:mod:`sys` --- System-specific parameters and functions ======================================================= .. module:: sys :synopsis: Access system-specific parameters and functions. -------------- This module provides access to some variables used or maintained by the interpreter and to functions that interact strongly with the interpreter. It is always available. .. data:: abiflags On POSIX systems where Python was built with the standard ``configure`` script, this contains the ABI flags as specified by :pep:`3149`. .. versionadded:: 3.2 .. data:: argv The list of command line arguments passed to a Python script. ``argv[0]`` is the script name (it is operating system dependent whether this is a full pathname or not). If the command was executed using the :option:`-c` command line option to the interpreter, ``argv[0]`` is set to the string ``'-c'``. If no script name was passed to the Python interpreter, ``argv[0]`` is the empty string. To loop over the standard input, or the list of files given on the command line, see the :mod:`fileinput` module. .. data:: base_exec_prefix Set during Python startup, before ``site.py`` is run, to the same value as :data:`exec_prefix`. If not running in a :ref:`virtual environment `, the values will stay the same; if ``site.py`` finds that a virtual environment is in use, the values of :data:`prefix` and :data:`exec_prefix` will be changed to point to the virtual environment, whereas :data:`base_prefix` and :data:`base_exec_prefix` will remain pointing to the base Python installation (the one which the virtual environment was created from). .. versionadded:: 3.3 .. data:: base_prefix Set during Python startup, before ``site.py`` is run, to the same value as :data:`prefix`. If not running in a :ref:`virtual environment `, the values will stay the same; if ``site.py`` finds that a virtual environment is in use, the values of :data:`prefix` and :data:`exec_prefix` will be changed to point to the virtual environment, whereas :data:`base_prefix` and :data:`base_exec_prefix` will remain pointing to the base Python installation (the one which the virtual environment was created from). .. versionadded:: 3.3 .. data:: byteorder An indicator of the native byte order. This will have the value ``'big'`` on big-endian (most-significant byte first) platforms, and ``'little'`` on little-endian (least-significant byte first) platforms. .. data:: builtin_module_names A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This information is not available in any other way --- ``modules.keys()`` only lists the imported modules.) .. function:: call_tracing(func, args) Call ``func(*args)``, while tracing is enabled. The tracing state is saved, and restored afterwards. This is intended to be called from a debugger from a checkpoint, to recursively debug some other code. .. data:: copyright A string containing the copyright pertaining to the Python interpreter. .. function:: _clear_type_cache() Clear the internal type cache. The type cache is used to speed up attribute and method lookups. Use the function *only* to drop unnecessary references during reference leak debugging. This function should be used for internal and specialized purposes only. .. function:: _current_frames() Return a dictionary mapping each thread's identifier to the topmost stack frame currently active in that thread at the time the function is called. Note that functions in the :mod:`traceback` module can build the call stack given such a frame. This is most useful for debugging deadlock: this function does not require the deadlocked threads' cooperation, and such threads' call stacks are frozen for as long as they remain deadlocked. The frame returned for a non-deadlocked thread may bear no relationship to that thread's current activity by the time calling code examines the frame. This function should be used for internal and specialized purposes only. .. function:: _debugmallocstats() Print low-level information to stderr about the state of CPython's memory allocator. If Python is configured --with-pydebug, it also performs some expensive internal consistency checks. .. versionadded:: 3.3 .. impl-detail:: This function is specific to CPython. The exact output format is not defined here, and may change. .. data:: dllhandle Integer specifying the handle of the Python DLL. Availability: Windows. .. function:: displayhook(value) If *value* is not ``None``, this function prints ``repr(value)`` to ``sys.stdout``, and saves *value* in ``builtins._``. If ``repr(value)`` is not encodable to ``sys.stdout.encoding`` with ``sys.stdout.errors`` error handler (which is probably ``'strict'``), encode it to ``sys.stdout.encoding`` with ``'backslashreplace'`` error handler. ``sys.displayhook`` is called on the result of evaluating an :term:`expression` entered in an interactive Python session. The display of these values can be customized by assigning another one-argument function to ``sys.displayhook``. Pseudo-code:: def displayhook(value): if value is None: return # Set '_' to None to avoid recursion builtins._ = None text = repr(value) try: sys.stdout.write(text) except UnicodeEncodeError: bytes = text.encode(sys.stdout.encoding, 'backslashreplace') if hasattr(sys.stdout, 'buffer'): sys.stdout.buffer.write(bytes) else: text = bytes.decode(sys.stdout.encoding, 'strict') sys.stdout.write(text) sys.stdout.write("\n") builtins._ = value .. versionchanged:: 3.2 Use ``'backslashreplace'`` error handler on :exc:`UnicodeEncodeError`. .. data:: dont_write_bytecode If this is true, Python won't try to write ``.pyc`` files on the import of source modules. This value is initially set to ``True`` or ``False`` depending on the :option:`-B` command line option and the :envvar:`PYTHONDONTWRITEBYTECODE` environment variable, but you can set it yourself to control bytecode file generation. .. function:: excepthook(type, value, traceback) This function prints out a given traceback and exception to ``sys.stderr``. When an exception is raised and uncaught, the interpreter calls ``sys.excepthook`` with three arguments, the exception class, exception instance, and a traceback object. In an interactive session this happens just before control is returned to the prompt; in a Python program this happens just before the program