.. _simple: ***************** Simple statements ***************** .. index:: pair: simple; statement Simple statements are comprised within a single logical line. Several simple statements may occur on a single line separated by semicolons. The syntax for simple statements is: .. productionlist:: simple_stmt: `expression_stmt` : | `assert_stmt` : | `assignment_stmt` : | `augmented_assignment_stmt` : | `pass_stmt` : | `del_stmt` : | `return_stmt` : | `yield_stmt` : | `raise_stmt` : | `break_stmt` : | `continue_stmt` : | `import_stmt` : | `global_stmt` : | `nonlocal_stmt` .. _exprstmts: Expression statements ===================== .. index:: pair: expression; statement pair: expression; list .. index:: pair: expression; list Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a function that returns no meaningful result; in Python, procedures return the value ``None``). Other uses of expression statements are allowed and occasionally useful. The syntax for an expression statement is: .. productionlist:: expression_stmt: `expression_list` An expression statement evaluates the expression list (which may be a single expression). .. index:: builtin: repr object: None pair: string; conversion single: output pair: standard; output pair: writing; values pair: procedure; call In interactive mode, if the value is not ``None``, it is converted to a string using the built-in :func:`repr` function and the resulting string is written to standard output on a line by itself (except if the result is ``None``, so that procedure calls do not cause any output.) .. _assignment: Assignment statements ===================== .. index:: pair: assignment; statement pair: binding; name pair: rebinding; name object: mutable pair: attribute; assignment Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects: .. productionlist:: assignment_stmt: (`target_list` "=")+ (`expression_list` | `yield_expression`) target_list: `target` ("," `target`)* [","] target: `identifier` : | "(" `target_list` ")" : | "[" `target_list` "]" : | `attributeref` : | `subscription` : | `slicing` : | "*" `target` (See section :ref:`primaries` for the syntax definitions for the last three symbols.) An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right. .. index:: single: target pair: target; list Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the exceptions raised are given with the definition of the object types (see section :ref:`types`). .. index:: triple: target; list; assignment Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as follows. * If the target list is a single target: The object is assigned to that target. * If the target list is a comma-separated list of targets: The object must be an iterable with the same number of items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets. (This rule is relaxed as of Python 1.5; in earlier versions, the object had to be a tuple. Since strings are sequences, an assignment like ``a, b = "xy"`` is now legal as long as the string has the right length.) * If the target list contains one target prefixed with an asterisk, called a "starred" target: The object must be a sequence with at least as many items as there are targets in the target list, minus one. The first items of the sequence are assigned, from left to right, to the targets before the starred target. The final items of the sequence are assigned to the targets after the starred target. A list of the remaining items in the sequence is then assigned to the starred target (the list can be empty). * Else: The object must be a sequence with the same number of items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets. Assignment of an object to a single target is recursively defined as follows. * If the target is an identifier (name): * If the name does not occur in a :keyword:`global` or :keyword:`nonlocal` statement in the current code block: the name is bound to the object in the current local namespace. * Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by :keyword:`nonlocal`, respectively. The name is rebound if it was already bound. This may cause the reference count for the object previously bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called. .. index:: single: destructor The name is rebound if it was already bound. This may cause the reference count for the object previously bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called. * If the target is a target list enclosed in parentheses or in square brackets: The object must be an iterable with the same number of items as there are targets in the target list, and its items are assigned, from left to right, to the corresponding targets. .. index:: pair: attribute; assignment * If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object with assignable attributes; if this is not the case, :exc:`TypeError` is raised. That object is then asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not necessarily :exc:`AttributeError`). .. _attr-target-note: Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator, the RHS expression, ``a.x`` can access either an instance attribute or (if no instance attribute exists) a class attribute. The LHS target ``a.x`` is always set as an instance attribute, creating it if necessary. Thus, the two occurrences of ``a.x`` do not necessarily refer to the same attribute: if the RHS expression refers to a class attribute, the LHS creates a new instance attribute as the target of the assignment:: class Cls: x = 3 # class variable inst = Cls() inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3 This description does not necessarily apply to descriptor attributes, such as properties created with :func:`property`. .. index:: pair: subscription; assignment