each RDN is a sequence of name-value pairs. Here is a real-world example:: {'issuer': ((('countryName', 'IL'),), (('organizationName', 'StartCom Ltd.'),), (('organizationalUnitName', 'Secure Digital Certificate Signing'),), (('commonName', 'StartCom Class 2 Primary Intermediate Server CA'),)), 'notAfter': 'Nov 22 08:15:19 2013 GMT', 'notBefore': 'Nov 21 03:09:52 2011 GMT', 'serialNumber': '95F0', 'subject': ((('description', '571208-SLe257oHY9fVQ07Z'),), (('countryName', 'US'),), (('stateOrProvinceName', 'California'),), (('localityName', 'San Francisco'),), (('organizationName', 'Electronic Frontier Foundation, Inc.'),), (('commonName', '*.eff.org'),), (('emailAddress', 'hostmaster@eff.org'),)), 'subjectAltName': (('DNS', '*.eff.org'), ('DNS', 'eff.org')), 'version': 3} .. note:: To validate a certificate for a particular service, you can use the :func:`match_hostname` function. If the ``binary_form`` parameter is :const:`True`, and a certificate was provided, this method returns the DER-encoded form of the entire certificate as a sequence of bytes, or :const:`None` if the peer did not provide a certificate. Whether the peer provides a certificate depends on the SSL socket's role: * for a client SSL socket, the server will always provide a certificate, regardless of whether validation was required; * for a server SSL socket, the client will only provide a certificate when requested by the server; therefore :meth:`getpeercert` will return :const:`None` if you used :const:`CERT_NONE` (rather than :const:`CERT_OPTIONAL` or :const:`CERT_REQUIRED`). .. versionchanged:: 3.2 The returned dictionary includes additional items such as ``issuer`` and ``notBefore``. .. versionchanged:: 3.4 :exc:`ValueError` is raised when the handshake isn't done. The returned dictionary includes additional X509v3 extension items such as ``crlDistributionPoints``, ``caIssuers`` and ``OCSP`` URIs. .. method:: SSLSocket.cipher() Returns a three-value tuple containing the name of the cipher being used, the version of the SSL protocol that defines its use, and the number of secret bits being used. If no connection has been established, returns ``None``. .. method:: SSLSocket.compression() Return the compression algorithm being used as a string, or ``None`` if the connection isn't compressed. If the higher-level protocol supports its own compression mechanism, you can use :data:`OP_NO_COMPRESSION` to disable SSL-level compression. .. versionadded:: 3.3 .. method:: SSLSocket.get_channel_binding(cb_type="tls-unique") Get channel binding data for current connection, as a bytes object. Returns ``None`` if not connected or the handshake has not been completed. The *cb_type* parameter allow selection of the desired channel binding type. Valid channel binding types are listed in the :data:`CHANNEL_BINDING_TYPES` list. Currently only the 'tls-unique' channel binding, defined by :rfc:`5929`, is supported. :exc:`ValueError` will be raised if an unsupported channel binding type is requested. .. versionadded:: 3.3 .. method:: SSLSocket.selected_npn_protocol() Returns the protocol that was selected during the TLS/SSL handshake. If :meth:`SSLContext.set_npn_protocols` was not called, or if the other party does not support NPN, or if the handshake has not yet happened, this will return ``None``. .. versionadded:: 3.3 .. method:: SSLSocket.unwrap() Performs the SSL shutdown handshake, which removes the TLS layer from the underlying socket, and returns the underlying socket object. This can be used to go from encrypted operation over a connection to unencrypted. The returned socket should always be used for further communication with the other side of the connection, rather than the original socket. .. method:: SSLSocket.pending() Returns the number of already decrypted bytes available for read, pending on the connection. .. attribute:: SSLSocket.context The :class:`SSLContext` object this SSL socket is tied to. If the SSL socket was created using the top-level :func:`wrap_socket` function (rather than :meth:`SSLContext.wrap_socket`), this is a custom context object created for this SSL socket. .. versionadded:: 3.2 .. attribute:: SSLSocket.server_side A boolean which is ``True`` for server-side sockets and ``False`` for client-side sockets. .. versionadded:: 3.2 .. attribute:: SSLSocket.server_hostname Hostname of the server: :class:`str` type, or ``None`` for server-side socket or if the hostname was not specified in the constructor. .. versionadded:: 3.2 SSL Contexts ------------ .. versionadded:: 3.2 An SSL context holds various data longer-lived than single SSL connections, such as