exits. The handling of such top-level exceptions can be customized by assigning another three-argument function to ``sys.excepthook``. .. data:: __displayhook__ __excepthook__ These objects contain the original values of ``displayhook`` and ``excepthook`` at the start of the program. They are saved so that ``displayhook`` and ``excepthook`` can be restored in case they happen to get replaced with broken objects. .. function:: exc_info() This function returns a tuple of three values that give information about the exception that is currently being handled. The information returned is specific both to the current thread and to the current stack frame. If the current stack frame is not handling an exception, the information is taken from the calling stack frame, or its caller, and so on until a stack frame is found that is handling an exception. Here, "handling an exception" is defined as "executing an except clause." For any stack frame, only information about the exception being currently handled is accessible. .. index:: object: traceback If no exception is being handled anywhere on the stack, a tuple containing three ``None`` values is returned. Otherwise, the values returned are ``(type, value, traceback)``. Their meaning is: *type* gets the type of the exception being handled (a subclass of :exc:`BaseException`); *value* gets the exception instance (an instance of the exception type); *traceback* gets a traceback object (see the Reference Manual) which encapsulates the call stack at the point where the exception originally occurred. .. data:: exec_prefix A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by default, this is also ``'/usr/local'``. This can be set at build time with the ``--exec-prefix`` argument to the :program:`configure` script. Specifically, all configuration files (e.g. the :file:`pyconfig.h` header file) are installed in the directory :file:`{exec_prefix}/lib/python{X.Y}/config`, and shared library modules are installed in :file:`{exec_prefix}/lib/python{X.Y}/lib-dynload`, where *X.Y* is the version number of Python, for example ``3.2``. .. note:: If a :ref:`virtual environment ` is in effect, this value will be changed in ``site.py`` to point to the virtual environment. The value for the Python installation will still be available, via :data:`base_exec_prefix`. .. data:: executable A string giving the absolute path of the executable binary for the Python interpreter, on systems where this makes sense. If Python is unable to retrieve the real path to its executable, :data:`sys.executable` will be an empty string or ``None``. .. function:: exit([arg]) Exit from Python. This is implemented by raising the :exc:`SystemExit` exception, so cleanup actions specified by finally clauses of :keyword:`try` statements are honored, and it is possible to intercept the exit attempt at an outer level. The optional argument *arg* can be an integer giving the exit status (defaulting to zero), or another type of object. If it is an integer, zero is considered "successful termination" and any nonzero value is considered "abnormal termination" by shells and the like. Most systems require it to be in the range 0--127, and produce undefined results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for all other kind of errors. If another type of object is passed, ``None`` is equivalent to passing zero, and any other object is printed to :data:`stderr` and results in an exit code of 1. In particular, ``sys.exit("some error message")`` is a quick way to exit a program when an error occurs. Since :func:`exit` ultimately "only" raises an exception, it will only exit the process when called from the main thread, and the exception is not intercepted. .. versionchanged:: 3.6 If an error occurs in the cleanup after the Python interpreter has caught :exc:`SystemExit` (such as an error flushing buffered data in the standard streams), the exit status is changed to 120. .. data:: flags The :term:`struct sequence` *flags* exposes the status of command line flags. The attributes are read only. ============================= ============================= attribute flag ============================= ============================= :const:`debug` :option:`-d` :const:`inspect` :option:`-i` :const:`interactive` :option:`-i` :const:`optimize` :option:`-O` or :option:`-OO` :const:`dont_write_bytecode` :option:`-B` :const:`no_user_site` :option:`-s` :const:`no_site` :option:`-S` :const:`ignore_environment` :option:`-E` :const:`verbose` :option:`-v` :const:`bytes_warning` :option:`-b` :const:`quiet` :option:`-q` :const:`hash_randomization` :option:`-R` ============================= ============================= .. versionchanged:: 3.2 Added ``quiet`` attribute for the new :option:`-q` flag. .. versionadded:: 3.2.3 The ``hash_randomization`` attribute. .. versionchanged:: 3.3 Removed obsolete ``division_warning`` attribute. .. data:: float_info A :term:`struct sequence` holding information about the float type. It contains low level information about the precision and internal representation. The values correspond to the various floating-point constants defined in the standard header file :file:`float.h` for the 'C' programming language; see section 5.2.4.2.2 of the 1999 ISO/IEC C standard [C99]_, 'Characteristics of floating types', for details. .. tabularcolumns:: |l|l|L| +---------------------+----------------+--------------------------------------------------+ | attribute | float.h macro | explanation | +=====================+================+==================================================+ | :const:`epsilon` | DBL_EPSILON | difference between 1 and the least value greater | | | | than 1 that is representable as a float | +---------------------+----------------+--------------------------------------------------+ | :const:`dig` | DBL_DIG | maximum number of decimal digits that can be | | | | faithfully represented in a float; see below | +---------------------+----------------+--------------------------------------------------+ | :const:`mant_dig` | DBL_MANT_DIG | float precision: the number of base-``radix`` | | | | digits in the significand of a float | +---------------------+----------------+--------------------------------------------------+ | :const:`max` | DBL_MAX | maximum representable