object: mutable * If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is evaluated. .. index:: object: sequence object: list If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the sequence's length is added to it. The resulting value must be a nonnegative integer less than the sequence's length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range, :exc:`IndexError` is raised (assignment to a subscripted sequence cannot add new items to a list). .. index:: object: mapping object: dictionary If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the mapping's key type, and the mapping is then asked to create a key/datum pair which maps the subscript to the assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value pair (if no key with the same value existed). For user-defined objects, the :meth:`__setitem__` method is called with appropriate arguments. .. index:: pair: slicing; assignment * If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence's length. The bounds should evaluate to integers. If either bound is negative, the sequence's length is added to it. The resulting bounds are clipped to lie between zero and the sequence's length, inclusive. Finally, the sequence object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be different from the length of the assigned sequence, thus changing the length of the target sequence, if the object allows it. (In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.) WARNING: Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are 'safe' (for example ``a, b = b, a`` swaps two variables), overlaps *within* the collection of assigned-to variables are not safe! For instance, the following program prints ``[0, 2]``:: x = [0, 1] i = 0 i, x[i] = 1, 2 print(x) .. seealso:: :pep:`3132` - Extended Iterable Unpacking The specification for the ``*target`` feature. .. _augassign: Augmented assignment statements ------------------------------- .. index:: pair: augmented; assignment single: statement; assignment, augmented Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement: .. productionlist:: augmented_assignment_stmt: `augtarget` `augop` (`expression_list` | `yield_expression`) augtarget: `identifier` | `attributeref` | `subscription` | `slicing` augop: "+=" | "-=" | "*=" | "/=" | "//=" | "%=" | "**=" : | ">>=" | "<<=" | "&=" | "^=" | "|=" (See section :ref:`primaries` for the syntax definitions for the last three symbols.) An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking) and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns the result to the original target. The target is only evaluated once. An augmented assignment expression like ``x += 1`` can be rewritten as ``x = x + 1`` to achieve a similar, but not exactly equal effect. In the augmented version, ``x`` is only evaluated once. Also, when possible, the actual operation is performed *in-place*, meaning that rather than creating a new object and assigning that to the target, the old object is modified instead. With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible *in-place* behavior, the binary operation performed by augmented assignment is the same as the normal binary operations. For targets which are attribute references, the same :ref:`caveat about class and instance attributes <attr-target-note>` applies as for regular assignments. .. _assert: The :keyword:`assert` statement =============================== .. index:: statement: assert pair: debugging; assertions Assert statements are a convenient way to insert debugging assertions into a program: .. productionlist:: assert_stmt: "assert" `expression` ["," `expression`] The simple form, ``assert expression``, is equivalent to :: if __debug__: if not expression: raise AssertionError The extended form, ``assert expression1, expression2``, is equivalent to :: if __debug__: if not expression1: raise AssertionError(expression2) .. index:: single: __debug__ exception: AssertionError These equivalences assume that :const:`__debug__` and :exc:`AssertionError` refer to the built-in variables with those names. In the current implementation, the built-in variable :const:`__debug__` is ``True`` under normal circumstances, ``False`` when optimization is requested (command line option -O). The current code generator emits no code for an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression that failed in the error message; it will be displayed as part of the stack trace. Assignments to :const:`__debug__` are illegal. The value for the built-in variable is determined when the interpreter starts. .. _pass: The :keyword:`pass` statement ============================= .. index:: statement: pass pair: null; operation pair: null; operation .. productionlist:: pass_stmt: "pass" :keyword:`pass` is a null operation --- when it is executed, nothing happens. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed, for example:: def f(arg): pass # a function that does nothing (yet) class C: pass # a class with no methods (yet) .. _del: The :keyword:`del` statement ============================ .. index:: statement: del pair: deletion; target triple: deletion; target; list .. productionlist:: del_stmt: "del" `target_list` Deletion is recursively defined very similar to the way assignment is defined. Rather that spelling it out in full details, here are some hints. Deletion of a target list recursively deletes each target, from left to right. .. index:: statement: global pair: unbinding; name Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name occurs in a :keyword:`global` statement in the same code block. If the name is unbound, a :exc:`NameError` exception will be raised. .. index:: pair: free; variable It is illegal to delete a name from