"""distutils.dist Provides the Distribution class, which represents the module distribution being built/installed/distributed. """ # created 2000/04/03, Greg Ward # (extricated from core.py; actually dates back to the beginning) __revision__ = "$Id$" import sys, os, string, re from types import * from copy import copy from distutils.errors import * from distutils import sysconfig from distutils.fancy_getopt import FancyGetopt, longopt_xlate from distutils.util import check_environ, strtobool # Regex to define acceptable Distutils command names. This is not *quite* # the same as a Python NAME -- I don't allow leading underscores. The fact # that they're very similar is no coincidence; the default naming scheme is # to look for a Python module named after the command. command_re = re.compile (r'^[a-zA-Z]([a-zA-Z0-9_]*)$') class Distribution: """The core of the Distutils. Most of the work hiding behind 'setup' is really done within a Distribution instance, which farms the work out to the Distutils commands specified on the command line. Setup scripts will almost never instantiate Distribution directly, unless the 'setup()' function is totally inadequate to their needs. However, it is conceivable that a setup script might wish to subclass Distribution for some specialized purpose, and then pass the subclass to 'setup()' as the 'distclass' keyword argument. If so, it is necessary to respect the expectations that 'setup' has of Distribution. See the code for 'setup()', in core.py, for details. """ # 'global_options' describes the command-line options that may be # supplied to the setup script prior to any actual commands. # Eg. "./setup.py -n" or "./setup.py --quiet" both take advantage of # these global options. This list should be kept to a bare minimum, # since every global option is also valid as a command option -- and we # don't want to pollute the commands with too many options that they # have minimal control over. global_options = [('verbose', 'v', "run verbosely (default)"), ('quiet', 'q', "run quietly (turns verbosity off)"), ('dry-run', 'n', "don't actually do anything"), ('help', 'h', "show detailed help message"), ] # options that are not propagated to the commands display_options = [ ('help-commands', None, "list all available commands"), ('name', None, "print package name"), ('version', 'V', "print package version"), ('fullname', None, "print -"), ('author', None, "print the author's name"), ('author-email', None, "print the author's email address"), ('maintainer', None, "print the maintainer's name"), ('maintainer-email', None, "print the maintainer's email address"), ('contact', None, "print the maintainer's name if known, else the author's"), ('contact-email', None, "print the maintainer's email address if known, else the author's"), ('url', None, "print the URL for this package"), ('licence', None, "print the licence of the package"), ('license', None, "alias for --licence"), ('description', None, "print the package description"), ('long-description', None, "print the long package description"), ] display_option_names = map(lambda x: string.translate(x[0], longopt_xlate), display_options) # negative options are options that exclude other options negative_opt = {'quiet': 'verbose'} # -- Creation/initialization methods ------------------------------- def __init__ (self, attrs=None): """Construct a new Distribution instance: initialize all the attributes of a Distribution, and then use 'attrs' (a dictionary mapping attribute names to values) to assign some of those attributes their "real" values. (Any attributes not mentioned in 'attrs' will be assigned to some null value: 0, None, an empty list or dictionary, etc.) Most importantly, initialize the 'command_obj' attribute to the empty dictionary; this will be filled in with real command objects by 'parse_command_line()'. """ # Default values for our command-line options self.verbose = 1 self.dry_run = 0 self.help = 0 for attr in self.display_option_names: setattr(self, attr, 0) # Store the distribution meta-data (name, version, author, and so # forth) in a separate object -- we're getting to have enough # information here (and enough command-line options) that it's # worth it. Also delegate 'get_XXX()' methods to the 'metadata' # object in a sneaky and underhanded (but efficient!) way. self.metadata = DistributionMetadata () method_basenames = dir(self.metadata) + \ ['fullname', 'contact', 'contact_email'] for basename in method_basenames: method_name = "get_" + basename setattr(self, method_name, getattr(self.metadata, method_name)) # 'cmdclass' maps command names to class objects, so we # can 1) quickly figure out which class to instantiate when # we need to create a new command object, and 2) have a way # for the setup script to override command classes self.cmdclass = {} # 'script_name' and 'script_args' are usually set to sys.argv[0] # and sys.argv[1:], but they can be overridden when the caller is # not necessarily a setup script run from the