finite float | +---------------------+----------------+--------------------------------------------------+ | :const:`max_exp` | DBL_MAX_EXP | maximum integer e such that ``radix**(e-1)`` is | | | | a representable finite float | +---------------------+----------------+--------------------------------------------------+ | :const:`max_10_exp` | DBL_MAX_10_EXP | maximum integer e such that ``10**e`` is in the | | | | range of representable finite floats | +---------------------+----------------+--------------------------------------------------+ | :const:`min` | DBL_MIN | minimum positive normalized float | +---------------------+----------------+--------------------------------------------------+ | :const:`min_exp` | DBL_MIN_EXP | minimum integer e such that ``radix**(e-1)`` is | | | | a normalized float | +---------------------+----------------+--------------------------------------------------+ | :const:`min_10_exp` | DBL_MIN_10_EXP | minimum integer e such that ``10**e`` is a | | | | normalized float | +---------------------+----------------+--------------------------------------------------+ | :const:`radix` | FLT_RADIX | radix of exponent representation | +---------------------+----------------+--------------------------------------------------+ | :const:`rounds` | FLT_ROUNDS | integer constant representing the rounding mode | | | | used for arithmetic operations. This reflects | | | | the value of the system FLT_ROUNDS macro at | | | | interpreter startup time. See section 5.2.4.2.2 | | | | of the C99 standard for an explanation of the | | | | possible values and their meanings. | +---------------------+----------------+--------------------------------------------------+ The attribute :attr:`sys.float_info.dig` needs further explanation. If ``s`` is any string representing a decimal number with at most :attr:`sys.float_info.dig` significant digits, then converting ``s`` to a float and back again will recover a string representing the same decimal value:: >>> import sys >>> sys.float_info.dig 15 >>> s = '3.14159265358979' # decimal string with 15 significant digits >>> format(float(s), '.15g') # convert to float and back -> same value '3.14159265358979' But for strings with more than :attr:`sys.float_info.dig` significant digits, this isn't always true:: >>> s = '9876543211234567' # 16 significant digits is too many! >>> format(float(s), '.16g') # conversion changes value '9876543211234568' .. data:: float_repr_style A string indicating how the :func:`repr` function behaves for floats. If the string has value ``'short'`` then for a finite float ``x``, ``repr(x)`` aims to produce a short string with the property that ``float(repr(x)) == x``. This is the usual behaviour in Python 3.1 and later. Otherwise, ``float_repr_style`` has value ``'legacy'`` and ``repr(x)`` behaves in the same way as it did in versions of Python prior to 3.1. .. versionadded:: 3.1 .. function:: getallocatedblocks() Return the number of memory blocks currently allocated by the interpreter, regardless of their size. This function is mainly useful for tracking and debugging memory leaks. Because of the interpreter's internal caches, the result can vary from call to call; you may have to call :func:`_clear_type_cache()` and :func:`gc.collect()` to get more predictable results. If a Python build or implementation cannot reasonably compute this information, :func:`getallocatedblocks()` is allowed to return 0 instead. .. versionadded:: 3.4 .. function:: getcheckinterval() Return the interpreter's "check interval"; see :func:`setcheckinterval`. .. deprecated:: 3.2 Use :func:`getswitchinterval` instead. .. function:: getdefaultencoding() Return the name of the current default string encoding used by the Unicode implementation. .. function:: getdlopenflags() Return the current value of the flags that are used for :c:func:`dlopen` calls. Symbolic names for the flag values can be found in the :mod:`os` module (``RTLD_xxx`` constants, e.g. :data:`os.RTLD_LAZY`). Availability: Unix. .. function:: getfilesystemencoding() Return the name of the encoding used to convert between Unicode filenames and bytes filenames. For best compatibility, str should be used for filenames in all cases, although representing filenames as bytes is also supported. Functions accepting or returning filenames should support either str or bytes and internally convert to the system's preferred representation. This encoding is always ASCII-compatible. :func:`os.fsencode` and :func:`os.fsdecode` should be used to ensure that the correct encoding and errors mode are used. * On Mac OS X, the encoding is ``'utf-8'``. * On Unix, the encoding is the locale encoding. * On Windows, the encoding may be ``'utf-8'`` or ``'mbcs'``, depending on user configuration. .. versionchanged:: 3.2 :func:`getfilesystemencoding` result cannot be ``None`` anymore. .. versionchanged:: 3.6 Windows is no longer guaranteed to return ``'mbcs'``. See :pep:`529` and :func:`_enablelegacywindowsfsencoding` for more information. .. function:: getfilesystemencodeerrors() Return the name of the error mode used to convert between Unicode filenames and bytes filenames. The encoding name is returned from :func:`getfilesystemencoding`. :func:`os.fsencode` and :func:`os.fsdecode` should be used to ensure that the correct encoding and errors mode are used. .. versionadded:: 3.6 .. function:: getrefcount(object) Return the reference count of the *object*. The count returned is generally one higher than you might expect, because it includes the (temporary) reference as an argument to :func:`getrefcount`. .. function:: getrecursionlimit() Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by :func:`setrecursionlimit`. .. function:: getsizeof(object[, default]) Return the size of an object in bytes. The object can be any type of object. All built-in objects will return correct results, but this does not have to hold true for third-party extensions as it is implementation specific. Only the memory consumption directly attributed to the object is accounted for, not the memory consumption of objects it refers to. If given, *default* will be returned if the object does not provide means to retrieve the size. Otherwise a :exc:`TypeError` will be raised. :func:`getsizeof` calls the object's ``__sizeof__`` method and adds an additional garbage collector overhead if the object is managed by the garbage collector. See `recursive sizeof recipe `_ for an example of using :func:`getsizeof` recursively to find the size of containers and all their contents. .. function:: getswitchinterval() Return the interpreter's "thread switch interval"; see :func:`setswitchinterval`. .. versionadded:: 3.2 .. function:: _getframe([depth]) Return a frame object from the call stack. If optional integer *depth* is given, return the frame object that many calls below the top of the stack. If that is deeper than the call stack, :exc:`ValueError` is raised. The default for *depth* is zero, returning the frame at the top of the call stack. .. impl-detail:: This function should be used for internal and specialized purposes only. It is not guaranteed to exist in all implementations of Python. .. function:: getprofile() .. index:: single: profile function single: profiler Get the profiler function as set by :func:`setprofile`. .. function:: gettrace() .. index:: single: trace function single: debugger Get the trace function as set by :func:`settrace`. .. impl-detail:: The :func:`gettrace` function is intended only for implementing debuggers, profilers, coverage tools and the like. Its behavior is part of the implementation platform, rather than part of the language definition, and thus may not be available in all Python implementations. .. function:: getwindowsversion() Return a named tuple describing the Windows version currently running. The named elements are *major*, *minor*, *build*, *platform*, *service_pack*, *service_pack_minor*, *service_pack_major*, *suite_mask*, *product_type* and *platform_version*. *service_pack* contains a string, *platform_version* a 3-tuple and all other values are integers. The components can also be accessed by name, so ``sys.getwindowsversion()[0]`` is equivalent to ``sys.getwindowsversion().major``. For compatibility with prior versions, only the first 5 elements are retrievable by indexing. *platform* will be :const:`2 (VER_PLATFORM_WIN32_NT)`. *product_type* may be one of the following values: +---------------------------------------+---------------------------------+ | Constant | Meaning | +=======================================+=================================+ | :const:`1 (VER_NT_WORKSTATION)` | The system is a workstation. | +---------------------------------------+---------------------------------+ | :const:`2 (VER_NT_DOMAIN_CONTROLLER)` | The system is a domain | | | controller. | +---------------------------------------+---------------------------------+ | :const:`3 (VER_NT_SERVER)` | The system is a server, but not | | | a domain controller. | +---------------------------------------+---------------------------------+ This function wraps the Win32 :c:func:`GetVersionEx` function; see the Microsoft documentation on :c:func:`OSVERSIONINFOEX` for more information about these fields. *platform_version* returns the accurate major version, minor version and build number of the current operating system, rather than the version that is being emulated for the process. It is intended for use in logging rather than for feature detection. Availability: Windows. .. versionchanged:: 3.2 Changed to a named tuple and added *service_pack_minor*, *service_pack_major*, *suite_mask*, and *product_type*. .. versionchanged:: 3.6 Added *platform_version* .. function:: get_asyncgen_hooks() Returns an *asyncgen_hooks* object, which is similar to a :class:`~collections.namedtuple` of the form `(firstiter, finalizer)`, where *firstiter* and *finalizer* are expected to be either ``None`` or functions which take an :term:`asynchronous generator iterator` as an argument, and are used to schedule finalization of an asychronous generator by an event loop. .. versionadded:: 3.6 See :pep:`525` for more details. .. note:: This function has been added on a provisional basis (see :pep:`411` for details.) .. function:: get_coroutine_wrapper() Returns ``None``, or a wrapper set by :func:`set_coroutine_wrapper`. .. versionadded:: 3.5 See :pep:`492` for more details. .. note:: This function has been added on a provisional basis (see :pep:`411` for details.) Use it only for debugging purposes. .. data:: hash_info A :term:`struct sequence` giving parameters of the numeric hash implementation. For more details about hashing of numeric types, see :ref:`numeric-hash`. +---------------------+--------------------------------------------------+ | attribute | explanation | +=====================+==================================================+ | :const:`width` | width in bits used for hash values | +---------------------+--------------------------------------------------+ | :const:`modulus` | prime modulus P used for numeric hash scheme | +---------------------+--------------------------------------------------+ | :const:`inf` | hash value returned for a positive infinity | +---------------------+--------------------------------------------------+ | :const:`nan` | hash value returned for a nan | +---------------------+--------------------------------------------------+ | :const:`imag` | multiplier used for the imaginary part of a | | | complex number | +---------------------+--------------------------------------------------+ | :const:`algorithm` | name of the algorithm for hashing of str, bytes, | | | and memoryview | +---------------------+--------------------------------------------------+ | :const:`hash_bits` | internal output size of the hash algorithm | +---------------------+--------------------------------------------------+ | :const:`seed_bits` | size of the seed key of the hash algorithm | +---------------------+--------------------------------------------------+ .. versionadded:: 3.2 .. versionchanged:: 3.4 Added *algorithm*, *hash_bits* and *seed_bits* .. data:: hexversion The version number encoded as a single integer. This is guaranteed to increase with each version, including proper support for non-production releases. For example, to test that the Python interpreter is at least version 1.5.2, use:: if sys.hexversion >= 0x010502F0: # use some advanced feature ... else: # use an alternative implementation or warn the user ... This is called ``hexversion`` since it only really looks meaningful