SSL configuration options, certificate(s) and private key(s). It also manages a cache of SSL sessions for server-side sockets, in order to speed up repeated connections from the same clients. .. class:: SSLContext(protocol) Create a new SSL context. You must pass *protocol* which must be one of the ``PROTOCOL_*`` constants defined in this module. :data:`PROTOCOL_SSLv23` is currently recommended for maximum interoperability. .. seealso:: :func:`create_default_context` lets the :mod:`ssl` module choose security settings for a given purpose. :class:`SSLContext` objects have the following methods and attributes: .. method:: SSLContext.cert_store_stats() Get statistics about quantities of loaded X.509 certificates, count of X.509 certificates flagged as CA certificates and certificate revocation lists as dictionary. Example for a context with one CA cert and one other cert:: >>> context.cert_store_stats() {'crl': 0, 'x509_ca': 1, 'x509': 2} .. versionadded:: 3.4 .. method:: SSLContext.load_cert_chain(certfile, keyfile=None, password=None) Load a private key and the corresponding certificate. The *certfile* string must be the path to a single file in PEM format containing the certificate as well as any number of CA certificates needed to establish the certificate's authenticity. The *keyfile* string, if present, must point to a file containing the private key in. Otherwise the private key will be taken from *certfile* as well. See the discussion of :ref:`ssl-certificates` for more information on how the certificate is stored in the *certfile*. The *password* argument may be a function to call to get the password for decrypting the private key. It will only be called if the private key is encrypted and a password is necessary. It will be called with no arguments, and it should return a string, bytes, or bytearray. If the return value is a string it will be encoded as UTF-8 before using it to decrypt the key. Alternatively a string, bytes, or bytearray value may be supplied directly as the *password* argument. It will be ignored if the private key is not encrypted and no password is needed. If the *password* argument is not specified and a password is required, OpenSSL's built-in password prompting mechanism will be used to interactively prompt the user for a password. An :class:`SSLError` is raised if the private key doesn't match with the certificate. .. versionchanged:: 3.3 New optional argument *password*. .. method:: SSLContext.load_default_certs(purpose=Purpose.SERVER_AUTH) Load a set of default "certification authority" (CA) certificates from default locations. On Windows it loads CA certs from the ``CA`` and ``ROOT`` system stores. On other systems it calls :meth:`SSLContext.set_default_verify_paths`. In the future the method may load CA certificates from other locations, too. The *purpose* flag specifies what kind of CA certificates are loaded. The default settings :data:`Purpose.SERVER_AUTH` loads certificates, that are flagged and trusted for TLS web server authentication (client side sockets). :data:`Purpose.CLIENT_AUTH` loads CA certificates for client certificate verification on the server side. .. versionadded:: 3.4 .. method:: SSLContext.load_verify_locations(cafile=None, capath=None, cadata=None) Load a set of "certification authority" (CA) certificates used to validate other peers' certificates when :data:`verify_mode` is other than :data:`CERT_NONE`. At least one of *cafile* or *capath* must be specified. This method can also load certification revocation lists (CRLs) in PEM or DER format. In order to make use of CRLs, :attr:`SSLContext.verify_flags` must be configured properly. The *cafile* string, if present, is the path to a file of concatenated CA certificates in PEM format. See the discussion of :ref:`ssl-certificates` for more information about how to arrange the certificates in this file. The *capath* string, if present, is the path to a directory containing several CA certificates in PEM format, following an `OpenSSL specific layout `_. The *cadata* object, if present, is either an ASCII string of one or more PEM-encoded certificates or a bytes-like object of DER-encoded certificates. Like with *capath* extra lines around PEM-encoded certificates are ignored but at least one certificate must be present. .. versionchanged:: 3.4 New optional argument *cadata* .. method:: SSLContext.get_ca_certs(binary_form=False) Get a list of loaded "certification authority" (CA) certificates. If the ``binary_form`` parameter is :const:`False` each list entry is a dict like the output of :meth:`SSLSocket.getpeercert`. Otherwise the method