command-line. self.script_name = None self.script_args = None # 'command_options' is where we store command options between # parsing them (from config files, the command-line, etc.) and when # they are actually needed -- ie. when the command in question is # instantiated. It is a dictionary of dictionaries of 2-tuples: # command_options = { command_name : { option : (source, value) } } self.command_options = {} # These options are really the business of various commands, rather # than of the Distribution itself. We provide aliases for them in # Distribution as a convenience to the developer. self.packages = None self.package_dir = None self.py_modules = None self.libraries = None self.headers = None self.ext_modules = None self.ext_package = None self.include_dirs = None self.extra_path = None self.scripts = None self.data_files = None # And now initialize bookkeeping stuff that can't be supplied by # the caller at all. 'command_obj' maps command names to # Command instances -- that's how we enforce that every command # class is a singleton. self.command_obj = {} # 'have_run' maps command names to boolean values; it keeps track # of whether we have actually run a particular command, to make it # cheap to "run" a command whenever we think we might need to -- if # it's already been done, no need for expensive filesystem # operations, we just check the 'have_run' dictionary and carry on. # It's only safe to query 'have_run' for a command class that has # been instantiated -- a false value will be inserted when the # command object is created, and replaced with a true value when # the command is successfully run. Thus it's probably best to use # '.get()' rather than a straight lookup. self.have_run = {} # Now we'll use the attrs dictionary (ultimately, keyword args from # the setup script) to possibly override any or all of these # distribution options. if attrs: # Pull out the set of command options and work on them # specifically. Note that this order guarantees that aliased # command options will override any supplied redundantly # through the general options dictionary. options = attrs.get ('options') if options: del attrs['options'] for (command, cmd_options) in options.items(): opt_dict = self.get_option_dict(command) for (opt, val) in cmd_options.items(): opt_dict[opt] = ("setup script", val) # Now work on the rest of the attributes. Any attribute that's # not already defined is invalid! for (key,val) in attrs.items(): if hasattr (self.metadata, key): setattr (self.metadata, key, val) elif hasattr (self, key): setattr (self, key, val) else: raise DistutilsSetupError, \ "invalid distribution option '%s'" % key # __init__ () def get_option_dict (self, command): """Get the option dictionary for a given command. If that command's option dictionary hasn't been created yet, then create it and return the new dictionary; otherwise, return the existing option dictionary. """ dict = self.command_options.get(command) if dict is None: dict = self.command_options[command] = {} return dict def dump_option_dicts (self, header=None, commands=None, indent=""): from pprint import pformat if commands is None: # dump all command option dicts commands = self.command_options.keys() commands.sort() if header is not None: print indent + header indent = indent + " " if not commands: print indent + "no commands known yet" return for cmd_name in commands: opt_dict = self.command_options.get(cmd_name) if opt_dict is None: print indent + "no option dict for '%s' command" % cmd_name else: print indent + "option dict for '%s' command:" % cmd_name out = pformat(opt_dict) for line in string.split(out, "\n"): print indent + " " + line # dump_option_dicts () # -- Config file finding/parsing methods --------------------------- def find_config_files (self): """Find as many configuration files as should be processed for this platform, and return a list of filenames in the order in which they should be parsed. The filenames returned are guaranteed to exist (modulo nasty race conditions). On Unix, there are three possible config files: pydistutils.cfg in the Distutils installation directory (ie. where the top-level Distutils __inst__.py file lives), .pydistutils.cfg in the user's home directory, and setup.cfg in the current directory. On Windows and Mac OS, there are two possible config files: pydistutils.cfg in the Python installation directory (sys.prefix) and setup.cfg in the current directory. """ files = [] check_environ() # Where to look for the system-wide Distutils config file sys_dir = os.path.dirname(sys.modules['distutils'].