# Copyright 2007 Google Inc. # Licensed to PSF under a Contributor Agreement. """A fast, lightweight IPv4/IPv6 manipulation library in Python. This library is used to create/poke/manipulate IPv4 and IPv6 addresses and networks. """ __version__ = '1.0' import struct IPV4LENGTH = 32 IPV6LENGTH = 128 class AddressValueError(ValueError): """A Value Error related to the address.""" class NetmaskValueError(ValueError): """A Value Error related to the netmask.""" def ip_address(address): """Take an IP string/int and return an object of the correct type. Args: address: A string or integer, the IP address. Either IPv4 or IPv6 addresses may be supplied; integers less than 2**32 will be considered to be IPv4 by default. Returns: An IPv4Address or IPv6Address object. Raises: ValueError: if the *address* passed isn't either a v4 or a v6 address """ try: return IPv4Address(address) except (AddressValueError, NetmaskValueError): pass try: return IPv6Address(address) except (AddressValueError, NetmaskValueError): pass raise ValueError('%r does not appear to be an IPv4 or IPv6 address' % address) def ip_network(address, strict=True): """Take an IP string/int and return an object of the correct type. Args: address: A string or integer, the IP network. Either IPv4 or IPv6 networks may be supplied; integers less than 2**32 will be considered to be IPv4 by default. Returns: An IPv4Network or IPv6Network object. Raises: ValueError: if the string passed isn't either a v4 or a v6 address. Or if the network has host bits set. """ try: return IPv4Network(address, strict) except (AddressValueError, NetmaskValueError): pass try: return IPv6Network(address, strict) except (AddressValueError, NetmaskValueError): pass raise ValueError('%r does not appear to be an IPv4 or IPv6 network' % address) def ip_interface(address): """Take an IP string/int and return an object of the correct type. Args: address: A string or integer, the IP address. Either IPv4 or IPv6 addresses may be supplied; integers less than 2**32 will be considered to be IPv4 by default. Returns: An IPv4Interface or IPv6Interface object. Raises: ValueError: if the string passed isn't either a v4 or a v6 address. Notes: The IPv?Interface classes describe an Address on a particular Network, so they're basically a combination of both the Address and Network classes. """ try: return IPv4Interface(address) except (AddressValueError, NetmaskValueError): pass try: return IPv6Interface(address) except (AddressValueError, NetmaskValueError): pass raise ValueError('%r does not appear to be an IPv4 or IPv6 interface' % address) def v4_int_to_packed(address): """Represent an address as 4 packed bytes in network (big-endian) order. Args: address: An integer representation of an IPv4 IP address. Returns: The integer address packed as 4 bytes in network (big-endian) order. Raises: ValueError: If the integer is negative or too large to be an IPv4 IP address. """ try: return struct.pack('!I', address) except: raise ValueError("Address negative or too large for IPv4") def v6_int_to_packed(address): """Represent an address as 16 packed bytes in network (big-endian) order. Args: address: An integer representation of an IPv6 IP address. Returns: The integer address packed as 16 bytes in network (big-endian) order. """ try: return struct.pack('!QQ', address >> 64, address & (2**64 - 1)) except: raise ValueError("Address negative or too large for IPv6") def _split_optional_netmask(address): """Helper to split the netmask and raise AddressValueError if needed""" addr = str(address).split('/') if len(addr) > 2: raise AddressValueError("Only one '/' permitted in %r" % address) return addr def _find_address_range(addresses): """Find a sequence of IPv#Address. Args: addresses: a list of IPv#Address objects. Returns: A tuple containing the first and last IP addresses in the sequence. """ first = last = addresses[0] for ip in addresses[1:]: if ip._ip == last._ip + 1: last = ip else: break return (first, last) def _get_prefix_length(number1, number2, bits): """Get the number of leading bits that are same for two numbers. Args: number1: an integer. number2: another integer. bits: the maximum number of bits to compare. Returns: The number of leading bits that are the same for two numbers. """ for i in range(bits): if number1 >> i == number2 >> i: return bits - i return 0 def _count_righthand_zero_bits(number, bits): """Count the number of zero bits on the right hand side. Args: number: an integer. bits: maximum number of bits to count. Returns: The number of zero bits on the right hand side of the number. """ if number == 0: return bits for i in range(bits): if (number >> i) % 2: return i def summarize_address_range(first, last): """Summarize a network range given the first and last IP addresses. Example: >>> summarize_address_range(IPv4Address('192.0.2.0'), IPv4Address('192.0.2.130')) [IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/31'), IPv4Network('192.0.2.130/32')] Args: first: the first IPv4Address or IPv6Address in the range. last: the last IPv4Address or IPv6Address in the range. Returns: An iterator of the summarized IPv(4|6) network objects. Raise: TypeError: If the first and last objects are not IP addresses. If the first and last objects are not the same version. ValueError: If the last object is not greater than the first. If the version of the first address is not 4 or 6. """ if (not (isinstance(first, _BaseAddress) and isinstance(last, _BaseAddress))): raise TypeError('first and last must be IP addresses, not networks') if first.version != last.version: raise TypeError("%s and %s are not of the same version" % ( first, last)) if first > last: raise ValueError('last IP address must be greater than first') if first.version == 4: ip = IPv4Network elif first.version == 6: ip = IPv6Network else: raise ValueError('unknown IP version') ip_bits = first._max_prefixlen first_int = first._ip last_int = last._ip while first_int <= last_int: nbits = _count_righthand_zero_bits(first_int, ip_bits) current = None while nbits >= 0: addend = 2**nbits - 1 current = first_int + addend nbits -= 1 if current <= last_int: break prefix = _get_prefix_length(first_int, current, ip_bits) net = ip('%s/%d' % (first, prefix)) yield net if current == ip._ALL_ONES: break first_int = current + 1 first = first.