returns a list of DER-encoded certificates. The returned list does not contain certificates from *capath* unless a certificate was requested and loaded by a SSL connection. .. versionadded:: 3.4 .. method:: SSLContext.set_default_verify_paths() Load a set of default "certification authority" (CA) certificates from a filesystem path defined when building the OpenSSL library. Unfortunately, there's no easy way to know whether this method succeeds: no error is returned if no certificates are to be found. When the OpenSSL library is provided as part of the operating system, though, it is likely to be configured properly. .. method:: SSLContext.set_ciphers(ciphers) Set the available ciphers for sockets created with this context. It should be a string in the `OpenSSL cipher list format `_. If no cipher can be selected (because compile-time options or other configuration forbids use of all the specified ciphers), an :class:`SSLError` will be raised. .. note:: when connected, the :meth:`SSLSocket.cipher` method of SSL sockets will give the currently selected cipher. .. method:: SSLContext.set_npn_protocols(protocols) Specify which protocols the socket should advertise during the SSL/TLS handshake. It should be a list of strings, like ``['http/1.1', 'spdy/2']``, ordered by preference. The selection of a protocol will happen during the handshake, and will play out according to the `NPN draft specification `_. After a successful handshake, the :meth:`SSLSocket.selected_npn_protocol` method will return the agreed-upon protocol. This method will raise :exc:`NotImplementedError` if :data:`HAS_NPN` is False. .. versionadded:: 3.3 .. method:: SSLContext.set_servername_callback(server_name_callback) Register a callback function that will be called after the TLS Client Hello handshake message has been received by the SSL/TLS server when the TLS client specifies a server name indication. The server name indication mechanism is specified in :rfc:`6066` section 3 - Server Name Indication. Only one callback can be set per ``SSLContext``. If *server_name_callback* is ``None`` then the callback is disabled. Calling this function a subsequent time will disable the previously registered callback. The callback function, *server_name_callback*, will be called with three arguments; the first being the :class:`ssl.SSLSocket`, the second is a string that represents the server name that the client is intending to communicate (or :const:`None` if the TLS Client Hello does not contain a server name) and the third argument is the original :class:`SSLContext`. The server name argument is the IDNA decoded server name. A typical use of this callback is to change the :class:`ssl.SSLSocket`'s :attr:`SSLSocket.context` attribute to a new object of type :class:`SSLContext` representing a certificate chain that matches the server name. Due to the early negotiation phase of the TLS connection, only limited methods and attributes are usable like :meth:`SSLSocket.selected_npn_protocol` and :attr:`SSLSocket.context`. :meth:`SSLSocket.getpeercert`, :meth:`SSLSocket.getpeercert`, :meth:`SSLSocket.cipher` and :meth:`SSLSocket.compress` methods require that the TLS connection has progressed beyond the TLS Client Hello and therefore will not contain return meaningful values nor can they be called safely. The *server_name_callback* function must return ``None`` to allow the TLS negotiation to continue. If a TLS failure is required, a constant :const:`ALERT_DESCRIPTION_* ` can be returned. Other return values will result in a TLS fatal error with :const:`ALERT_DESCRIPTION_INTERNAL_ERROR`. If there is an IDNA decoding error on the server name, the TLS connection will terminate with an :const:`ALERT_DESCRIPTION_INTERNAL_ERROR` fatal TLS alert message to the client. If an exception is raised from the *server_name_callback* function the TLS connection will terminate with a fatal TLS alert message :const:`ALERT_DESCRIPTION_HANDSHAKE_FAILURE`. This method will raise :exc:`NotImplementedError` if the OpenSSL library had OPENSSL_NO_TLSEXT defined when it was built. .. versionadded:: 3.4 .. method:: SSLContext.load_dh_params(dhfile) Load the key generation parameters for Diffie-Helman (DH) key exchange. Using DH key exchange improves forward secrecy at the expense of computational resources (both on the server and on the client). The *dhfile* parameter should be the path to a file containing DH parameters in PEM format. This setting doesn't apply to client sockets. You can also use the :data:`OP_SINGLE_DH_USE` option to further improve security. .. versionadded:: 3.3 .. method:: SSLContext.set_ecdh_curve(curve_name) Set