when viewed as the result of passing it to the built-in :func:`hex` function. The :term:`struct sequence` :data:`sys.version_info` may be used for a more human-friendly encoding of the same information. More details of ``hexversion`` can be found at :ref:`apiabiversion`. .. data:: implementation An object containing information about the implementation of the currently running Python interpreter. The following attributes are required to exist in all Python implementations. *name* is the implementation's identifier, e.g. ``'cpython'``. The actual string is defined by the Python implementation, but it is guaranteed to be lower case. *version* is a named tuple, in the same format as :data:`sys.version_info`. It represents the version of the Python *implementation*. This has a distinct meaning from the specific version of the Python *language* to which the currently running interpreter conforms, which ``sys.version_info`` represents. For example, for PyPy 1.8 ``sys.implementation.version`` might be ``sys.version_info(1, 8, 0, 'final', 0)``, whereas ``sys.version_info`` would be ``sys.version_info(2, 7, 2, 'final', 0)``. For CPython they are the same value, since it is the reference implementation. *hexversion* is the implementation version in hexadecimal format, like :data:`sys.hexversion`. *cache_tag* is the tag used by the import machinery in the filenames of cached modules. By convention, it would be a composite of the implementation's name and version, like ``'cpython-33'``. However, a Python implementation may use some other value if appropriate. If ``cache_tag`` is set to ``None``, it indicates that module caching should be disabled. :data:`sys.implementation` may contain additional attributes specific to the Python implementation. These non-standard attributes must start with an underscore, and are not described here. Regardless of its contents, :data:`sys.implementation` will not change during a run of the interpreter, nor between implementation versions. (It may change between Python language versions, however.) See :pep:`421` for more information. .. versionadded:: 3.3 .. data:: int_info A :term:`struct sequence` that holds information about Python's internal representation of integers. The attributes are read only. .. tabularcolumns:: |l|L| +-------------------------+----------------------------------------------+ | Attribute | Explanation | +=========================+==============================================+ | :const:`bits_per_digit` | number of bits held in each digit. Python | | | integers are stored internally in base | | | ``2**int_info.bits_per_digit`` | +-------------------------+----------------------------------------------+ | :const:`sizeof_digit` | size in bytes of the C type used to | | | represent a digit | +-------------------------+----------------------------------------------+ .. versionadded:: 3.1 .. data:: __interactivehook__ When this attribute exists, its value is automatically called (with no arguments) when the interpreter is launched in :ref:`interactive mode `. This is done after the :envvar:`PYTHONSTARTUP` file is read, so that you can set this hook there. The :mod:`site` module :ref:`sets this `. .. versionadded:: 3.4 .. function:: intern(string) Enter *string* in the table of "interned" strings and return the interned string -- which is *string* itself or a copy. Interning strings is useful to gain a little performance on dictionary lookup -- if the keys in a dictionary are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare instead of a string compare. Normally, the names used in Python programs are automatically interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are not immortal; you must keep a reference to the return value of :func:`intern` around to benefit from it. .. function:: is_finalizing() Return :const:`True` if the Python interpreter is :term:`shutting down `, :const:`False` otherwise. .. versionadded:: 3.5 .. data:: last_type last_value last_traceback These three variables are not always defined; they are set when an exception is not handled and the interpreter prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a debugger module and engage in post-mortem debugging without having to re-execute the command that caused the error. (Typical use is ``import pdb; pdb.pm()`` to enter the post-mortem debugger; see :mod:`pdb` module for more information.) The meaning of the variables is the same as that of the return values from :func:`exc_info` above. .. data:: maxsize An integer giving the maximum value a variable of type :c:type:`Py_ssize_t` can take. It's usually ``2**31 - 1`` on a 32-bit platform and ``2**63 - 1`` on a 64-bit platform. .. data:: maxunicode An integer giving the value of the largest Unicode code point, i.e. ``1114111`` (``0x10FFFF`` in hexadecimal). .. versionchanged:: 3.3 Before :pep:`393`, ``sys.maxunicode`` used to be either ``0xFFFF`` or ``0x10FFFF``, depending on the configuration option that specified whether Unicode characters were stored as UCS-2 or UCS-4. .. data:: meta_path A list of :term:`meta path finder` objects that have their :meth:`~importlib.abc.MetaPathFinder.find_spec` methods called to see if one of the objects can find the module to be imported. The :meth:`~importlib.abc.MetaPathFinder.find_spec` method is called with at least the absolute name of the module being imported. If the module to be imported is contained in a package, then the parent package's :attr:`__path__` attribute is passed in as a second argument. The method returns a :term:`module spec`, or ``None`` if the module cannot be found. .. seealso:: :class:`importlib.abc.MetaPathFinder` The abstract base class defining the interface of finder objects on :data:`meta_path`. :class:`importlib.machinery.ModuleSpec` The concrete class which :meth:`~importlib.abc.MetaPathFinder.find_spec` should return instances of. .. versionchanged:: 3.4 :term:`Module specs ` were introduced in Python 3.4, by :pep:`451`. Earlier versions of Python looked for a method called :meth:`~importlib.abc.MetaPathFinder.find_module`. This is still called as a fallback if a :data:`meta_path` entry doesn't have a :meth:`~importlib.abc.MetaPathFinder.find_spec` method. .. data:: modules This is a dictionary that maps module names to modules which