__class__(first_int) def _collapse_addresses_recursive(addresses): """Loops through the addresses, collapsing concurrent netblocks. Example: ip1 = IPv4Network('192.0.2.0/26') ip2 = IPv4Network('192.0.2.64/26') ip3 = IPv4Network('192.0.2.128/26') ip4 = IPv4Network('192.0.2.192/26') _collapse_addresses_recursive([ip1, ip2, ip3, ip4]) -> [IPv4Network('192.0.2.0/24')] This shouldn't be called directly; it is called via collapse_addresses([]). Args: addresses: A list of IPv4Network's or IPv6Network's Returns: A list of IPv4Network's or IPv6Network's depending on what we were passed. """ ret_array = [] optimized = False for cur_addr in addresses: if not ret_array: ret_array.append(cur_addr) continue if (cur_addr.network_address >= ret_array[-1].network_address and cur_addr.broadcast_address <= ret_array[-1].broadcast_address): optimized = True elif cur_addr == list(ret_array[-1].supernet().subnets())[1]: ret_array.append(ret_array.pop().supernet()) optimized = True else: ret_array.append(cur_addr) if optimized: return _collapse_addresses_recursive(ret_array) return ret_array def collapse_addresses(addresses): """Collapse a list of IP objects. Example: collapse_addresses([IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/25')]) -> [IPv4Network('192.0.2.0/24')] Args: addresses: An iterator of IPv4Network or IPv6Network objects. Returns: An iterator of the collapsed IPv(4|6)Network objects. Raises: TypeError: If passed a list of mixed version objects. """ i = 0 addrs = [] ips = [] nets = [] # split IP addresses and networks for ip in addresses: if isinstance(ip, _BaseAddress): if ips and ips[-1]._version != ip._version: raise TypeError("%s and %s are not of the same version" % ( ip, ips[-1])) ips.append(ip) elif ip._prefixlen == ip._max_prefixlen: if ips and ips[-1]._version != ip._version: raise TypeError("%s and %s are not of the same version" % ( ip, ips[-1])) try: ips.append(ip.ip) except AttributeError: ips.append(ip.network_address) else: if nets and nets[-1]._version != ip._version: raise TypeError("%s and %s are not of the same version" % ( ip, nets[-1])) nets.append(ip) # sort and dedup ips = sorted(set(ips)) nets = sorted(set(nets)) while i < len(ips): (first, last) = _find_address_range(ips[i:]) i = ips.index(last) + 1 addrs.extend(summarize_address_range(first, last)) return iter(_collapse_addresses_recursive(sorted( addrs + nets, key=_BaseNetwork._get_networks_key))) def get_mixed_type_key(obj): """Return a key suitable for sorting between networks and addresses. Address and Network objects are not sortable by default; they're fundamentally different so the expression IPv4Address('192.0.2.0') <= IPv4Network('192.0.2.0/24') doesn't make any sense. There are some times however, where you may wish to have ipaddress sort these for you anyway. If you need to do this, you can use this function as the key= argument to sorted(). Args: obj: either a Network or Address object. Returns: appropriate key. """ if isinstance(obj, _BaseNetwork): return obj._get_networks_key() elif isinstance(obj, _BaseAddress): return obj._get_address_key() return NotImplemented class _IPAddressBase: """The mother class.""" @property def exploded(self): """Return the longhand version of the IP address as a string.""" return self._explode_shorthand_ip_string() @property def compressed(self): """Return the shorthand version of the IP address as a string.""" return str(self) @property def version(self): msg = '%200s has no version specified' % (type(self),) raise NotImplementedError(msg) def _ip_int_from_prefix(self, prefixlen=None): """Turn the prefix length netmask into a int for comparison. Args: prefixlen: An integer, the prefix length. Returns: An integer. """ if prefixlen is None: prefixlen = self._prefixlen return self._ALL_ONES ^ (self._ALL_ONES >> prefixlen) def _prefix_from_ip_int(self, ip_int, mask=32): """Return prefix length from the decimal netmask. Args: ip_int: An integer, the IP address. mask: The netmask. Defaults to 32. Returns: An integer, the prefix length. """ while mask: if ip_int & 1 == 1: break ip_int >>= 1 mask -= 1 return mask def _ip_string_from_prefix(self, prefixlen=None): """Turn a prefix length into a dotted decimal string. Args: prefixlen: An integer, the netmask prefix length. Returns: A string, the dotted decimal netmask string. """ if not prefixlen: prefixlen = self._prefixlen return self._string_from_ip_int(self._ip_int_from_prefix(prefixlen)) class _BaseAddress(_IPAddressBase): """A generic IP object. This IP class contains the version independent methods which are used by single IP addresses. """ def __init__(self, address): if (not isinstance(address, bytes) and '/' in str(address)): raise AddressValueError("Unexpected '/' in %r" % address) def __index__(self): return self._ip def __int__(self): return self._ip def __eq__(self, other): try: return (self._ip == other._ip and self._version == other._version) except AttributeError: return NotImplemented def __ne__(self, other): eq = self.__eq__(other) if eq is NotImplemented: return NotImplemented return not eq def __le__(self, other): gt = self.__gt__(other) if gt is NotImplemented: return NotImplemented return not gt def __ge__(self, other): lt = self.__lt__(other) if lt is NotImplemented: return NotImplemented return not lt def __lt__(self, other): if self._version != other._version: raise TypeError('%s and %s are not of the same version' % ( self, other)) if not isinstance(other, _BaseAddress): raise TypeError('%s and %s are not of the same type' % ( self, other)) if self._ip != other._ip: return self._ip < other._ip return False def __gt__(self, other): if self._version != other._version: raise TypeError('%s and %s are not of the same version' % ( self, other)) if not isinstance(other, _BaseAddress): raise TypeError('%s and %s are not of the same type' % ( self, other)) if self._ip != other._ip: return self._ip > other._ip return False # Shorthand for Integer addition and subtraction. This is not # meant to ever support addition/subtraction of addresses. def __add__(self, other): if not isinstance(other, int): return NotImplemented return self.__class__(int(self) + other) def __sub__(self, other): if not isinstance(other, int): return NotImplemented return self.