the curve name for Elliptic Curve-based Diffie-Hellman (ECDH) key exchange. ECDH is significantly faster than regular DH while arguably as secure. The *curve_name* parameter should be a string describing a well-known elliptic curve, for example ``prime256v1`` for a widely supported curve. This setting doesn't apply to client sockets. You can also use the :data:`OP_SINGLE_ECDH_USE` option to further improve security. This method is not available if :data:`HAS_ECDH` is False. .. versionadded:: 3.3 .. seealso:: `SSL/TLS & Perfect Forward Secrecy `_ Vincent Bernat. .. method:: SSLContext.wrap_socket(sock, server_side=False, \ do_handshake_on_connect=True, suppress_ragged_eofs=True, \ server_hostname=None) Wrap an existing Python socket *sock* and return an :class:`SSLSocket` object. *sock* must be a :data:`~socket.SOCK_STREAM` socket; other socket types are unsupported. The returned SSL socket is tied to the context, its settings and certificates. The parameters *server_side*, *do_handshake_on_connect* and *suppress_ragged_eofs* have the same meaning as in the top-level :func:`wrap_socket` function. On client connections, the optional parameter *server_hostname* specifies the hostname of the service which we are connecting to. This allows a single server to host multiple SSL-based services with distinct certificates, quite similarly to HTTP virtual hosts. Specifying *server_hostname* will raise a :exc:`ValueError` if the OpenSSL library doesn't have support for it (that is, if :data:`HAS_SNI` is :const:`False`). Specifying *server_hostname* will also raise a :exc:`ValueError` if *server_side* is true. .. method:: SSLContext.session_stats() Get statistics about the SSL sessions created or managed by this context. A dictionary is returned which maps the names of each `piece of information `_ to their numeric values. For example, here is the total number of hits and misses in the session cache since the context was created:: >>> stats = context.session_stats() >>> stats['hits'], stats['misses'] (0, 0) .. method:: SSLContext.get_ca_certs(binary_form=False) Returns a list of dicts with information of loaded CA certs. If the optional argument is true, returns a DER-encoded copy of the CA certificate. .. note:: Certificates in a capath directory aren't loaded unless they have been used at least once. .. versionadded:: 3.4 .. attribute:: SSLContext.check_hostname Wether to match the peer cert's hostname with :func:`match_hostname` in :meth:`SSLSocket.do_handshake`. The context's :attr:`~SSLContext.verify_mode` must be set to :data:`CERT_OPTIONAL` or :data:`CERT_REQUIRED`, and you must pass *server_hostname* to :meth:`~SSLContext.wrap_socket` in order to match the hostname. Example:: import socket, ssl context = ssl.SSLContext(ssl.PROTOCOL_TLSv1) context.verify_mode = ssl.CERT_REQUIRED context.check_hostname = True context.load_default_certs() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) ssl_sock = context.wrap_socket(s, server_hostname='www.verisign.com') ssl_sock.connect(('www.verisign.com', 443)) .. versionadded:: 3.4 .. note:: This features requires OpenSSL 0.9.8f or newer. .. attribute:: SSLContext.options An integer representing the set of SSL options enabled on this context. The default value is :data:`OP_ALL`, but you can specify other options such as :data:`OP_NO_SSLv2` by ORing them together. .. note:: With versions of OpenSSL older than 0.9.8m, it is only possible to set options, not to clear them. Attempting to clear an option (by resetting the corresponding bits) will raise a ``ValueError``. .. attribute:: SSLContext.protocol The protocol version chosen when constructing the context. This attribute is read-only. .. attribute:: SSLContext.verify_flags The flags for certificate verification operations. You can set flags like :data:`VERIFY_CRL_CHECK_LEAF` by ORing them together. By default OpenSSL does neither require nor verify certificate revocation lists (CRLs). Available only with openssl version 0.9.8+. .. versionadded:: 3.4 .. attribute:: SSLContext.verify_mode Whether to try to verify other peers' certificates and how to behave if verification fails. This attribute must be one of :data:`CERT_NONE`, :data:`CERT_OPTIONAL` or :data:`CERT_REQUIRED`. .. index:: single: certificates .. index:: single: X509 certificate .. _ssl-certificates: Certificates ------------ Certificates in general are part of a public-key / private-key system. In this system, each *principal*, (which may be a machine, or a person, or an organization) is assigned a unique two-part encryption key. One part of the key is public, and is