import unittest, os from test import test_support import warnings warnings.filterwarnings( "ignore", category=DeprecationWarning, message=".*complex divmod.*are deprecated" ) from random import random # These tests ensure that complex math does the right thing class ComplexTest(unittest.TestCase): def assertAlmostEqual(self, a, b): if isinstance(a, complex): if isinstance(b, complex): unittest.TestCase.assertAlmostEqual(self, a.real, b.real) unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag) else: unittest.TestCase.assertAlmostEqual(self, a.real, b) unittest.TestCase.assertAlmostEqual(self, a.imag, 0.) else: if isinstance(b, complex): unittest.TestCase.assertAlmostEqual(self, a, b.real) unittest.TestCase.assertAlmostEqual(self, 0., b.imag) else: unittest.TestCase.assertAlmostEqual(self, a, b) def assertCloseAbs(self, x, y, eps=1e-9): """Return true iff floats x and y "are close\"""" # put the one with larger magnitude second if abs(x) > abs(y): x, y = y, x if y == 0: return abs(x) < eps if x == 0: return abs(y) < eps # check that relative difference < eps self.assert_(abs((x-y)/y) < eps) def assertClose(self, x, y, eps=1e-9): """Return true iff complexes x and y "are close\"""" self.assertCloseAbs(x.real, y.real, eps) self.assertCloseAbs(x.imag, y.imag, eps) def assertIs(self, a, b): self.assert_(a is b) def check_div(self, x, y): """Compute complex z=x*y, and check that z/x==y and z/y==x.""" z = x * y if x != 0: q = z / x self.assertClose(q, y) q = z.__truediv__(x) self.assertClose(q, y) if y != 0: q = z / y self.assertClose(q, x) q = z.__truediv__(y) self.assertClose(q, x) def test_truediv(self): simple_real = [float(i) for i in xrange(-5, 6)] simple_complex = [complex(x, y) for x in simple_real for y in simple_real] for x in simple_complex: for y in simple_complex: self.check_div(x, y) # A naive complex division algorithm (such as in 2.0) is very prone to # nonsense errors for these (overflows and underflows). self.check_div(complex(1e200, 1e200), 1+0j) self.check_div(complex(1e-200, 1e-200), 1+0j) # Just for fun. for i in xrange(100): self.check_div(complex(random(), random()), complex(random(), random())) self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j) # FIXME: The following currently crashes on Alpha # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j) def test_truediv(self): self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j) self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j) def test_floordiv(self): self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2) self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j) def test_richcompare(self): self.assertRaises(OverflowError, complex.__eq__, 1+1j, 1L<<10000) self.assertEqual(complex.__lt__(1+1j, None), NotImplemented) self.assertIs(complex.__eq__(1+1j, 1+1j), True) self.assertIs(complex.__eq__(1+1j, 2+2j), False) self.assertIs(complex.__ne__(1+1j, 1+1j), False) self.assertIs(complex.__ne__(1+1j, 2+2j), True) self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j) self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j) self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j) self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j) def test_mod(self): self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j) a = 3.33+4.43j try: a % 0 except ZeroDivisionError: pass else: self.fail("modulo parama can't be 0") def test_divmod(self): self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j) def test_pow(self): self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0) self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0) self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j) self.assertAlmostEqual(pow(1j, -1), 1/1j) self.assertAlmostEqual(pow(1j, 200), 1) self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j) a = 3.33+4.43j self.assertEqual(a ** 0j, 1) self.assertEqual(a ** 0.+0.j, 1) self.assertEqual(3j ** 0j, 1) self.assertEqual(3j ** 0, 1) try: 0j ** a except ZeroDivisionError: pass else: self.fail("should fail 0.0 to negative or complex power") try: 0j ** (3-2j) except ZeroDivisionError: pass else: self.fail("should fail 0.0 to negative or complex power") # The following is used to exercise certain code paths self.assertEqual(a ** 105, a ** 105) self.assertEqual(a ** -105, a ** -105) self.assertEqual(a ** -30, a ** -30) self.assertEqual(0.0j ** 0, 1) b = 5.1+2.3j self.assertRaises(ValueError, pow, a, b, 0) def test_boolcontext(self): for i in xrange(100): self.assert_(complex(random() + 1e-6, random() + 1e-6)) self.assert_(not complex(0.0, 0.0)) def test_conjugate(self): self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j) def test_constructor(self): class OS: def __init__(self, value): self.value = value def __complex__(self): return self.value class NS(object): def __init__(self, value): self.value = value def __complex__(self): return self.value self.assertEqual(complex(OS(1+10j)), 1+10j) self.assertEqual(complex(NS(1+10j)), 