__class__(int(self) - other) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, str(self)) def __str__(self): return str(self._string_from_ip_int(self._ip)) def __hash__(self): return hash(hex(int(self._ip))) def _get_address_key(self): return (self._version, self) class _BaseNetwork(_IPAddressBase): """A generic IP network object. This IP class contains the version independent methods which are used by networks. """ def __init__(self, address): self._cache = {} def __index__(self): return int(self.network_address) ^ self.prefixlen def __int__(self): return int(self.network_address) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, str(self)) def __str__(self): return '%s/%d' % (self.network_address, self.prefixlen) def hosts(self): """Generate Iterator over usable hosts in a network. This is like __iter__ except it doesn't return the network or broadcast addresses. """ cur = int(self.network_address) + 1 bcast = int(self.broadcast_address) - 1 while cur <= bcast: cur += 1 yield self._address_class(cur - 1) def __iter__(self): cur = int(self.network_address) bcast = int(self.broadcast_address) while cur <= bcast: cur += 1 yield self._address_class(cur - 1) def __getitem__(self, n): network = int(self.network_address) broadcast = int(self.broadcast_address) if n >= 0: if network + n > broadcast: raise IndexError return self._address_class(network + n) else: n += 1 if broadcast + n < network: raise IndexError return self._address_class(broadcast + n) def __lt__(self, other): if self._version != other._version: raise TypeError('%s and %s are not of the same version' % ( self, other)) if not isinstance(other, _BaseNetwork): raise TypeError('%s and %s are not of the same type' % ( self, other)) if self.network_address != other.network_address: return self.network_address < other.network_address if self.netmask != other.netmask: return self.netmask < other.netmask return False def __gt__(self, other): if self._version != other._version: raise TypeError('%s and %s are not of the same version' % ( self, other)) if not isinstance(other, _BaseNetwork): raise TypeError('%s and %s are not of the same type' % ( self, other)) if self.network_address != other.network_address: return self.network_address > other.network_address if self.netmask != other.netmask: return self.netmask > other.netmask return False def __le__(self, other): gt = self.__gt__(other) if gt is NotImplemented: return NotImplemented return not gt def __ge__(self, other): lt = self.__lt__(other) if lt is NotImplemented: return NotImplemented return not lt def __eq__(self, other): if not isinstance(other, _BaseNetwork): raise TypeError('%s and %s are not of the same type' % ( self, other)) return (self._version == other._version and self.network_address == other.network_address and int(self.netmask) == int(other.netmask)) def __ne__(self, other): eq = self.__eq__(other) if eq is NotImplemented: return NotImplemented return not eq def __hash__(self): return hash(int(self.network_address) ^ int(self.netmask)) def __contains__(self, other): # always false if one is v4 and the other is v6. if self._version != other._version: return False # dealing with another network. if isinstance(other, _BaseNetwork): return False # dealing with another address else: # address return (int(self.network_address) <= int(other._ip) <= int(self.broadcast_address)) def overlaps(self, other): """Tell if self is partly contained in other.""" return self.network_address in other or ( self.broadcast_address in other or ( other.network_address in self or ( other.broadcast_address in self))) @property def broadcast_address(self): x = self._cache.get('broadcast_address') if x is None: x = self._address_class(int(self.network_address) | int(self.hostmask)) self._cache['broadcast_address'] = x return x @property def hostmask(self): x = self._cache.get('hostmask') if x is None: x = self._address_class(int(self.netmask) ^ self._ALL_ONES) self._cache['hostmask'] = x return x @property def with_prefixlen(self): return '%s/%d' % (self.network_address, self._prefixlen) @property def with_netmask(self): return '%s/%s' % (self.network_address, self.netmask) @property def with_hostmask(self): return '%s/%s' % (self.network_address, self.hostmask) @property def num_addresses(self): """Number of hosts in the current subnet.""" return int(self.broadcast_address) - int(self.network_address) + 1 @property def _address_class(self): # Returning bare address objects (rather than interfaces) allows for # more consistent behaviour across the network address, broadcast # address and individual host addresses. msg = '%200s has no associated address class' % (type(self),) raise NotImplementedError(msg) @property def prefixlen(self): return self._prefixlen def address_exclude(self, other): """Remove an address from a larger block. For example: addr1 = ip_network('192.0.2.0/28') addr2 = ip_network('192.0.2.1/32') addr1.address_exclude(addr2) = [IPv4Network('192.0.2.0/32'), IPv4Network('192.0.2.2/31'), IPv4Network('192.0.2.4/30'), IPv4Network('192.0.2.8/29')] or IPv6: addr1 = ip_network('2001:db8::1/32') addr2 = ip_network('2001:db8::1/128') addr1.address_exclude(addr2) = [ip_network('2001:db8::1/128'), ip_network('2001:db8::2/127'), ip_network('2001:db8::4/126'), ip_network('2001:db8::8/125'), ... ip_network('2001:db8:8000::/33')] Args: other: An IPv4Network or IPv6Network object of the same type. Returns: An iterator of the the IPv(4|6)Network objects which is self minus other. Raises: TypeError: If self and other are of difffering address versions, or if other is not a network object. ValueError: If other is not completely contained by self. """ if not self._version == other._version: raise TypeError("%s and %s are not of the same version" % ( self, other)) if not isinstance(other, _BaseNetwork): raise TypeError("%s is not a network object" % other) if not (other.network_address >= self.network_address and other.broadcast_address <= self.broadcast_address): raise ValueError('%s not contained in %s' % (other, self)) if other == self: raise StopIteration # Make sure we're comparing the network of other. other = other.__class__('%s/%s' % (other.network_address, other.prefixlen)) s1, s2 = self.subnets() while s1 != other and s2 != other: if (other.network_address >= s1.network_address and other.broadcast_address <= s1.broadcast_address): yield s2 s1, s2 = s1.subnets() elif (other.network_address >= s2.network_address and other.broadcast_address <= s2.broadcast_address): yield s1 s1, s2 = s2.subnets() else: # If we got here, there's a bug somewhere. raise AssertionError('Error performing exclusion: ' 's1: %s s2: %s other: %s' % (s1, s2, other)) if s1 == other: yield s2 elif s2 == other: yield s1 else: # If we got here, there's a bug somewhere. raise AssertionError('Error performing exclusion: ' 's1: %s s2: %s other: %s' % (s1, s2, other)) def compare_networks(self, other): """Compare two IP objects. This is only concerned about the comparison of the integer representation of the network addresses. This means that the host bits aren't considered at all in this method. If you want to compare host bits, you can easily enough do a 'HostA._ip < HostB._ip' Args: other: An IP object. Returns: If the IP versions of self and other are the same, returns: -1 if self < other: eg: IPv4Network('192.0.2.0/25') < IPv4Network('192.0.2.128/25') IPv6Network('2001:db8::1000/124') < IPv6Network('2001:db8::2000/124') 0 if self == other eg: IPv4Network('192.0.2.0/24') == IPv4Network('192.0.2.0/24') IPv6Network('2001:db8::1000/124') == IPv6Network('2001:db8::1000/124') 1 if self > other eg: IPv4Network('192.0.2.128/25') > IPv4Network('192.0.2.0/25') IPv6Network('2001:db8::2000/124') > IPv6Network('2001:db8::1000/124') Raises: TypeError if the IP versions are different. """ # does this need to raise a ValueError? if self._version != other._version: raise TypeError('%s and %s are not of the same type' % ( self, other)) # self._version == other._version below here: if self.network_address < other.network_address: return -1 if self.network_address > other.network_address: return 1 # self.network_address == other.network_address below here: if self.netmask < other.netmask: return -1 if self.netmask > other.netmask: return 1 return 0 def _get_networks_key(self): """Network-only key function. Returns an object that identifies this address' network and netmask. This function is a suitable "key" argument for sorted() and list.sort(). """ return (self._version, self.network_address, self.netmask) def subnets(self, prefixlen_diff=1, new_prefix=None): """The subnets which join to make the current subnet. In the case that self contains only one IP (self._prefixlen == 32 for IPv4 or self._prefixlen == 128 for IPv6), yield an iterator with just ourself. Args: prefixlen_diff: An integer, the amount the prefix length should be increased by. This should not be set if new_prefix is also set. new_prefix: The desired new prefix length. This must be a larger number (smaller prefix) than the existing prefix. This should not be set if prefixlen_diff is also set. Returns: An iterator of IPv(4|6) objects. Raises: ValueError: The prefixlen_diff is too small or too large. OR prefixlen_diff and new_prefix are both set or new_prefix is a smaller number than the current prefix (smaller number means a larger network) """ if self._prefixlen == self._max_prefixlen: yield self return if new_prefix is not None: if new_prefix < self._prefixlen: raise ValueError('new prefix must be longer') if prefixlen_diff != 1: raise ValueError('cannot set prefixlen_diff and new_prefix') prefixlen_diff = new_prefix - self._prefixlen if prefixlen_diff < 0: raise ValueError('prefix length diff must be > 0') new_prefixlen = self._prefixlen + prefixlen_diff if not self._is_valid_netmask(str(new_prefixlen)): raise ValueError( 'prefix length diff %d is invalid for netblock %s' % ( new_prefixlen, self)) first = self.__class__('%s/%s' % (self.network_address, self._prefixlen + prefixlen_diff)) yield first current = first while True: broadcast = current.broadcast_address if broadcast == self.broadcast_address: return new_addr = self._address_class(int(broadcast) + 1) current = self.__class__('%s/%s' % (new_addr, new_prefixlen)) yield current def supernet(self, prefixlen_diff=1, new_prefix=None): """The supernet containing the current network. Args: prefixlen_diff: An integer, the amount the prefix length of the network should be decreased by. For example, given a /24 network and a prefixlen_diff of 3, a supernet with a /21 netmask is returned. Returns: An IPv4 network object. Raises: ValueError: If self.prefixlen - prefixlen_diff < 0. I.e., you have a negative prefix length. OR If prefixlen_diff and new_prefix are both set or new_prefix is a larger number than the current prefix (larger number means a smaller network) """ if self._prefixlen == 0: return self if new_prefix is not None: if new_prefix > self._prefixlen: raise ValueError('new prefix must be shorter') if prefixlen_diff != 1: raise ValueError('cannot set prefixlen_diff and new_prefix') prefixlen_diff = self._prefixlen - new_prefix if self.prefixlen - prefixlen_diff < 0: raise ValueError( 'current prefixlen is %d, cannot have a prefixlen_diff of %d' % (self.prefixlen, prefixlen_diff)) # TODO (pmoody): optimize this. t = self.__class__('%s/%d' % (self.network_address, self.prefixlen - prefixlen_diff), strict=False) return t.__class__('%s/%d' % (t.network_address, t.prefixlen)) class _BaseV4: """Base IPv4 object. The following methods are used by IPv4 objects in both single IP addresses and networks. """ # Equivalent to 255.255.255.255 or 32 bits of 1's. _ALL_ONES = (2**IPV4LENGTH) - 1 _DECIMAL_DIGITS = frozenset('0123456789') # the valid octets for host and netmasks. only useful for IPv4. _valid_mask_octets = set((255, 254, 252, 248, 240, 224, 192, 128, 0)) def __init__(self, address): self._version = 4 self._max_prefixlen = IPV4LENGTH def _explode_shorthand_ip_string(self): return str(self) def _ip_int_from_string(self, ip_str): """Turn the given IP string into an integer for comparison. Args: ip_str: A string, the IP ip_str. Returns: The IP ip_str as an integer. Raises: AddressValueError: if ip_str isn't a valid IPv4 Address. """ if not ip_str: raise AddressValueError('Address cannot be empty') octets = ip_str.split('.') if len(octets) != 4: raise AddressValueError("Expected 4 octets in %r" % ip_str) packed_ip = 0 for oc in octets: try: packed_ip = (packed_ip << 8) | self._parse_octet(oc) except ValueError as exc: raise AddressValueError("%s in %r" % (exc, ip_str)) from None return packed_ip def _parse_octet(self, octet_str): """Convert a decimal octet into an integer. Args: octet_str: A string, the number to parse. Returns: The octet as an integer. Raises: ValueError: if the octet isn't strictly a decimal from [0..255]. """ if not octet_str: raise ValueError("Empty octet not permitted") # Whitelist the characters, since int() allows a lot of bizarre stuff. if not self._DECIMAL_DIGITS.issuperset(octet_str): raise ValueError("Only decimal digits permitted in %r" % octet_str) # Convert to integer (we know digits are legal) octet_int = int(octet_str, 10) # Any octets that look like they *might* be written in octal, # and which don't look exactly the same in both octal and # decimal are rejected as ambiguous if octet_int > 7 and octet_str[0] == '0': raise ValueError("Ambiguous leading zero in %r not permitted" % octet_str) if octet_int > 255: raise ValueError("Octet %d > 255 not permitted" % octet_int) return octet_int def _string_from_ip_int(self, ip_int): """Turns a 32-bit integer into dotted decimal notation. Args: ip_int: An integer, the IP address. Returns: The IP address as a string in dotted decimal notation. """ octets = [] for _ in range(4): octets.insert(0, str(ip_int & 0xFF)) ip_int >>= 8 return '.'