__file__) # Look for the system config file sys_file = os.path.join(sys_dir, "distutils.cfg") if os.path.isfile(sys_file): files.append(sys_file) # What to call the per-user config file if os.name == 'posix': user_filename = ".pydistutils.cfg" else: user_filename = "pydistutils.cfg" # And look for the user config file if os.environ.has_key('HOME'): user_file = os.path.join(os.environ.get('HOME'), user_filename) if os.path.isfile(user_file): files.append(user_file) # All platforms support local setup.cfg local_file = "setup.cfg" if os.path.isfile(local_file): files.append(local_file) return files # find_config_files () def parse_config_files (self, filenames=None): from ConfigParser import ConfigParser from distutils.core import DEBUG if filenames is None: filenames = self.find_config_files() if DEBUG: print "Distribution.parse_config_files():" parser = ConfigParser() for filename in filenames: if DEBUG: print " reading", filename parser.read(filename) for section in parser.sections(): options = parser.options(section) opt_dict = self.get_option_dict(section) for opt in options: if opt != '__name__': val = parser.get(section,opt) opt = string.replace(opt, '-', '_') opt_dict[opt] = (filename, val) # Make the ConfigParser forget everything (so we retain # the original filenames that options come from) -- gag, # retch, puke -- another good reason for a distutils- # specific config parser (sigh...) parser.__init__() # If there was a "global" section in the config file, use it # to set Distribution options. if self.command_options.has_key('global'): for (opt, (src, val)) in self.command_options['global'].items(): alias = self.negative_opt.get(opt) try: if alias: setattr(self, alias, not strtobool(val)) elif opt in ('verbose', 'dry_run'): # ugh! setattr(self, opt, strtobool(val)) except ValueError, msg: raise DistutilsOptionError, msg # parse_config_files () # -- Command-line parsing methods ---------------------------------- def parse_command_line (self): """Parse the setup script's command line, taken from the 'script_args' instance attribute (which defaults to 'sys.argv[1:]' -- see 'setup()' in core.py). This list is first processed for "global options" -- options that set attributes of the Distribution instance. Then, it is alternately scanned for Distutils commands and options for that command. Each new command terminates the options for the previous command. The allowed options for a command are determined by the 'user_options' attribute of the command class -- thus, we have to be able to load command classes in order to parse the command line. Any error in that 'options' attribute raises DistutilsGetoptError; any error on the command-line raises DistutilsArgError. If no Distutils commands were found on the command line, raises DistutilsArgError. Return true if command-line was successfully parsed and we should carry on with executing commands; false if no errors but we shouldn't execute commands (currently, this only happens if user asks for help). """ # We have to parse the command line a bit at a time -- global # options, then the first command, then its options, and so on -- # because each command will be handled by a different class, and # the options that are valid for a particular class aren't known # until we have loaded the command class, which doesn't happen # until we know what the command is. self.commands = [] parser = FancyGetopt (self.global_options + self.display_options) parser.set_negative_aliases (self.negative_opt) parser.set_aliases ({'license': 'licence'}) args = parser.getopt (args=self.script_args, object=self) option_order = parser.get_option_order() # for display options we return immediately if self.handle_display_options(option_order): return while args: args = self._parse_command_opts(parser, args) if args is None: # user asked for help (and got it) return # Handle the cases of --help as a "global" option, ie. # "setup.py --help" and "setup.py --help command ...". For the # former, we show global options (--verbose, --dry-run, etc.) # and display-only options (--name, --version, etc.); for the # latter, we omit the display-only options and show help for # each command listed on the command line. if self.help: self._show_help(parser, display_options=len(self.commands) == 0, commands=self.commands) return # Oops, no commands found -- an end-user error if not self.commands: raise DistutilsArgError, "no commands supplied" # All is well: return true return 1 # parse_command_line() def _parse_command_opts (self, parser, args): """Parse the command-line options for a single command. 'parser' must be a FancyGetopt instance; 'args' must be the list of arguments, starting with the current command (whose options we are about to parse). Returns a new version of 'args' with the next command at the front of the list; will be the empty list if there are no more commands on the command line. Returns None if the user asked for help on this command. """ # late import because of mutual dependence between these modules from distutils.cmd import Command # Pull the current command from the head of the command line command = args[0] if not command_re.match (command): raise SystemExit, "invalid command name '%s'" % command self.commands.append (command) # Dig up the command class that implements this command, so we # 1) know that it's a valid command, and 2) know which options # it takes. try: cmd_class = self.get_command_class (command) except