1+10j) self.assertRaises(TypeError, complex, OS(None)) self.assertRaises(TypeError, complex, NS(None)) self.assertAlmostEqual(complex("1+10j"), 1+10j) self.assertAlmostEqual(complex(10), 10+0j) self.assertAlmostEqual(complex(10.0), 10+0j) self.assertAlmostEqual(complex(10L), 10+0j) self.assertAlmostEqual(complex(10+0j), 10+0j) self.assertAlmostEqual(complex(1,10), 1+10j) self.assertAlmostEqual(complex(1,10L), 1+10j) self.assertAlmostEqual(complex(1,10.0), 1+10j) self.assertAlmostEqual(complex(1L,10), 1+10j) self.assertAlmostEqual(complex(1L,10L), 1+10j) self.assertAlmostEqual(complex(1L,10.0), 1+10j) self.assertAlmostEqual(complex(1.0,10), 1+10j) self.assertAlmostEqual(complex(1.0,10L), 1+10j) self.assertAlmostEqual(complex(1.0,10.0), 1+10j) self.assertAlmostEqual(complex(3.14+0j), 3.14+0j) self.assertAlmostEqual(complex(3.14), 3.14+0j) self.assertAlmostEqual(complex(314), 314.0+0j) self.assertAlmostEqual(complex(314L), 314.0+0j) self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j) self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j) self.assertAlmostEqual(complex(314, 0), 314.0+0j) self.assertAlmostEqual(complex(314L, 0L), 314.0+0j) self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j) self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j) self.assertAlmostEqual(complex(0j, 3.14), 3.14j) self.assertAlmostEqual(complex(0.0, 3.14), 3.14j) self.assertAlmostEqual(complex("1"), 1+0j) self.assertAlmostEqual(complex("1j"), 1j) self.assertAlmostEqual(complex(), 0) self.assertAlmostEqual(complex("-1"), -1) self.assertAlmostEqual(complex("+1"), +1) class complex2(complex): pass self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j) self.assertAlmostEqual(complex(real=17, imag=23), 17+23j) self.assertAlmostEqual(complex(real=17+23j), 17+23j) self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j) self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j) c = 3.14 + 1j self.assert_(complex(c) is c) del c self.assertRaises(TypeError, complex, "1", "1") self.assertRaises(TypeError, complex, 1, "1") self.assertEqual(complex(" 3.14+J "), 3.14+1j) if test_support.have_unicode: self.assertEqual(complex(unicode(" 3.14+J ")), 3.14+1j) # SF bug 543840: complex(string) accepts strings with \0 # Fixed in 2.3. self.assertRaises(ValueError, complex, '1+1j\0j') self.assertRaises(TypeError, int, 5+3j) self.assertRaises(TypeError, long, 5+3j) self.assertRaises(TypeError, float, 5+3j) self.assertRaises(ValueError, complex, "") self.assertRaises(TypeError, complex, None) self.assertRaises(ValueError, complex, "\0") self.assertRaises(TypeError, complex, "1", "2") self.assertRaises(TypeError, complex, "1", 42) self.assertRaises(TypeError, complex, 1, "2") self.assertRaises(ValueError, complex, "1+") self.assertRaises(ValueError, complex, "1+1j+1j") self.assertRaises(ValueError, complex, "--") if test_support.have_unicode: self.assertRaises(ValueError, complex, unicode("1"*500)) self.assertRaises(ValueError, complex, unicode("x")) class EvilExc(Exception): pass class evilcomplex: def __complex__(self): raise EvilExc self.assertRaises(EvilExc, complex, evilcomplex()) class float2: def __init__(self, value): self.value = value def __float__(self): return self.value self.assertAlmostEqual(complex(float2(42.)), 42) self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j) self.assertRaises(TypeError, complex, float2(None)) class complex0(complex): """Test usage of __complex__() when inheriting from 'complex'""" def __complex__(self): return 42j class complex1(complex): """Test usage of __complex__() with a __new__() method""" def __new__(self, value=0j): return complex.__new__(self, 2*value) def __complex__(self): return self class complex2(complex): """Make sure that __complex__() calls fail if anything other than a complex is returned""" def __complex__(self): return None self.assertAlmostEqual(complex(complex0(1j)), 42j) self.assertAlmostEqual(complex(complex1(1j)), 2j) self.assertRaises(TypeError, complex, complex2(1j)) def test_hash(self): for x in xrange(-30, 30): self.assertEqual(hash(x), hash(complex(x, 0))) x /= 3.0 # now check against floating point self.assertEqual(hash(x), hash(complex(x, 0.))) def test_abs(self): nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)] for num in nums: self.assertAlmostEqual((num.real**2 + num.imag**2) ** 0.5, abs(num)) def test_repr(self): self.assertEqual(repr(1+6j), '(1+6j)') self.assertEqual(repr(1-6j), '(1-6j)') self.assertNotEqual(repr(-(1+0j)), '(-1+-0j)') def test_neg(self): self.assertEqual(-(1+6j), -1-6j) def test_file(self): a = 3.33+4.43j b = 5.1+2.3j fo = None try: fo = open(test_support.TESTFN, "wb") print >>fo, a, b fo.close() fo = open(test_support.TESTFN, "rb") self.assertEqual(fo.read(), "%s %s\n" % (a, b)) finally: if (fo is not None) and (not fo.closed): fo.close() try: os.remove(test_support.TESTFN) except (OSError, IOError): pass def test_main(): test_support.run_unittest(ComplexTest) if __name__ == "__main__": test_main()