.join(octets) def _is_valid_netmask(self, netmask): """Verify that the netmask is valid. Args: netmask: A string, either a prefix or dotted decimal netmask. Returns: A boolean, True if the prefix represents a valid IPv4 netmask. """ mask = netmask.split('.') if len(mask) == 4: for x in mask: try: if int(x) in self._valid_mask_octets: continue except ValueError: pass # Found something that isn't an integer or isn't valid return False if [y for idx, y in enumerate(mask) if idx > 0 and y > mask[idx - 1]]: return False return True try: netmask = int(netmask) except ValueError: return False return 0 <= netmask <= self._max_prefixlen def _is_hostmask(self, ip_str): """Test if the IP string is a hostmask (rather than a netmask). Args: ip_str: A string, the potential hostmask. Returns: A boolean, True if the IP string is a hostmask. """ bits = ip_str.split('.') try: parts = [int(x) for x in bits if int(x) in self._valid_mask_octets] except ValueError: return False if len(parts) != len(bits): return False if parts[0] < parts[-1]: return True return False @property def max_prefixlen(self): return self._max_prefixlen @property def version(self): return self._version @property def is_reserved(self): """Test if the address is otherwise IETF reserved. Returns: A boolean, True if the address is within the reserved IPv4 Network range. """ reserved_network = IPv4Network('240.0.0.0/4') if isinstance(self, _BaseAddress): return self in reserved_network return (self.network_address in reserved_network and self.broadcast_address in reserved_network) @property def is_private(self): """Test if this address is allocated for private networks. Returns: A boolean, True if the address is reserved per RFC 1918. """ private_10 = IPv4Network('10.0.0.0/8') private_172 = IPv4Network('172.16.0.0/12') private_192 = IPv4Network('192.168.0.0/16') if isinstance(self, _BaseAddress): return (self in private_10 or self in private_172 or self in private_192) else: return ((self.network_address in private_10 and self.broadcast_address in private_10) or (self.network_address in private_172 and self.broadcast_address in private_172) or (self.network_address in private_192 and self.broadcast_address in private_192)) @property def is_multicast(self): """Test if the address is reserved for multicast use. Returns: A boolean, True if the address is multicast. See RFC 3171 for details. """ multicast_network = IPv4Network('224.0.0.0/4') if isinstance(self, _BaseAddress): return self in IPv4Network('224.0.0.0/4') return (self.network_address in multicast_network and self.broadcast_address in multicast_network) @property def is_unspecified(self): """Test if the address is unspecified. Returns: A boolean, True if this is the unspecified address as defined in RFC 5735 3. """ unspecified_address = IPv4Address('0.0.0.0') if isinstance(self, _BaseAddress): return self == unspecified_address return (self.network_address == self.broadcast_address == unspecified_address) @property def is_loopback(self): """Test if the address is a loopback address. Returns: A boolean, True if the address is a loopback per RFC 3330. """ loopback_address = IPv4Network('127.0.0.0/8') if isinstance(self, _BaseAddress): return self in loopback_address return (self.network_address in loopback_address and self.broadcast_address in loopback_address) @property def is_link_local(self): """Test if the address is reserved for link-local. Returns: A boolean, True if the address is link-local per RFC 3927. """ linklocal_network = IPv4Network('169.254.0.0/16') if isinstance(self, _BaseAddress): return self in linklocal_network return (self.network_address in linklocal_network and self.broadcast_address in linklocal_network) class IPv4Address(_BaseV4, _BaseAddress): """Represent and manipulate single IPv4 Addresses.""" def __init__(self, address): """ Args: address: A string or integer representing the IP Additionally, an integer can be passed, so IPv4Address('192.0.2.1') == IPv4Address(3221225985). or, more generally IPv4Address(int(IPv4Address('192.0.2.1'))) == IPv4Address('192.0.2.1') Raises: AddressValueError: If ipaddress isn't a valid IPv4 address. """ _BaseAddress.__init__(self, address) _BaseV4.__init__(self, address) # Efficient constructor from integer. if isinstance(address, int): self._ip = address if address < 0 or address > self._ALL_ONES: raise AddressValueError(address) return # Constructing from a packed address if isinstance(address, bytes): if len(address) != 4: msg = "Packed address %r must be exactly 4 bytes" raise AddressValueError(msg % address) self._ip = struct.unpack('!I', address)[0] return # Assume input argument to be string or any object representation # which converts into a formatted IP string. addr_str = str(address) self._ip = self._ip_int_from_string(addr_str) @property def packed(self): """The binary representation of this address.""" return v4_int_to_packed(self._ip) class IPv4Interface(IPv4Address): def __init__(self, address): if isinstance(address, (bytes, int)): IPv4Address.__init__(self, address) self.network = IPv4Network(self._ip) self._prefixlen = self._max_prefixlen return addr = _split_optional_netmask(address) IPv4Address.__init__(self, addr[0]) self.network = IPv4Network(address, strict=False) self._prefixlen = self.network._prefixlen self.netmask = self.network.netmask self.hostmask = self.network.hostmask def __str__(self): return '%s/%d' % (self._string_from_ip_int(self._ip), self.network.prefixlen) def __eq__(self, other): try: return (IPv4Address.__eq__(self, other) and self.network == other.network) except AttributeError: return NotImplemented def __hash__(self): return self._ip ^ self._prefixlen ^ int(self.network.network_address) @property def prefixlen(self): return self._prefixlen @property def ip(self): return IPv4Address(self._ip) @property def with_prefixlen(self): return self @property def with_netmask(self): return '%s/%s' % (self._string_from_ip_int(self._ip), self.netmask) @property def with_hostmask(self): return '%s/%s' % (self._string_from_ip_int(self._ip), self.hostmask) class IPv4Network(_BaseV4, _BaseNetwork): """This class represents and manipulates 32-bit IPv4 network + addresses.. Attributes: [examples for IPv4Network('192.0.2.0/27')] .network_address: IPv4Address('192.0.2.0') .hostmask: IPv4Address('0.0.0.31') .broadcast_address: IPv4Address('192.0.2.32') .netmask: IPv4Address('255.255.255.224') .prefixlen: 27 """ # Class to use when creating address objects _address_class = IPv4Address def __init__(self, address, strict=True): """Instantiate a new IPv4 network object. Args: address: A string or integer representing the IP [& network]. '192.0.2.0/24' '192.0.2.0/255.255.255.0' '192.0.0.2/0.0.0.255' are