DistutilsModuleError, msg: raise DistutilsArgError, msg # Require that the command class be derived from Command -- want # to be sure that the basic "command" interface is implemented. if not issubclass (cmd_class, Command): raise DistutilsClassError, \ "command class %s must subclass Command" % cmd_class # Also make sure that the command object provides a list of its # known options. if not (hasattr (cmd_class, 'user_options') and type (cmd_class.user_options) is ListType): raise DistutilsClassError, \ ("command class %s must provide " + "'user_options' attribute (a list of tuples)") % \ cmd_class # If the command class has a list of negative alias options, # merge it in with the global negative aliases. negative_opt = self.negative_opt if hasattr (cmd_class, 'negative_opt'): negative_opt = copy (negative_opt) negative_opt.update (cmd_class.negative_opt) # Check for help_options in command class. They have a different # format (tuple of four) so we need to preprocess them here. if (hasattr(cmd_class, 'help_options') and type (cmd_class.help_options) is ListType): help_options = fix_help_options(cmd_class.help_options) else: help_options = [] # All commands support the global options too, just by adding # in 'global_options'. parser.set_option_table (self.global_options + cmd_class.user_options + help_options) parser.set_negative_aliases (negative_opt) (args, opts) = parser.getopt (args[1:]) if hasattr(opts, 'help') and opts.help: self._show_help(parser, display_options=0, commands=[cmd_class]) return if (hasattr(cmd_class, 'help_options') and type (cmd_class.help_options) is ListType): help_option_found=0 for (help_option, short, desc, func) in cmd_class.help_options: if hasattr(opts, parser.get_attr_name(help_option)): help_option_found=1 #print "showing help for option %s of command %s" % \ # (help_option[0],cmd_class) if callable(func): func() else: raise DistutilsClassError, \ ("invalid help function %s for help option '%s': " "must be a callable object (function, etc.)") % \ (`func`, help_option) if help_option_found: return # Put the options from the command-line into their official # holding pen, the 'command_options' dictionary. opt_dict = self.get_option_dict(command) for (name, value) in vars(opts).items(): opt_dict[name] = ("command line", value) return args # _parse_command_opts () def _show_help (self, parser, global_options=1, display_options=1, commands=[]): """Show help for the setup script command-line in the form of several lists of command-line options. 'parser' should be a FancyGetopt instance; do not expect it to be returned in the same state, as its option table will be reset to make it generate the correct help text. If 'global_options' is true, lists the global options: --verbose, --dry-run, etc. If 'display_options' is true, lists the "display-only" options: --name, --version, etc. Finally, lists per-command help for every command name or command class in 'commands'. """ # late import because of mutual dependence between these modules from distutils.core import gen_usage from distutils.cmd import Command if global_options: parser.set_option_table (self.global_options) parser.print_help ("Global options:") print if display_options: parser.set_option_table (self.display_options) parser.print_help ( "Information display options (just display " + "information, ignore any commands)") print for command in self.commands: if type(command) is ClassType and issubclass(klass, Command): klass = command else: klass = self.get_command_class (command) if (hasattr(klass, 'help_options') and type (klass.help_options) is ListType): parser.set_option_table (klass.user_options + fix_help_options(klass.help_options)) else: parser.set_option_table (klass.user_options) parser.print_help ("Options for '%s' command:" % klass.__name__) print print gen_usage(self.script_name) return # _show_help () def handle_display_options (self, option_order): """If there were any non-global "display-only" options (--help-commands or the metadata display options) on the command line, display the requested info and return true; else return false. """ from distutils.core import gen_usage # User just wants a list of commands -- we'll print it out and stop # processing now (ie. if they ran "setup --help-commands foo bar", # we ignore "foo bar"). if self.help_commands: self.print_commands () print print gen_usage(self.script_name) return 1 # If user supplied any of the "display metadata" options, then # display that metadata in the order in which the user supplied the # metadata options. any_display_options = 0 is_display_option = {} for option in self.display_options: is_display_option[option[0]] = 1 for (opt, val) in option_order: if val and is_display_option.get(opt): opt = string.translate (opt, longopt_xlate) print getattr(self.metadata, "get_"+opt)() any_display_options = 1 return any_display_options # handle_display_options() def print_command_list (self, commands, header, max_length): """Print a subset of the list of all commands -- used by 'print_commands()'. """ print header + ":" for cmd in commands: klass = self.cmdclass.get (cmd) if not klass: klass = self.get_command_class (cmd) try: description = klass.description except AttributeError: description = "(no description available)" print " %-*s %s" % (max_length, cmd, description) # print_command_list () def print_commands (self): """Print out a help message listing all available commands with a description of each. The list is divided into "standard commands" (listed in distutils.command.