have already been loaded. This can be manipulated to force reloading of modules and other tricks. However, replacing the dictionary will not necessarily work as expected and deleting essential items from the dictionary may cause Python to fail. .. data:: path .. index:: triple: module; search; path A list of strings that specifies the search path for modules. Initialized from the environment variable :envvar:`PYTHONPATH`, plus an installation-dependent default. As initialized upon program startup, the first item of this list, ``path[0]``, is the directory containing the script that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is read from standard input), ``path[0]`` is the empty string, which directs Python to search modules in the current directory first. Notice that the script directory is inserted *before* the entries inserted as a result of :envvar:`PYTHONPATH`. A program is free to modify this list for its own purposes. Only strings and bytes should be added to :data:`sys.path`; all other data types are ignored during import. .. seealso:: Module :mod:`site` This describes how to use .pth files to extend :data:`sys.path`. .. data:: path_hooks A list of callables that take a path argument to try to create a :term:`finder` for the path. If a finder can be created, it is to be returned by the callable, else raise :exc:`ImportError`. Originally specified in :pep:`302`. .. data:: path_importer_cache A dictionary acting as a cache for :term:`finder` objects. The keys are paths that have been passed to :data:`sys.path_hooks` and the values are the finders that are found. If a path is a valid file system path but no finder is found on :data:`sys.path_hooks` then ``None`` is stored. Originally specified in :pep:`302`. .. versionchanged:: 3.3 ``None`` is stored instead of :class:`imp.NullImporter` when no finder is found. .. data:: platform This string contains a platform identifier that can be used to append platform-specific components to :data:`sys.path`, for instance. For Unix systems, except on Linux, this is the lowercased OS name as returned by ``uname -s`` with the first part of the version as returned by ``uname -r`` appended, e.g. ``'sunos5'`` or ``'freebsd8'``, *at the time when Python was built*. Unless you want to test for a specific system version, it is therefore recommended to use the following idiom:: if sys.platform.startswith('freebsd'): # FreeBSD-specific code here... elif sys.platform.startswith('linux'): # Linux-specific code here... For other systems, the values are: ================ =========================== System ``platform`` value ================ =========================== Linux ``'linux'`` Windows ``'win32'`` Windows/Cygwin ``'cygwin'`` Mac OS X ``'darwin'`` ================ =========================== .. versionchanged:: 3.3 On Linux, :attr:`sys.platform` doesn't contain the major version anymore. It is always ``'linux'``, instead of ``'linux2'`` or ``'linux3'``. Since older Python versions include the version number, it is recommended to always use the ``startswith`` idiom presented above. .. seealso:: :attr:`os.name` has a coarser granularity. :func:`os.uname` gives system-dependent version information. The :mod:`platform` module provides detailed checks for the system's identity. .. data:: prefix A string giving the site-specific directory prefix where the platform independent Python files are installed; by default, this is the string ``'/usr/local'``. This can be set at build time with the ``--prefix`` argument to the :program:`configure` script. The main collection of Python library modules is installed in the directory :file:`{prefix}/lib/python{X.Y}` while the platform independent header files (all except :file:`pyconfig.h`) are stored in :file:`{prefix}/include/python{X.Y}`, where *X.Y* is the version number of Python, for example ``3.2``. .. note:: If a :ref:`virtual environment ` is in effect, this value will be changed in ``site.py`` to point to the virtual environment. The value for the Python installation will still be available, via :data:`base_prefix`. .. data:: ps1 ps2 .. index:: single: interpreter prompts single: prompts, interpreter Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter is in interactive mode. Their initial values in this case are ``'>>> '`` and ``'... '``. If a non-string object is assigned to either variable, its :func:`str` is re-evaluated each time the interpreter prepares to read a new interactive command; this can be used to implement a dynamic prompt. .. function:: setcheckinterval(interval) Set the interpreter's "check interval". This integer value determines how often the interpreter checks for periodic things such as thread switches and signal handlers. The default is ``100``, meaning the check is performed every 100 Python virtual instructions. Setting it to a larger value may increase performance for programs using threads. Setting it to a value ``<=`` 0 checks every virtual instruction, maximizing responsiveness as well as overhead. .. deprecated:: 3.2 This function doesn't have an effect anymore, as the internal logic for thread switching and asynchronous tasks has been rewritten. Use :func:`setswitchinterval` instead. .. function:: setdlopenflags(n) Set the flags used by the interpreter for :c:func:`dlopen` calls, such as when the interpreter loads extension modules. Among other things, this will enable a lazy resolving of symbols when importing a module, if called as ``sys.setdlopenflags(0)``. To share symbols across extension modules, call as ``sys.setdlopenflags(os.RTLD_GLOBAL)``. Symbolic names for the flag values can be found in the :mod:`os` module (``RTLD_xxx`` constants, e.g. :data:`os.RTLD_LAZY`). Availability: Unix. .. function:: setprofile(profilefunc) .. index:: single: profile function single: profiler Set the system's profile function, which allows you to implement a Python source code profiler in Python. See chapter :ref:`profile` for more information on the Python profiler. The system's profile function is called similarly to the system's trace function (see :func:`settrace`), but it isn't called for each executed line of code (only on call and return, but the return event is reported even when an exception has been set). The function is thread-specific, but there is no way for