all functionally the same in IPv4. Similarly, '192.0.2.1' '192.0.2.1/255.255.255.255' '192.0.2.1/32' are also functionaly equivalent. That is to say, failing to provide a subnetmask will create an object with a mask of /32. If the mask (portion after the / in the argument) is given in dotted quad form, it is treated as a netmask if it starts with a non-zero field (e.g. /255.0.0.0 == /8) and as a hostmask if it starts with a zero field (e.g. 0.255.255.255 == /8), with the single exception of an all-zero mask which is treated as a netmask == /0. If no mask is given, a default of /32 is used. Additionally, an integer can be passed, so IPv4Network('192.0.2.1') == IPv4Network(3221225985) or, more generally IPv4Interface(int(IPv4Interface('192.0.2.1'))) == IPv4Interface('192.0.2.1') Raises: AddressValueError: If ipaddress isn't a valid IPv4 address. NetmaskValueError: If the netmask isn't valid for an IPv4 address. ValueError: If strict is True and a network address is not supplied. """ _BaseV4.__init__(self, address) _BaseNetwork.__init__(self, address) # Constructing from a packed address if isinstance(address, bytes): if len(address) != 4: msg = "Packed address %r must be exactly 4 bytes" raise AddressValueError(msg % address) self.network_address = IPv4Address( struct.unpack('!I', address)[0]) self._prefixlen = self._max_prefixlen self.netmask = IPv4Address(self._ALL_ONES) #fixme: address/network test here return # Efficient constructor from integer. if isinstance(address, int): self._prefixlen = self._max_prefixlen self.netmask = IPv4Address(self._ALL_ONES) if address < 0 or address > self._ALL_ONES: raise AddressValueError(address) self.network_address = IPv4Address(address) #fixme: address/network test here. return # Assume input argument to be string or any object representation # which converts into a formatted IP prefix string. addr = _split_optional_netmask(address) self.network_address = IPv4Address(self._ip_int_from_string(addr[0])) if len(addr) == 2: mask = addr[1].split('.') if len(mask) == 4: # We have dotted decimal netmask. if self._is_valid_netmask(addr[1]): self.netmask = IPv4Address(self._ip_int_from_string( addr[1])) elif self._is_hostmask(addr[1]): self.netmask = IPv4Address( self._ip_int_from_string(addr[1]) ^ self._ALL_ONES) else: raise NetmaskValueError('%r is not a valid netmask' % addr[1]) self._prefixlen = self._prefix_from_ip_int(int(self.netmask)) else: # We have a netmask in prefix length form. if not self._is_valid_netmask(addr[1]): raise NetmaskValueError('%r is not a valid netmask' % addr[1]) self._prefixlen = int(addr[1]) self.netmask = IPv4Address(self._ip_int_from_prefix( self._prefixlen)) else: self._prefixlen = self._max_prefixlen self.netmask = IPv4Address(self._ip_int_from_prefix( self._prefixlen)) if strict: if (IPv4Address(int(self.network_address) & int(self.netmask)) != self.network_address): raise ValueError('%s has host bits set' % self) self.network_address = IPv4Address(int(self.network_address) & int(self.netmask)) if self._prefixlen == (self._max_prefixlen - 1): self.hosts = self.__iter__ class _BaseV6: """Base IPv6 object. The following methods are used by IPv6 objects in both single IP addresses and networks. """ _ALL_ONES = (2**IPV6LENGTH) - 1 _HEXTET_COUNT = 8 _HEX_DIGITS = frozenset('0123456789ABCDEFabcdef') def __init__(self, address): self._version = 6 self._max_prefixlen = IPV6LENGTH def _ip_int_from_string(self, ip_str): """Turn an IPv6 ip_str into an integer. Args: ip_str: A string, the IPv6 ip_str. Returns: An int, the IPv6 address Raises: AddressValueError: if ip_str isn't a valid IPv6 Address. """ if not ip_str: raise AddressValueError('Address cannot be empty') parts = ip_str.split(':') # An IPv6 address needs at least 2 colons (3 parts). _min_parts = 3 if len(parts) < _min_parts: msg = "At least %d parts expected in %r" % (_min_parts, ip_str) raise AddressValueError(msg) # If the address has an IPv4-style suffix, convert it to hexadecimal. if '.' in parts[-1]: try: ipv4_int = IPv4Address(parts.pop())._ip except AddressValueError as exc: raise AddressValueError("%s in %r" % (exc, ip_str)) from None parts.append('%x' % ((ipv4_int >> 16) & 0xFFFF)) parts.append('%x' % (ipv4_int & 0xFFFF)) # An IPv6 address can't have more than 8 colons (9 parts). # The extra colon comes from using the "::" notation for a single # leading or trailing zero part. _max_parts = self._HEXTET_COUNT + 1 if len(parts) > _max_parts: msg = "At most %d colons permitted in %r" % (_max_parts-1, ip_str) raise AddressValueError(msg) # Disregarding the endpoints, find '::' with nothing in between. # This indicates that a run of zeroes has been skipped. try: skip_index, = ( [i for i in range(1, len(parts) - 1) if not parts[i]] or [None]) except ValueError: # Can't have more than one '::' msg = "At most one '::' permitted in %r" % ip_str raise AddressValueError(msg) from None # parts_hi is the number of parts to copy from above/before the '::' # parts_lo is the number of parts to copy from below/after the '::' if skip_index is not None: # If we found a '::', then check if it also covers the endpoints. parts_hi = skip_index parts_lo = len(parts) - skip_index - 1 if not parts[0]: parts_hi -= 1 if parts_hi: msg = "Leading ':' only permitted as part of '::' in %r" raise AddressValueError(msg % ip_str) # ^: requires ^:: if not parts[-1]: parts_lo -= 1 if parts_lo: msg = "Trailing ':' only permitted as part of '::' in %r" raise AddressValueError(msg % ip_str) # :$ requires ::$ parts_skipped = self._HEXTET_COUNT - (parts_hi + parts_lo) if parts_skipped < 1: msg = "Expected at most %d other parts with '::' in %r" raise AddressValueError(msg % (self._HEXTET_COUNT-1, ip_str)) else: # Otherwise, allocate the entire address to parts_hi. The # endpoints could still be empty, but _parse_hextet() will check # for that. if len(parts) != self._HEXTET_COUNT: msg = "Exactly %d parts expected without '::' in %r" raise AddressValueError(msg % (self._HEXTET_COUNT, ip_str)) if not parts[0]: msg = "Leading ':' only permitted as part of '::' in %r" raise AddressValueError(msg % ip_str) # ^: requires ^:: if not parts[-1]: msg = "Trailing ':' only permitted as part of '::' in %r" raise AddressValueError(msg % ip_str) # :$ requires ::$ parts_hi = len(parts) parts_lo = 0 parts_skipped = 0 try: # Now, parse the hextets into a 128-bit integer. ip_int = 0 for i in range(parts_hi): ip_int <<= 16 ip_int |= self._parse_hextet(parts[i]) ip_int <<= 16 * parts_skipped for i in range(-parts_lo, 0): ip_int <<= 16 ip_int |= self._parse_hextet(parts[i]) return ip_int except ValueError as