__all__) and "extra commands" (mentioned in self.cmdclass, but not a standard command). The descriptions come from the command class attribute 'description'. """ import distutils.command std_commands = distutils.command.__all__ is_std = {} for cmd in std_commands: is_std[cmd] = 1 extra_commands = [] for cmd in self.cmdclass.keys(): if not is_std.get(cmd): extra_commands.append (cmd) max_length = 0 for cmd in (std_commands + extra_commands): if len (cmd) > max_length: max_length = len (cmd) self.print_command_list (std_commands, "Standard commands", max_length) if extra_commands: print self.print_command_list (extra_commands, "Extra commands", max_length) # print_commands () # -- Command class/object methods ---------------------------------- def get_command_class (self, command): """Return the class that implements the Distutils command named by 'command'. First we check the 'cmdclass' dictionary; if the command is mentioned there, we fetch the class object from the dictionary and return it. Otherwise we load the command module ("distutils.command." + command) and fetch the command class from the module. The loaded class is also stored in 'cmdclass' to speed future calls to 'get_command_class()'. Raises DistutilsModuleError if the expected module could not be found, or if that module does not define the expected class. """ klass = self.cmdclass.get(command) if klass: return klass module_name = 'distutils.command.' + command klass_name = command try: __import__ (module_name) module = sys.modules[module_name] except ImportError: raise DistutilsModuleError, \ "invalid command '%s' (no module named '%s')" % \ (command, module_name) try: klass = getattr(module, klass_name) except AttributeError: raise DistutilsModuleError, \ "invalid command '%s' (no class '%s' in module '%s')" \ % (command, klass_name, module_name) self.cmdclass[command] = klass return klass # get_command_class () def get_command_obj (self, command, create=1): """Return the command object for 'command'. Normally this object is cached on a previous call to 'get_command_obj()'; if no command object for 'command' is in the cache, then we either create and return it (if 'create' is true) or return None. """ from distutils.core import DEBUG cmd_obj = self.command_obj.get(command) if not cmd_obj and create: if DEBUG: print "Distribution.get_command_obj(): " \ "creating '%s' command object" % command klass = self.get_command_class(command) cmd_obj = self.command_obj[command] = klass(self) self.have_run[command] = 0 # Set any options that were supplied in config files # or on the command line. (NB. support for error # reporting is lame here: any errors aren't reported # until 'finalize_options()' is called, which means # we won't report the source of the error.) options = self.command_options.get(command) if options: self._set_command_options(cmd_obj, options) return cmd_obj def _set_command_options (self, command_obj, option_dict=None): """Set the options for 'command_obj' from 'option_dict'. Basically this means copying elements of a dictionary ('option_dict') to attributes of an instance ('command'). 'command_obj' must be a Command instance. If 'option_dict' is not supplied, uses the standard option dictionary for this command (from 'self.command_options'). """ from distutils.core import DEBUG command_name = command_obj.get_command_name() if option_dict is None: option_dict = self.get_option_dict(command_name) if DEBUG: print " setting options for '%s' command:" % command_name for (option, (source, value)) in option_dict.items(): if DEBUG: print " %s = %s (from %s)" % (option, value, source) try: bool_opts = command_obj.boolean_options except AttributeError: bool_opts = [] try: neg_opt = command_obj.negative_opt except AttributeError: neg_opt = {} try: if neg_opt.has_key(option): setattr(command_obj, neg_opt[option], not strtobool(value)) elif option in bool_opts: setattr(command_obj, option, strtobool(value)) elif hasattr(command_obj, option): setattr(command_obj, option, value) else: raise DistutilsOptionError, \ ("error in %s: command '%s' has no such option '%s'" % (source, command_name, option)) except ValueError, msg: raise DistutilsOptionError, msg def reinitialize_command (self, command, reinit_subcommands=0): """Reinitializes a command to the state it was in when first returned by 'get_command_obj()': ie., initialized but not yet finalized. This provides the opportunity to sneak option values in programmatically, overriding or supplementing user-supplied values from the config files and command line. You'll have to re-finalize the command object (by calling 'finalize_options()' or 'ensure_finalized()') before using it for real. 