called the *public key*; the other part is kept secret, and is called the *private key*. The two parts are related, in that if you encrypt a message with one of the parts, you can decrypt it with the other part, and **only** with the other part. A certificate contains information about two principals. It contains the name of a *subject*, and the subject's public key. It also contains a statement by a second principal, the *issuer*, that the subject is who he claims to be, and that this is indeed the subject's public key. The issuer's statement is signed with the issuer's private key, which only the issuer knows. However, anyone can verify the issuer's statement by finding the issuer's public key, decrypting the statement with it, and comparing it to the other information in the certificate. The certificate also contains information about the time period over which it is valid. This is expressed as two fields, called "notBefore" and "notAfter". In the Python use of certificates, a client or server can use a certificate to prove who they are. The other side of a network connection can also be required to produce a certificate, and that certificate can be validated to the satisfaction of the client or server that requires such validation. The connection attempt can be set to raise an exception if the validation fails. Validation is done automatically, by the underlying OpenSSL framework; the application need not concern itself with its mechanics. But the application does usually need to provide sets of certificates to allow this process to take place. Python uses files to contain certificates. They should be formatted as "PEM" (see :rfc:`1422`), which is a base-64 encoded form wrapped with a header line and a footer line:: -----BEGIN CERTIFICATE----- ... (certificate in base64 PEM encoding) ... -----END CERTIFICATE----- Certificate chains ^^^^^^^^^^^^^^^^^^ The Python files which contain certificates can contain a sequence of certificates, sometimes called a *certificate chain*. This chain should start with the specific certificate for the principal who "is" the client or server, and then the certificate for the issuer of that certificate, and then the certificate for the issuer of *that* certificate, and so on up the chain till you get to a certificate which is *self-signed*, that is, a certificate which has the same subject and issuer, sometimes called a *root certificate*. The certificates should just be concatenated together in the certificate file. For example, suppose we had a three certificate chain, from our server certificate to the certificate of the certification authority that signed our server certificate, to the root certificate of the agency which issued the certification authority's certificate:: -----BEGIN CERTIFICATE----- ... (certificate for your server)... -----END CERTIFICATE----- -----BEGIN CERTIFICATE----- ... (the certificate for the CA)... -----END CERTIFICATE----- -----BEGIN CERTIFICATE----- ... (the root certificate for the CA's issuer)... -----END CERTIFICATE----- CA certificates ^^^^^^^^^^^^^^^ If you are going to require validation of the other side of the connection's certificate, you need to provide a "CA certs" file, filled with the certificate chains for each issuer you are willing to trust. Again, this file just contains these chains concatenated together. For validation, Python will use the first chain it finds in the file which matches. The platform's certificates file can be used by calling :meth:`SSLContext.load_default_certs`, this is done automatically with :func:`.create_default_context`. Combined key and certificate ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Often the private key is stored in the same file as the certificate; in this case, only the ``certfile`` parameter to :meth:`SSLContext.load_cert_chain` and :func:`wrap_socket` needs to be passed. If the private key is stored with the certificate, it should come before the first certificate in the certificate chain:: -----BEGIN RSA PRIVATE KEY----- ... (private key in base64 encoding) ... -----END RSA PRIVATE KEY----- -----BEGIN CERTIFICATE----- ... (certificate in base64 PEM encoding) ... -----END CERTIFICATE----- Self-signed certificates ^^^^^^^^^^^^^^^^^^^^^^^^ If you are going to create a server that provides SSL-encrypted connection services, you will need to acquire a certificate for that service. There are many ways of acquiring appropriate certificates, such as buying one from a certification authority. Another common practice is to generate a self-signed certificate. The simplest way to do this is with the OpenSSL package, using something like the following:: % openssl req -new -x509 -days 365 -nodes -out cert.pem -keyout cert.pem Generating a 1024 bit RSA private key .......