exc: raise AddressValueError("%s in %r" % (exc, ip_str)) from None def _parse_hextet(self, hextet_str): """Convert an IPv6 hextet string into an integer. Args: hextet_str: A string, the number to parse. Returns: The hextet as an integer. Raises: ValueError: if the input isn't strictly a hex number from [0..FFFF]. """ # Whitelist the characters, since int() allows a lot of bizarre stuff. # Higher level wrappers convert these to more informative errors if not self._HEX_DIGITS.issuperset(hextet_str): raise ValueError("Only hex digits permitted in %r" % hextet_str) if len(hextet_str) > 4: msg = "At most 4 characters permitted in %r" raise ValueError(msg % hextet_str) hextet_int = int(hextet_str, 16) if hextet_int > 0xFFFF: # This is unreachable due to the string length check above raise ValueError("Part %d > 0xFFFF not permitted" % hextet_int) return hextet_int def _compress_hextets(self, hextets): """Compresses a list of hextets. Compresses a list of strings, replacing the longest continuous sequence of "0" in the list with "" and adding empty strings at the beginning or at the end of the string such that subsequently calling ":".join(hextets) will produce the compressed version of the IPv6 address. Args: hextets: A list of strings, the hextets to compress. Returns: A list of strings. """ best_doublecolon_start = -1 best_doublecolon_len = 0 doublecolon_start = -1 doublecolon_len = 0 for index in range(len(hextets)): if hextets[index] == '0': doublecolon_len += 1 if doublecolon_start == -1: # Start of a sequence of zeros. doublecolon_start = index if doublecolon_len > best_doublecolon_len: # This is the longest sequence of zeros so far. best_doublecolon_len = doublecolon_len best_doublecolon_start = doublecolon_start else: doublecolon_len = 0 doublecolon_start = -1 if best_doublecolon_len > 1: best_doublecolon_end = (best_doublecolon_start + best_doublecolon_len) # For zeros at the end of the address. if best_doublecolon_end == len(hextets): hextets += [''] hextets[best_doublecolon_start:best_doublecolon_end] = [''] # For zeros at the beginning of the address. if best_doublecolon_start == 0: hextets = [''] + hextets return hextets def _string_from_ip_int(self, ip_int=None): """Turns a 128-bit integer into hexadecimal notation. Args: ip_int: An integer, the IP address. Returns: A string, the hexadecimal representation of the address. Raises: ValueError: The address is bigger than 128 bits of all ones. """ if ip_int is None: ip_int = int(self._ip) if ip_int > self._ALL_ONES: raise ValueError('IPv6 address is too large') hex_str = '%032x' % ip_int hextets = [] for x in range(0, 32, 4): hextets.append('%x' % int(hex_str[x:x+4], 16)) hextets = self._compress_hextets(hextets) return ':'.join(hextets) def _explode_shorthand_ip_string(self): """Expand a shortened IPv6 address. Args: ip_str: A string, the IPv6 address. Returns: A string, the expanded IPv6 address. """ if isinstance(self, IPv6Network): ip_str = str(self.network_address) elif isinstance(self, IPv6Interface): ip_str = str(self.ip) else: ip_str = str(self) ip_int = self._ip_int_from_string(ip_str) parts = [] for i in range(self._HEXTET_COUNT): parts.append('%04x' % (ip_int & 0xFFFF)) ip_int >>= 16 parts.reverse() if isinstance(self, (_BaseNetwork, IPv6Interface)): return '%s/%d' % (':'.join(parts), self.prefixlen) return ':'.join(parts) @property def max_prefixlen(self): return self._max_prefixlen @property def version(self): return self._version @property def is_multicast(self): """Test if the address is reserved for multicast use. Returns: A boolean, True if the address is a multicast address. See RFC 2373 2.7 for details. """ multicast_network = IPv6Network('ff00::/8') if isinstance(self, _BaseAddress): return self in multicast_network return (self.network_address in multicast_network and self.broadcast_address in multicast_network) @property def is_reserved(self): """Test if the address is otherwise IETF reserved. Returns: A boolean, True if the address is within one of the reserved IPv6 Network ranges. """ reserved_networks = [IPv6Network('::/8'), IPv6Network('100::/8'), IPv6Network('200::/7'), IPv6Network('400::/6'), IPv6Network('800::/5'), IPv6Network('1000::/4'), IPv6Network('4000::/3'), IPv6Network('6000::/3'), IPv6Network('8000::/3'), IPv6Network('A000::/3'), IPv6Network('C000::/3'), IPv6Network('E000::/4'), IPv6Network('F000::/5'), IPv6Network('F800::/6'), IPv6Network('FE00::/9')] if isinstance(self, _BaseAddress): return len([x for x in reserved_networks if self in x]) > 0 return len([x for x in reserved_networks if self.network_address in x and self.broadcast_address in x]) > 0 @property def is_link_local(self): """Test if the address is reserved for link-local. Returns: A boolean, True if the address is reserved per RFC 4291. """ linklocal_network = IPv6Network('fe80::/10') if isinstance(self, _BaseAddress): return self in linklocal_network return (self.network_address in linklocal_network and self.broadcast_address in linklocal_network) @property def is_site_local(self): """Test if the address is reserved for site-local. Note that the site-local address space has been deprecated by RFC 3879. Use is_private to test if this address is in the space of unique local addresses as defined by RFC 4193. Returns: A boolean, True if the address is reserved per RFC 3513 2.5.6. """ sitelocal_network = IPv6Network('fec0::/10') if isinstance(self, _BaseAddress): return self in sitelocal_network return (self.network_address in sitelocal_network and self.broadcast_address in sitelocal_network) @property def is_private(self): """Test if this address is allocated for private networks. Returns: A boolean, True if the address is reserved per RFC 4193. """ private_network = IPv6Network('fc00::/7') if isinstance(self, _BaseAddress): return self in private_network return (self.network_address in private_network and self.broadcast_address in private_network) @property def ipv4_mapped(self): """Return the IPv4 mapped address. Returns: If the IPv6 address is a v4 mapped address, return the IPv4 mapped address. Return None otherwise. """ if (self._ip >> 32) != 0xFFFF: return None return IPv4Address(self._ip & 0xFFFFFFFF) @property def teredo(self): """Tuple of embedded teredo IPs. Returns: Tuple of the (server, client) IPs or None if the address doesn't appear to be a teredo address (doesn't start with 2001::/32) """ if (self._ip >> 96) != 0x20010000: return None return (IPv4Address((self._ip >> 64) & 0xFFFFFFFF), IPv4Address(~self._ip & 0xFFFFFFFF)) @property def sixtofour(self): """Return the IPv4 6to4 embedded address. Returns: The IPv4 6to4-embedded address