the local namespace if it occurs as a free variable in a nested block. .. index:: pair: attribute; deletion Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object). .. _return: The :keyword:`return` statement =============================== .. index:: statement: return pair: function; definition pair: class; definition .. productionlist:: return_stmt: "return" [`expression_list`] :keyword:`return` may only occur syntactically nested in a function definition, not within a nested class definition. If an expression list is present, it is evaluated, else ``None`` is substituted. :keyword:`return` leaves the current function call with the expression list (or ``None``) as return value. .. index:: keyword: finally When :keyword:`return` passes control out of a :keyword:`try` statement with a :keyword:`finally` clause, that :keyword:`finally` clause is executed before really leaving the function. In a generator function, the :keyword:`return` statement is not allowed to include an :token:`expression_list`. In that context, a bare :keyword:`return` indicates that the generator is done and will cause :exc:`StopIteration` to be raised. .. _yield: The :keyword:`yield` statement ============================== .. index:: statement: yield single: generator; function single: generator; iterator single: function; generator exception: StopIteration .. productionlist:: yield_stmt: `yield_expression` The :keyword:`yield` statement is only used when defining a generator function, and is only used in the body of the generator function. Using a :keyword:`yield` statement in a function definition is sufficient to cause that definition to create a generator function instead of a normal function. When a generator function is called, it returns an iterator known as a generator iterator, or more commonly, a generator. The body of the generator function is executed by calling the :func:`next` function on the generator repeatedly until it raises an exception. When a :keyword:`yield` statement is executed, the state of the generator is frozen and the value of :token:`expression_list` is returned to :meth:`next`'s caller. By "frozen" we mean that all local state is retained, including the current bindings of local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that the next time :func:`next` is invoked, the function can proceed exactly as if the :keyword:`yield` statement were just another external call. The :keyword:`yield` statement is allowed in the :keyword:`try` clause of a :keyword:`try` ... :keyword:`finally` construct. If the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), the generator-iterator's :meth:`close` method will be called, allowing any pending :keyword:`finally` clauses to execute. .. seealso:: :pep:`0255` - Simple Generators The proposal for adding generators and the :keyword:`yield` statement to Python. :pep:`0342` - Coroutines via Enhanced Generators The proposal that, among other generator enhancements, proposed allowing :keyword:`yield` to appear inside a :keyword:`try` ... :keyword:`finally` block. .. _raise: The :keyword:`raise` statement ============================== .. index:: statement: raise single: exception pair: raising; exception single: __traceback__ (exception attribute) .. productionlist:: raise_stmt: "raise" [`expression` ["from" `expression`]] If no expressions are present, :keyword:`raise` re-raises the last exception that was active in the current scope. If no exception is active in the current scope, a :exc:`TypeError` exception is raised indicating that this is an error (if running under IDLE, a :exc:`queue.Empty` exception is raised instead). Otherwise, :keyword:`raise` evaluates the first expression as the exception object. It must be either a subclass or an instance of :class:`BaseException`. If it is a class, the exception instance will be obtained when needed by instantiating the class with no arguments. The :dfn:`type` of the exception is the exception instance's class, the :dfn:`value` is the instance itself. .. index:: object: traceback A traceback object is normally created automatically when an exception is raised and attached to it as the :attr:`__traceback__` attribute, which is writable. You can create an exception and set your own traceback in one step using the :meth:`with_traceback` exception method (which returns the same exception instance, with its traceback set to its argument), like so:: raise Exception("foo occurred").with_traceback(tracebackobj) .. index:: pair: exception; chaining __cause__ (exception attribute) __context__ (exception attribute) The ``from`` clause is used for exception chaining: if given, the second *expression* must be another exception class or instance, which will then be attached to the raised exception as the :attr:`__cause__` attribute (which is writable). If the raised exception is not handled, both exceptions will be printed:: >>> try: ... print(1 / 0) ... except Exception as exc: ... raise RuntimeError("Something bad happened") from exc ... Traceback (most recent call last): File "<stdin>", line 2, in <module> ZeroDivisionError: int division or modulo by zero The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<stdin>", line 4, in <module> RuntimeError: Something bad happened A similar mechanism works implicitly if an exception is raised inside an exception handler: the previous exception is then attached as the new exception's :attr:`__context__` attribute:: >>> try: ... print(1 / 0) ... except: ... raise RuntimeError("Something bad happened") ... Traceback (most recent call last): File "<stdin>", line 2, in <module> ZeroDivisionError: int division or modulo by zero During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<stdin>", line 