++++++ .............................++++++ writing new private key to 'cert.pem' ----- You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]:US State or Province Name (full name) [Some-State]:MyState Locality Name (eg, city) []:Some City Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Organization, Inc. Organizational Unit Name (eg, section) []:My Group Common Name (eg, YOUR name) []:myserver.mygroup.myorganization.com Email Address []:ops@myserver.mygroup.myorganization.com % The disadvantage of a self-signed certificate is that it is its own root certificate, and no one else will have it in their cache of known (and trusted) root certificates. Examples -------- Testing for SSL support ^^^^^^^^^^^^^^^^^^^^^^^ To test for the presence of SSL support in a Python installation, user code should use the following idiom:: try: import ssl except ImportError: pass else: ... # do something that requires SSL support Client-side operation ^^^^^^^^^^^^^^^^^^^^^ This example connects to an SSL server and prints the server's certificate:: import socket, ssl, pprint s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # require a certificate from the server ssl_sock = ssl.wrap_socket(s, ca_certs="/etc/ca_certs_file", cert_reqs=ssl.CERT_REQUIRED) ssl_sock.connect(('www.verisign.com', 443)) pprint.pprint(ssl_sock.getpeercert()) # note that closing the SSLSocket will also close the underlying socket ssl_sock.close() As of January 6, 2012, the certificate printed by this program looks like this:: {'issuer': ((('countryName', 'US'),), (('organizationName', 'VeriSign, Inc.'),), (('organizationalUnitName', 'VeriSign Trust Network'),), (('organizationalUnitName', 'Terms of use at https://www.verisign.com/rpa (c)06'),), (('commonName', 'VeriSign Class 3 Extended Validation SSL SGC CA'),)), 'notAfter': 'May 25 23:59:59 2012 GMT', 'notBefore': 'May 26 00:00:00 2010 GMT', 'serialNumber': '53D2BEF924A7245E83CA01E46CAA2477', 'subject': ((('1.3.6.1.4.1.311.60.2.1.3', 'US'),), (('1.3.6.1.4.1.311.60.2.1.2', 'Delaware'),), (('businessCategory', 'V1.0, Clause 5.(b)'),), (('serialNumber', '2497886'),), (('countryName', 'US'),), (('postalCode', '94043'),), (('stateOrProvinceName', 'California'),), (('localityName', 'Mountain View'),), (('streetAddress', '487 East Middlefield Road'),), (('organizationName', 'VeriSign, Inc.'),), (('organizationalUnitName', ' Production Security Services'),), (('commonName', 'www.verisign.com'),)), 'subjectAltName': (('DNS', 'www.verisign.com'), ('DNS', 'verisign.com'), ('DNS', 'www.verisign.net'), ('DNS', 'verisign.net'), ('DNS', 'www.verisign.mobi'), ('DNS', 'verisign.mobi'), ('DNS', 'www.verisign.eu'), ('DNS', 'verisign.eu')), 'version': 3} This other example first creates an SSL context, instructs it to verify certificates sent by peers, and feeds it a set of recognized certificate authorities (CA):: >>> context = ssl.SSLContext(ssl.PROTOCOL_SSLv23) >>> context.verify_mode = ssl.CERT_REQUIRED >>> context.load_verify_locations("/etc/ssl/certs/ca-bundle.crt") (it is assumed your operating system places a bundle of all CA certificates in ``/etc/ssl/certs/ca-bundle.crt``; if not, you'll get an error and have to adjust the location) When you use the context to connect to a server, :const:`CERT_REQUIRED` validates the server certificate: it ensures that the server certificate was signed with one of the CA certificates, and checks the signature for correctness:: >>> conn = context.wrap_socket(socket.socket(socket.AF_INET)) >>> conn.connect(("linuxfr.org", 443)) You should then fetch the certificate and check its fields for conformity:: >>> cert = conn.getpeercert() >>> ssl.match_hostname(cert, "linuxfr.org") Visual inspection shows that the certificate does identify the desired service (that is, the HTTPS host ``linuxfr.org``):: >>> pprint.pprint(cert) {'issuer': ((('organizationName', 'CAcert Inc.'),), (('organizationalUnitName', 'http://www.CAcert.org'),), (('commonName', 'CAcert Class 3 Root'),)), 'notAfter': 'Jun 7 21:02:24 2013 GMT', 'notBefore': 'Jun 8 21:02:24 2011 GMT', 'serialNumber': 'D3E9', 'subject': ((('commonName', 'linuxfr.org'),),), 'subjectAltName': (('DNS', 'linuxfr.org'), ('othername', ''), ('DNS', 'linuxfr.org'), ('othername', ''), ('DNS', 'dev.linuxfr.org'), ('othername', ''), ('DNS', 'prod.linuxfr.org'), ('othername', ''), ('DNS', 'alpha.linuxfr.org'), ('othername', ''), ('DNS', '*.linuxfr.org'), ('othername', '')), 'version': 3} Now that you are assured of its