if present or None if the address doesn't appear to contain a 6to4 embedded address. """ if (self._ip >> 112) != 0x2002: return None return IPv4Address((self._ip >> 80) & 0xFFFFFFFF) @property def is_unspecified(self): """Test if the address is unspecified. Returns: A boolean, True if this is the unspecified address as defined in RFC 2373 2.5.2. """ if isinstance(self, (IPv6Network, IPv6Interface)): return int(self.network_address) == 0 and getattr( self, '_prefixlen', 128) == 128 return self._ip == 0 @property def is_loopback(self): """Test if the address is a loopback address. Returns: A boolean, True if the address is a loopback address as defined in RFC 2373 2.5.3. """ if isinstance(self, IPv6Network): return int(self) == 1 and getattr( self, '_prefixlen', 128) == 128 elif isinstance(self, IPv6Interface): return int(self.network.network_address) == 1 and getattr( self, '_prefixlen', 128) == 128 return self._ip == 1 class IPv6Address(_BaseV6, _BaseAddress): """Represent and manipulate single IPv6 Addresses.""" def __init__(self, address): """Instantiate a new IPv6 address object. Args: address: A string or integer representing the IP Additionally, an integer can be passed, so IPv6Address('2001:db8::') == IPv6Address(42540766411282592856903984951653826560) or, more generally IPv6Address(int(IPv6Address('2001:db8::'))) == IPv6Address('2001:db8::') Raises: AddressValueError: If address isn't a valid IPv6 address. """ _BaseAddress.__init__(self, address) _BaseV6.__init__(self, address) # Efficient constructor from integer. if isinstance(address, int): self._ip = address if address < 0 or address > self._ALL_ONES: raise AddressValueError(address) return # Constructing from a packed address if isinstance(address, bytes): if len(address) != 16: msg = "Packed address %r must be exactly 16 bytes" raise AddressValueError(msg % address) tmp = struct.unpack('!QQ', address) self._ip = (tmp[0] << 64) | tmp[1] return # Assume input argument to be string or any object representation # which converts into a formatted IP string. addr_str = str(address) self._ip = self._ip_int_from_string(addr_str) @property def packed(self): """The binary representation of this address.""" return v6_int_to_packed(self._ip) class IPv6Interface(IPv6Address): def __init__(self, address): if isinstance(address, (bytes, int)): IPv6Address.__init__(self, address) self.network = IPv6Network(self._ip) self._prefixlen = self._max_prefixlen return addr = _split_optional_netmask(address) IPv6Address.__init__(self, addr[0]) self.network = IPv6Network(address, strict=False) self.netmask = self.network.netmask self._prefixlen = self.network._prefixlen self.hostmask = self.network.hostmask def __str__(self): return '%s/%d' % (self._string_from_ip_int(self._ip), self.network.prefixlen) def __eq__(self, other): try: return (IPv6Address.__eq__(self, other) and self.network == other.network) except AttributeError: return NotImplemented def __hash__(self): return self._ip ^ self._prefixlen ^ int(self.network.network_address) @property def prefixlen(self): return self._prefixlen @property def ip(self): return IPv6Address(self._ip) @property def with_prefixlen(self): return self @property def with_netmask(self): return self.with_prefixlen @property def with_hostmask(self): return '%s/%s' % (self._string_from_ip_int(self._ip), self.hostmask) class IPv6Network(_BaseV6, _BaseNetwork): """This class represents and manipulates 128-bit IPv6 networks. Attributes: [examples for IPv6('2001:db8::1000/124')] .network_address: IPv6Address('2001:db8::1000') .hostmask: IPv6Address('::f') .broadcast_address: IPv6Address('2001:db8::100f') .netmask: IPv6Address('ffff:ffff:ffff:ffff:ffff:ffff:ffff:fff0') .prefixlen: 124 """ # Class to use when creating address objects _address_class = IPv6Address def __init__(self, address, strict=True): """Instantiate a new IPv6 Network object. Args: address: A string or integer representing the IPv6 network or the IP and prefix/netmask. '2001:db8::/128' '2001:db8:0000:0000:0000:0000:0000:0000/128' '2001:db8::' are all functionally the same in IPv6. That is to say, failing to provide a subnetmask will create an object with a mask of /128. Additionally, an integer can be passed, so IPv6Network('2001:db8::') == IPv6Network(42540766411282592856903984951653826560) or, more generally IPv6Network(int(IPv6Network('2001:db8::'))) == IPv6Network('2001:db8::') strict: A boolean. If true, ensure that we have been passed A true network address, eg, 2001:db8::1000/124 and not an IP address on a network, eg, 2001:db8::1/124. Raises: AddressValueError: If address isn't a valid IPv6 address. NetmaskValueError: If the netmask isn't valid for an IPv6 address. ValueError: If strict was True and a network address was not supplied. """ _BaseV6.__init__(self, address) _BaseNetwork.__init__(self, address) # Efficient constructor from integer. if isinstance(address, int): if address < 0 or address > self._ALL_ONES: raise AddressValueError(address) self.network_address = IPv6Address(address) self._prefixlen = self._max_prefixlen self.netmask = IPv6Address(self._ALL_ONES) return # Constructing from a packed address if isinstance(address, bytes): if len(address) != 16: msg = "Packed address %r must be exactly 16 bytes" raise AddressValueError(msg % address) tmp = struct.unpack('!QQ', address) self.network_address = IPv6Address((tmp[0] << 64) | tmp[1]) self._prefixlen = self._max_prefixlen self.netmask = IPv6Address(self._ALL_ONES) return # Assume input argument to be string or any object representation # which converts into a formatted IP prefix string. addr = _split_optional_netmask(address) self.network_address = IPv6Address(self._ip_int_from_string(addr[0])) if len(addr) == 2: if self._is_valid_netmask(addr[1]): self._prefixlen = int(addr[1]) else: raise NetmaskValueError('%r is not a valid netmask' % addr[1]) else: self._prefixlen = self._max_prefixlen self.netmask = IPv6Address(self._ip_int_from_prefix(self._prefixlen)) if strict: if (IPv6Address(int(self.network_address) & int(self.netmask)) != self.network_address): raise ValueError('%s has host bits set' % self) self.network_address = IPv6Address(int(self.network_address) & int(self.netmask)) if self._prefixlen == (self._max_prefixlen - 1): self.hosts = self.__iter__ def _is_valid_netmask(self, prefixlen): """Verify that the netmask/prefixlen is valid. Args: prefixlen: A string, the netmask in prefix length format. Returns: A boolean, True if the prefix represents a valid IPv6 netmask. """ try: prefixlen = int(prefixlen) except ValueError: return False return 0 <= prefixlen <= self._max_prefixlen