4, in <module> RuntimeError: Something bad happened Additional information on exceptions can be found in section :ref:`exceptions`, and information about handling exceptions is in section :ref:`try`. .. _break: The :keyword:`break` statement ============================== .. index:: statement: break statement: for statement: while pair: loop; statement .. productionlist:: break_stmt: "break" :keyword:`break` may only occur syntactically nested in a :keyword:`for` or :keyword:`while` loop, but not nested in a function or class definition within that loop. .. index:: keyword: else pair: loop control; target It terminates the nearest enclosing loop, skipping the optional :keyword:`else` clause if the loop has one. If a :keyword:`for` loop is terminated by :keyword:`break`, the loop control target keeps its current value. .. index:: keyword: finally When :keyword:`break` passes control out of a :keyword:`try` statement with a :keyword:`finally` clause, that :keyword:`finally` clause is executed before really leaving the loop. .. _continue: The :keyword:`continue` statement ================================= .. index:: statement: continue statement: for statement: while pair: loop; statement keyword: finally .. productionlist:: continue_stmt: "continue" :keyword:`continue` may only occur syntactically nested in a :keyword:`for` or :keyword:`while` loop, but not nested in a function or class definition or :keyword:`finally` clause within that loop. It continues with the next cycle of the nearest enclosing loop. When :keyword:`continue` passes control out of a :keyword:`try` statement with a :keyword:`finally` clause, that :keyword:`finally` clause is executed before really starting the next loop cycle. .. _import: .. _from: The :keyword:`import` statement =============================== .. index:: statement: import single: module; importing pair: name; binding keyword: from .. productionlist:: import_stmt: "import" `module` ["as" `name`] ( "," `module` ["as" `name`] )* : | "from" `relative_module` "import" `identifier` ["as" `name`] : ( "," `identifier` ["as" `name`] )* : | "from" `relative_module` "import" "(" `identifier` ["as" `name`] : ( "," `identifier` ["as" `name`] )* [","] ")" : | "from" `module` "import" "*" module: (`identifier` ".")* `identifier` relative_module: "."* `module` | "."+ name: `identifier` Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define a name or names in the local namespace (of the scope where the :keyword:`import` statement occurs). The statement comes in two forms differing on whether it uses the :keyword:`from` keyword. The first form (without :keyword:`from`) repeats these steps for each identifier in the list. The form with :keyword:`from` performs step (1) once, and then performs step (2) repeatedly. For a reference implementation of step (1), see the :mod:`importlib` module. .. index:: single: package To understand how step (1) occurs, one must first understand how Python handles hierarchical naming of modules. To help organize modules and provide a hierarchy in naming, Python has a concept of packages. A package can contain other packages and modules while modules cannot contain other modules or packages. From a file system perspective, packages are directories and modules are files. The original `specification for packages <http://www.python.org/doc/essays/packages.html>`_ is still available to read, although minor details have changed since the writing of that document. .. index:: single: sys.modules Once the name of the module is known (unless otherwise specified, the term "module" will refer to both packages and modules), searching for the module or package can begin. The first place checked is :data:`sys.modules`, the cache of all modules that have been imported previously. If the module is found there then it is used in step (2) of import. .. index:: single: sys.meta_path single: finder pair: finder; find_module single: __path__ If the module is not found in the cache, then :data:`sys.meta_path` is searched (the specification for :data:`sys.meta_path` can be found in :pep:`302`). The object is a list of :term:`finder` objects which are queried in order as to whether they know how to load the module by calling their :meth:`find_module` method with the name of the module. If the module happens to be contained within a package (as denoted by the existence of a dot in the name), then a second argument to :meth:`find_module` is given as the value of the :attr:`__path__` attribute from the parent package (everything up to the last dot in the name of the module being imported). If a finder can find the module it returns a :term:`loader` (discussed later) or returns :keyword:`None`. .. index:: single: sys.path_hooks single: sys.path_importer_cache single: sys.path If none of the finders on :data:`sys.meta_path` are able to find the module then some implicitly defined finders are queried. Implementations of Python vary in what implicit meta path finders are defined. The one they all do define, though, is one that handles :data:`sys.path_hooks`, :data:`sys.path_importer_cache`, and :data:`sys.path`. The implicit finder searches for the requested module in the "paths" specified in one of two places ("paths" do not have to be file system paths). If the module being imported is supposed to be contained within a package then the second argument passed to :meth:`find_module`, :attr:`__path__` on the parent package, is used as the source of paths. If the module is not contained in a package then :data:`sys.path` is used as the source of paths. Once the source of paths is chosen it is iterated over to find a finder that can handle that path. The dict at :data:`sys.path_importer_cache` caches