the profiler to know about context switches between threads, so it does not make sense to use this in the presence of multiple threads. Also, its return value is not used, so it can simply return ``None``. .. function:: setrecursionlimit(limit) Set the maximum depth of the Python interpreter stack to *limit*. This limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. The highest possible limit is platform-dependent. A user may need to set the limit higher when they have a program that requires deep recursion and a platform that supports a higher limit. This should be done with care, because a too-high limit can lead to a crash. If the new limit is too low at the current recursion depth, a :exc:`RecursionError` exception is raised. .. versionchanged:: 3.5.1 A :exc:`RecursionError` exception is now raised if the new limit is too low at the current recursion depth. .. function:: setswitchinterval(interval) Set the interpreter's thread switch interval (in seconds). This floating-point value determines the ideal duration of the "timeslices" allocated to concurrently running Python threads. Please note that the actual value can be higher, especially if long-running internal functions or methods are used. Also, which thread becomes scheduled at the end of the interval is the operating system's decision. The interpreter doesn't have its own scheduler. .. versionadded:: 3.2 .. function:: settrace(tracefunc) .. index:: single: trace function single: debugger Set the system's trace function, which allows you to implement a Python source code debugger in Python. The function is thread-specific; for a debugger to support multiple threads, it must be registered using :func:`settrace` for each thread being debugged. Trace functions should have three arguments: *frame*, *event*, and *arg*. *frame* is the current stack frame. *event* is a string: ``'call'``, ``'line'``, ``'return'``, ``'exception'``, ``'c_call'``, ``'c_return'``, or ``'c_exception'``. *arg* depends on the event type. The trace function is invoked (with *event* set to ``'call'``) whenever a new local scope is entered; it should return a reference to a local trace function to be used that scope, or ``None`` if the scope shouldn't be traced. The local trace function should return a reference to itself (or to another function for further tracing in that scope), or ``None`` to turn off tracing in that scope. The events have the following meaning: ``'call'`` A function is called (or some other code block entered). The global trace function is called; *arg* is ``None``; the return value specifies the local trace function. ``'line'`` The interpreter is about to execute a new line of code or re-execute the condition of a loop. The local trace function is called; *arg* is ``None``; the return value specifies the new local trace function. See :file:`Objects/lnotab_notes.txt` for a detailed explanation of how this works. ``'return'`` A function (or other code block) is about to return. The local trace function is called; *arg* is the value that will be returned, or ``None`` if the event is caused by an exception being raised. The trace function's return value is ignored. ``'exception'`` An exception has occurred. The local trace function is called; *arg* is a tuple ``(exception, value, traceback)``; the return value specifies the new local trace function. ``'c_call'`` A C function is about to be called. This may be an extension function or a built-in. *arg* is the C function object. ``'c_return'`` A C function has returned. *arg* is the C function object. ``'c_exception'`` A C function has raised an exception. *arg* is the C function object. Note that as an exception is propagated down the chain of callers, an ``'exception'`` event is generated at each level. For more information on code and frame objects, refer to :ref:`types`. .. impl-detail:: The :func:`settrace` function is intended only for implementing debuggers, profilers, coverage tools and the like. Its behavior is part of the implementation platform, rather than part of the language definition, and thus may not be available in all Python implementations. .. function:: set_asyncgen_hooks(firstiter, finalizer) Accepts two optional keyword arguments which are callables that accept an :term:`asynchronous generator iterator` as an argument. The *firstiter* callable will be called when an asynchronous generator is iterated for the first time. The *finalizer* will be called when an asynchronous generator is about to be garbage collected. .. versionadded:: 3.6 See :pep:`525` for more details, and for a reference example of a *finalizer* method see the implementation of ``asyncio.Loop.shutdown_asyncgens`` in :source:`Lib/asyncio/base_events.py` .. note:: This function has been added on a provisional basis (see :pep:`411` for details.) .. function:: set_coroutine_wrapper(wrapper) Allows intercepting creation of :term:`coroutine` objects (only ones that are created by an :keyword:`async def` function; generators decorated with :func:`types.coroutine` or :func:`asyncio.coroutine` will not be intercepted). The *wrapper* argument must be either: * a callable that accepts one argument (a coroutine object); * ``None``, to reset the wrapper. If called twice, the new wrapper replaces the previous one. The function is thread-specific. The *wrapper* callable cannot define new coroutines directly or indirectly:: def wrapper(coro): async def wrap(coro): return await coro return wrap(coro) sys.set_coroutine_wrapper(wrapper) async def foo(): pass # The following line will fail with a RuntimeError, because # ``wrapper`` creates a ``wrap(coro)`` coroutine: foo() See also :func:`get_coroutine_wrapper`. .. versionadded:: 3.5 See :pep:`492` for more details. .. note:: This function has been added on a provisional basis (see :pep:`411` for details.) Use it only for debugging purposes. .. function:: _enablelegacywindowsfsencoding() Changes the default filesystem encoding and errors mode to 'mbcs' and 'replace' respectively, for consistency with versions of Python prior to 3.6. This is equivalent to defining the :envvar:`PYTHONLEGACYWINDOWSFSENCODING` environment variable before launching Python. Availability: Windows .. versionadded:: 3.6 See :pep:`529` for more details. .. data:: stdin stdout stderr :term:`File objects ` used by the interpreter for standard input, output and errors: * ``stdin`` is used for all interactive input (including calls to :func:`input`); * ``stdout`` is used for the output of :func:`print` and :term:`expression` statements and for the prompts of :func:`input`; * The interpreter's own prompts and its error messages go to ``stderr``. These streams are regular :term:`text files ` like those returned by the :func:`open` function. Their parameters are chosen as follows: * The character encoding is platform-dependent. Under Windows, if the stream is interactive (that is, if its :meth:`isatty` method returns ``True``), the console codepage is used, otherwise the ANSI code page. Under other platforms, the locale encoding is used (see :meth:`locale.getpreferredencoding`). Under all platforms though, you can override this value by setting the :envvar:`PYTHONIOENCODING` environment variable before starting Python. * When interactive, standard streams are line-buffered. Otherwise, they are block-buffered like regular text files. You can override this value with the :option:`-u` command-line option. .. note:: To write or read binary data from/to the standard streams, use the underlying binary :data:`~io.TextIOBase.buffer` object. For example, to write bytes to :data:`stdout`, use ``sys.stdout.buffer.write(b'abc')``. However, if you are writing a library (and do not control in which context its code will be executed), be aware that the standard streams may be replaced with file-like objects like :class:`io.StringIO` which do not support the :attr:`~io.BufferedIOBase.buffer` attribute. .. data:: __stdin__ __stdout__ __stderr__ These objects contain the original values of ``stdin``, ``stderr`` and ``stdout`` at the start of the program. They are used during finalization, and could be useful to print to the actual standard stream no matter if the ``sys.std*`` object has been redirected. It can also be used to restore the actual files to known working file objects in case they have been overwritten with a broken object. However, the preferred way to do this is to explicitly save the previous stream before replacing it, and restore the saved object. .. note:: Under some conditions ``stdin``, ``stdout`` and ``stderr`` as well as the original values ``__stdin__``, ``__stdout__`` and ``__stderr__`` can be ``None``. It is usually the case for Windows GUI apps that aren't connected to a console and Python apps started with :program:`pythonw`. .. data:: thread_info A :term:`struct sequence` holding information about the thread implementation. .. tabularcolumns:: |l|p{0.7\linewidth}| +------------------+---------------------------------------------------------+ | Attribute | Explanation | +==================+=========================================================+ | :const:`name` | Name of the thread implementation: | | | | | | * ``'nt'``: Windows threads | | | * ``'pthread'``: POSIX threads | | | * ``'solaris'``: Solaris threads | +------------------+---------------------------------------------------------+ | :const:`lock` | Name of the lock implementation: | | | | | | * ``'semaphore'``: a lock uses a semaphore | | | * ``'mutex+cond'``: a lock uses a mutex | | | and a condition variable | | | * ``None`` if this information is unknown | +------------------+---------------------------------------------------------+ | :const:`version` | Name and version of the thread library. It is a string, | | | or ``None`` if these informations are unknown. | +------------------+---------------------------------------------------------+ .. versionadded:: 3.3 .. data:: tracebacklimit When this variable is set to an integer value, it determines the maximum number of levels of traceback information printed when an unhandled exception occurs. The default is ``1000``. When set to ``0`` or less, all traceback information is suppressed and only the exception type and value are printed. .. data:: version A string containing the version number of the Python interpreter plus additional information on the build number and compiler used. This string is displayed when the interactive interpreter is started. Do not extract version information out of it, rather, use :data:`version_info` and the functions provided by the :mod:`platform` module. .. data:: api_version The C API version for this interpreter. Programmers may find this useful when debugging version conflicts between Python and extension modules. .. data:: version_info A tuple containing the five components of the version number: *major*, *minor*, *micro*, *releaselevel*, and *serial*. All values except *releaselevel* are integers; the release level is ``'alpha'``, ``'beta'``, ``'candidate'``, or ``'final'``. The ``version_info`` value corresponding to the Python version 2.0 is ``(2, 0, 0, 'final', 0)``. The components can also be accessed by name, so ``sys.version_info[0]`` is equivalent to ``sys.version_info.major`` and so on. .. versionchanged:: 3.1 Added named component attributes. .. data:: warnoptions This is an implementation detail of the warnings framework; do not modify this value. Refer to the :mod:`warnings` module for more information on the warnings framework. .. data:: winver The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in the Python DLL. The value is normally the first three characters of :const:`version`. It is provided in the :mod:`sys` module for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability: Windows. .. data:: _xoptions A dictionary of the various implementation-specific flags passed through the :option:`-X` command-line option. Option names are either mapped to their values, if given explicitly, or to :const:`True`. Example: .. code-block:: shell-session $ ./python -Xa=b -Xc Python 3.2a3+ (py3k, Oct 16 2010, 20:14:50) [GCC 4.4.3] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import sys >>> sys._xoptions {'a': 'b', 'c': True} .. impl-detail:: This is a CPython-specific way of accessing options passed through :option:`-X`. Other implementations may export them through other means, or not at all. .. versionadded:: 3.2 .. rubric:: Citations .. [C99] ISO/IEC 9899:1999. "Programming languages -- C." A public draft of this standard is available at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf\ .