authenticity, you can proceed to talk with the server:: >>> conn.sendall(b"HEAD / HTTP/1.0\r\nHost: linuxfr.org\r\n\r\n") >>> pprint.pprint(conn.recv(1024).split(b"\r\n")) [b'HTTP/1.1 302 Found', b'Date: Sun, 16 May 2010 13:43:28 GMT', b'Server: Apache/2.2', b'Location: https://linuxfr.org/pub/', b'Vary: Accept-Encoding', b'Connection: close', b'Content-Type: text/html; charset=iso-8859-1', b'', b''] See the discussion of :ref:`ssl-security` below. Server-side operation ^^^^^^^^^^^^^^^^^^^^^ For server operation, typically you'll need to have a server certificate, and private key, each in a file. You'll first create a context holding the key and the certificate, so that clients can check your authenticity. Then you'll open a socket, bind it to a port, call :meth:`listen` on it, and start waiting for clients to connect:: import socket, ssl context = ssl.SSLContext(ssl.PROTOCOL_SSLv23) context.load_cert_chain(certfile="mycertfile", keyfile="mykeyfile") bindsocket = socket.socket() bindsocket.bind(('myaddr.mydomain.com', 10023)) bindsocket.listen(5) When a client connects, you'll call :meth:`accept` on the socket to get the new socket from the other end, and use the context's :meth:`SSLContext.wrap_socket` method to create a server-side SSL socket for the connection:: while True: newsocket, fromaddr = bindsocket.accept() connstream = context.wrap_socket(newsocket, server_side=True) try: deal_with_client(connstream) finally: connstream.shutdown(socket.SHUT_RDWR) connstream.close() Then you'll read data from the ``connstream`` and do something with it till you are finished with the client (or the client is finished with you):: def deal_with_client(connstream): data = connstream.recv(1024) # empty data means the client is finished with us while data: if not do_something(connstream, data): # we'll assume do_something returns False # when we're finished with client break data = connstream.recv(1024) # finished with client And go back to listening for new client connections (of course, a real server would probably handle each client connection in a separate thread, or put the sockets in non-blocking mode and use an event loop). .. _ssl-nonblocking: Notes on non-blocking sockets ----------------------------- SSL sockets behave slightly different than regular sockets in non-blocking mode. When working with non-blocking sockets, there are thus several things you need to be aware of: - Most :class:`SSLSocket` methods will raise either :exc:`SSLWantWriteError` or :exc:`SSLWantReadError` instead of :exc:`BlockingIOError` if an I/O operation would block. :exc:`SSLWantReadError` will be raised if a read operation on the underlying socket is necessary, and :exc:`SSLWantWriteError` for a write operation on the underlying socket. Note that attempts to *write* to an SSL socket may require *reading* from the underlying socket first, and attempts to *read* from the SSL socket may require a prior *write* to the underlying socket. - Calling :func:`~select.select` tells you that the OS-level socket can be read from (or written to), but it does not imply that there is sufficient data at the upper SSL layer. For example, only part of an SSL frame might have arrived. Therefore, you must be ready to handle :meth:`SSLSocket.recv` and :meth:`SSLSocket.send` failures, and retry after another call to :func:`~select.select`. - Conversely, since the SSL layer has its own framing, a SSL socket may still have data available for reading without :func:`~select.select` being aware of it. Therefore, you should first call :meth:`SSLSocket.recv` to drain any potentially available data, and then only block on a :func:`~select.select` call if still necessary. (of course, similar provisions apply when using other primitives such as :func:`~select.poll`, or those in the :mod:`selectors` module) - The SSL handshake itself will be non-blocking: the :meth:`SSLSocket.do_handshake` method has to be retried until it returns successfully. Here is a synopsis using :func:`~select.select` to wait for the socket's readiness:: while True: try: sock.do_handshake() break except ssl.SSLWantReadError: select.select([sock], [], []) except ssl.SSLWantWriteError: select.select([], [sock], []) .. seealso:: The :mod:`asyncio` module supports non-blocking SSL sockets and provides a higher level API. It polls for events using the :mod:`selectors` module and handles :exc:`SSLWantWriteError`, :exc:`SSLWantReadError` and :exc:`BlockingIOError` exceptions. It runs the SSL handshake asynchronously as well. .. _ssl-security: Security considerations ----------------------- Best defaults ^^^^^^^^^^^^^ For **client use**, if