finders for paths and is checked for a finder. If the path does not have a finder cached then :data:`sys.path_hooks` is searched by calling each object in the list with a single argument of the path, returning a finder or raises :exc:`ImportError`. If a finder is returned then it is cached in :data:`sys.path_importer_cache` and then used for that path entry. If no finder can be found but the path exists then a value of :keyword:`None` is stored in :data:`sys.path_importer_cache` to signify that an implicit, file-based finder that handles modules stored as individual files should be used for that path. If the path does not exist then a finder which always returns :keyword:`None` is placed in the cache for the path. .. index:: single: loader pair: loader; load_module exception: ImportError If no finder can find the module then :exc:`ImportError` is raised. Otherwise some finder returned a loader whose :meth:`load_module` method is called with the name of the module to load (see :pep:`302` for the original definition of loaders). A loader has several responsibilities to perform on a module it loads. First, if the module already exists in :data:`sys.modules` (a possibility if the loader is called outside of the import machinery) then it is to use that module for initialization and not a new module. But if the module does not exist in :data:`sys.modules` then it is to be added to that dict before initialization begins. If an error occurs during loading of the module and it was added to :data:`sys.modules` it is to be removed from the dict. If an error occurs but the module was already in :data:`sys.modules` it is left in the dict. .. index:: single: __name__ single: __file__ single: __path__ single: __package__ single: __loader__ The loader must set several attributes on the module. :data:`__name__` is to be set to the name of the module. :data:`__file__` is to be the "path" to the file unless the module is built-in (and thus listed in :data:`sys.builtin_module_names`) in which case the attribute is not set. If what is being imported is a package then :data:`__path__` is to be set to a list of paths to be searched when looking for modules and packages contained within the package being imported. :data:`__package__` is optional but should be set to the name of package that contains the module or package (the empty string is used for module not contained in a package). :data:`__loader__` is also optional but should be set to the loader object that is loading the module. .. index:: exception: ImportError If an error occurs during loading then the loader raises :exc:`ImportError` if some other exception is not already being propagated. Otherwise the loader returns the module that was loaded and initialized. When step (1) finishes without raising an exception, step (2) can begin. The first form of :keyword:`import` statement binds the module name in the local namespace to the module object, and then goes on to import the next identifier, if any. If the module name is followed by :keyword:`as`, the name following :keyword:`as` is used as the local name for the module. .. index:: pair: name; binding exception: ImportError The :keyword:`from` form does not bind the module name: it goes through the list of identifiers, looks each one of them up in the module found in step (1), and binds the name in the local namespace to the object thus found. As with the first form of :keyword:`import`, an alternate local name can be supplied by specifying ":keyword:`as` localname". If a name is not found, :exc:`ImportError` is raised. If the list of identifiers is replaced by a star (``'*'``), all public names defined in the module are bound in the local namespace of the :keyword:`import` statement.. .. index:: single: __all__ (optional module attribute) The *public names* defined by a module are determined by checking the module's namespace for a variable named ``__all__``; if defined, it must be a sequence of strings which are names defined or imported by that module. The names given in ``__all__`` are all considered public and are required to exist. If ``__all__`` is not defined, the set of public names includes all names found in the module's namespace which do not begin with an underscore character (``'_'``). ``__all__`` should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such as library modules which were imported and used within the module). The :keyword:`from` form with ``*`` may only occur in a module scope. The wild card form of import --- ``import *`` --- is only allowed at the module level. Attempting to use it in class or function definitions will raise a :exc:`SyntaxError`. .. index:: single: relative; import When specifying what module to import you do not have to specify the absolute name of the module. When a module or package is contained within another package it is possible to make a relative import within the same top package without having to mention the package name. By using leading dots in the specified module or package after :keyword:`from` you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means the current package where the module making the import exists. Two dots means up one package level. Three dots is up two levels, etc. So if you execute ``from . import mod`` from a module in the ``pkg`` package then you will end up importing ``pkg.mod``. If you execute ``from ..subpkg2 imprt mod`` from within ``pkg.subpkg1`` you will import ``pkg.subpkg2.mod``. The specification for relative imports is contained within :pep:`328`. :func:`importlib.import_module` is provided to support applications that determine which modules need to be loaded dynamically. .. _future: Future statements ----------------- .. index:: pair: future; statement A :dfn:`future statement` is a directive to the compiler that a particular module should be compiled using syntax or semantics that will be available in a specified future release of Python. The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module basis before the release in which the feature becomes standard. .. productionlist:: * future_statement: "from" "__future__" "import" feature ["as" name] : ("," feature ["as" name])* : | "from" "__future__" "import" "(" feature ["as" name] : ("," feature ["as" name])* [","] ")" feature: identifier name: identifier A future statement must appear near the top of the module. The only lines that can appear before a future statement are: * the module docstring (if any), * comments, * blank lines, and * other future statements. .. XXX change this if future is cleaned out The features recognized by Python 3.0 are ``absolute_import``, ``division``, ``generators``, ``unicode_literals``, ``print_function``, ``nested_scopes`` and ``with_statement``. They are all redundant because they are always enabled, and only kept for backwards compatibility. A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are often implemented by generating different code. It may even be the case that a new feature introduces new incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions cannot be pushed off until runtime. For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a future statement contains a feature not known to it. The direct runtime semantics are the same as for any import statement: there is a standard module :mod:`__future__`, described later, and it will be imported in the usual way at the time the future statement is executed. The interesting runtime semantics depend on the specific feature enabled by the future statement. Note that there is nothing special about the statement:: import __future__ [as name] That is not a future statement; it's an ordinary import statement with no special semantics or syntax restrictions. Code compiled by calls to the built-in functions :func:`exec` and :func:`compile` that occur in a module :mod:`M` containing a future statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled by optional arguments to :func:`compile` --- see the documentation of that function for details. A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an interpreter is started with the :option:`-i` option, is passed a script name to execute, and the script includes a future statement, it will be in effect in the interactive session started after the script is executed. .. seealso:: :pep:`236` - Back to the __future__ The original proposal for the __future__ mechanism. .. _global: The :keyword:`global` statement =============================== .. index:: statement: global triple: global; name; binding .. productionlist:: global_stmt: "global" `identifier` ("," `identifier`)* The :keyword:`global` statement is a declaration which holds for the entire current code block. It means that the listed identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without :keyword:`global`, although free variables may refer to globals without being declared global. Names listed in a :keyword:`global` statement must not be used in the same code block textually preceding that :keyword:`global` statement. Names listed in a :keyword:`global` statement must not be defined as formal parameters or in a :keyword:`for` loop control target, :keyword:`class` definition, function definition, or :keyword:`import` statement. (The current implementation does not enforce the latter two restrictions, but programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.) .. index:: builtin: exec builtin: eval builtin: compile **Programmer's note:** the :keyword:`global` is a directive to the parser. It applies only to code parsed at the same time as the :keyword:`global` statement. In particular, a :keyword:`global` statement contained in a string or code object supplied to the builtin :func:`exec` function does not affect the code block *containing* the function call, and code contained in such a string is unaffected by :keyword:`global` statements in the code containing the function call. The same applies to the :func:`eval` and :func:`compile` functions. .. _nonlocal: The :keyword:`nonlocal` statement ================================= .. index:: statement: nonlocal .. productionlist:: nonlocal_stmt: "nonlocal" `identifier` ("," `identifier`)* .. XXX add when implemented : ["=" (`target_list` "=")+ expression_list] : | "nonlocal" identifier augop expression_list The :keyword:`nonlocal` statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing scope. This is important because the default behavior for binding is to search the local namespace first. The statement allows encapsulated code to rebind variables outside of the local scope besides the global (module) scope. .. XXX not implemented The :keyword:`nonlocal` statement may prepend an assignment or augmented assignment, but not an expression. Names listed in a :keyword:`nonlocal` statement, unlike to those listed in a :keyword:`global` statement, must refer to pre-existing bindings in an enclosing scope (the scope in which a new binding should be created cannot be determined unambiguously). Names listed in a :keyword:`nonlocal` statement must not collide with pre-existing bindings in the local scope. .. seealso:: :pep:`3104` - Access to Names in Outer Scopes The specification for the :keyword:`nonlocal` statement. .. rubric:: Footnotes .. [#] It may occur within an :keyword:`except` or :keyword:`else` clause. The restriction on occurring in the :keyword:`try` clause is implementor's laziness and will eventually be lifted.