'command' should be a command name (string) or command object. If 'reinit_subcommands' is true, also reinitializes the command's sub-commands, as declared by the 'sub_commands' class attribute (if it has one). See the "install" command for an example. Only reinitializes the sub-commands that actually matter, ie. those whose test predicates return true. Returns the reinitialized command object. """ from distutils.cmd import Command if not isinstance(command, Command): command_name = command command = self.get_command_obj(command_name) else: command_name = command.get_command_name() if not command.finalized: return command command.initialize_options() command.finalized = 0 self.have_run[command_name] = 0 self._set_command_options(command) if reinit_subcommands: for sub in command.get_sub_commands(): self.reinitialize_command(sub, reinit_subcommands) return command # -- Methods that operate on the Distribution ---------------------- def announce (self, msg, level=1): """Print 'msg' if 'level' is greater than or equal to the verbosity level recorded in the 'verbose' attribute (which, currently, can be only 0 or 1). """ if self.verbose >= level: print msg def run_commands (self): """Run each command that was seen on the setup script command line. Uses the list of commands found and cache of command objects created by 'get_command_obj()'.""" for cmd in self.commands: self.run_command (cmd) # -- Methods that operate on its Commands -------------------------- def run_command (self, command): """Do whatever it takes to run a command (including nothing at all, if the command has already been run). Specifically: if we have already created and run the command named by 'command', return silently without doing anything. If the command named by 'command' doesn't even have a command object yet, create one. Then invoke 'run()' on that command object (or an existing one). """ # Already been here, done that? then return silently. if self.have_run.get (command): return self.announce ("running " + command) cmd_obj = self.get_command_obj (command) cmd_obj.ensure_finalized () cmd_obj.run () self.have_run[command] = 1 # -- Distribution query methods ------------------------------------ def has_pure_modules (self): return len (self.packages or self.py_modules or []) > 0 def has_ext_modules (self): return self.ext_modules and len (self.ext_modules) > 0 def has_c_libraries (self): return self.libraries and len (self.libraries) > 0 def has_modules (self): return self.has_pure_modules() or self.has_ext_modules() def has_headers (self): return self.headers and len(self.headers) > 0 def has_scripts (self): return self.scripts and len(self.scripts) > 0 def has_data_files (self): return self.data_files and len(self.data_files) > 0 def is_pure (self): return (self.has_pure_modules() and not self.has_ext_modules() and not self.has_c_libraries()) # -- Metadata query methods ---------------------------------------- # If you're looking for 'get_name()', 'get_version()', and so forth, # they are defined in a sneaky way: the constructor binds self.get_XXX # to self.metadata.get_XXX. The actual code is in the # DistributionMetadata class, below. # class Distribution class DistributionMetadata: """Dummy class to hold the distribution meta-data: name, version, author, and so forth.""" def __init__ (self): self.name = None self.version = None self.author = None self.author_email = None self.maintainer = None self.maintainer_email = None self.url = None self.licence = None self.description = None self.long_description = None # -- Metadata query methods ---------------------------------------- def get_name (self): return self.name or "UNKNOWN" def get_version(self): return self.version or "???" def get_fullname (self): return "%s-%s" % (self.get_name(), self.get_version()) def get_author(self): return self.author or "UNKNOWN" def get_author_email(self): return self.author_email or "UNKNOWN" def get_maintainer(self): return self.maintainer or "UNKNOWN" def get_maintainer_email(self): return self.maintainer_email or "UNKNOWN" def get_contact(self): return (self.maintainer or self.author or "UNKNOWN") def get_contact_email(self): return (self.maintainer_email or self.author_email or "UNKNOWN") def get_url(self): return self.url or "UNKNOWN" def get_licence(self): return self.licence or "UNKNOWN" def get_description(self): return self.description or "UNKNOWN" def get_long_description(self): return self.long_description or "UNKNOWN" # class DistributionMetadata def fix_help_options (options): """Convert a 4-tuple 'help_options' list as found in various command classes to the 3-tuple form required by FancyGetopt. """ new_options = [] for help_tuple in options: new_options.append(help_tuple[0:3]) return new_options if __name__ == "__main__": dist = Distribution () print "ok"