you don't have any special requirements for your security policy, it is highly recommended that you use the :func:`create_default_context` function to create your SSL context. It will load the system's trusted CA certificates, enable certificate validation and hostname checking, and try to choose reasonably secure protocol and cipher settings. For example, here is how you would use the :class:`smtplib.SMTP` class to create a trusted, secure connection to a SMTP server:: >>> import ssl, smtplib >>> smtp = smtplib.SMTP("mail.python.org", port=587) >>> context = ssl.create_default_context() >>> smtp.starttls(context=context) (220, b'2.0.0 Ready to start TLS') If a client certificate is needed for the connection, it can be added with :meth:`SSLContext.load_cert_chain`. By contrast, if you create the SSL context by calling the :class:`SSLContext` constructor yourself, it will not have certificate validation nor hostname checking enabled by default. If you do so, please read the paragraphs below to achieve a good security level. Manual settings ^^^^^^^^^^^^^^^ Verifying certificates '''''''''''''''''''''' When calling the :class:`SSLContext` constructor directly, :const:`CERT_NONE` is the default. Since it does not authenticate the other peer, it can be insecure, especially in client mode where most of time you would like to ensure the authenticity of the server you're talking to. Therefore, when in client mode, it is highly recommended to use :const:`CERT_REQUIRED`. However, it is in itself not sufficient; you also have to check that the server certificate, which can be obtained by calling :meth:`SSLSocket.getpeercert`, matches the desired service. For many protocols and applications, the service can be identified by the hostname; in this case, the :func:`match_hostname` function can be used. This common check is automatically performed when :attr:`SSLContext.check_hostname` is enabled. In server mode, if you want to authenticate your clients using the SSL layer (rather than using a higher-level authentication mechanism), you'll also have to specify :const:`CERT_REQUIRED` and similarly check the client certificate. .. note:: In client mode, :const:`CERT_OPTIONAL` and :const:`CERT_REQUIRED` are equivalent unless anonymous ciphers are enabled (they are disabled by default). Protocol versions ''''''''''''''''' SSL version 2 is considered insecure and is therefore dangerous to use. If you want maximum compatibility between clients and servers, it is recommended to use :const:`PROTOCOL_SSLv23` as the protocol version and then disable SSLv2 explicitly using the :data:`SSLContext.options` attribute:: context = ssl.SSLContext(ssl.PROTOCOL_SSLv23) context.options |= ssl.OP_NO_SSLv2 The SSL context created above will allow SSLv3 and TLSv1 (and later, if supported by your system) connections, but not SSLv2. Cipher selection '''''''''''''''' If you have advanced security requirements, fine-tuning of the ciphers enabled when negotiating a SSL session is possible through the :meth:`SSLContext.set_ciphers` method. Starting from Python 3.2.3, the ssl module disables certain weak ciphers by default, but you may want to further restrict the cipher choice. Be sure to read OpenSSL's documentation about the `cipher list format `_. If you want to check which ciphers are enabled by a given cipher list, use the ``openssl ciphers`` command on your system. Multi-processing ^^^^^^^^^^^^^^^^ If using this module as part of a multi-processed application (using, for example the :mod:`multiprocessing` or :mod:`concurrent.futures` modules), be aware that OpenSSL's internal random number generator does not properly handle forked processes. Applications must change the PRNG state of the parent process if they use any SSL feature with :func:`os.fork`. Any successful call of :func:`~ssl.RAND_add`, :func:`~ssl.RAND_bytes` or :func:`~ssl.RAND_pseudo_bytes` is sufficient. .. seealso:: Class :class:`socket.socket` Documentation of underlying :mod:`socket` class `SSL/TLS Strong Encryption: An Introduction `_ Intro from the Apache webserver documentation `RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Management `_ Steve Kent `RFC 1750: Randomness Recommendations for Security `_ D. Eastlake et. al. `RFC 3280: Internet X.509 Public Key Infrastructure Certificate and CRL Profile `_ Housley et. al. `RFC 4366: Transport Layer Security (TLS) Extensions `_ Blake-Wilson et. al. `RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2 `_ T. Dierks et. al. `RFC 6066: Transport Layer Security (TLS) Extensions `_ D. Eastlake `IANA TLS: Transport Layer Security (TLS) Parameters `_ IANA