"""Unittests for heapq.""" from heapq import heappush, heappop, heapify, heapreplace, nlargest, nsmallest import random import unittest from test import test_support import sys def heapiter(heap): # An iterator returning a heap's elements, smallest-first. try: while 1: yield heappop(heap) except IndexError: pass class TestHeap(unittest.TestCase): def test_push_pop(self): # 1) Push 256 random numbers and pop them off, verifying all's OK. heap = [] data = [] self.check_invariant(heap) for i in range(256): item = random.random() data.append(item) heappush(heap, item) self.check_invariant(heap) results = [] while heap: item = heappop(heap) self.check_invariant(heap) results.append(item) data_sorted = data[:] data_sorted.sort() self.assertEqual(data_sorted, results) # 2) Check that the invariant holds for a sorted array self.check_invariant(results) def check_invariant(self, heap): # Check the heap invariant. for pos, item in enumerate(heap): if pos: # pos 0 has no parent parentpos = (pos-1) >> 1 self.assert_(heap[parentpos] <= item) def test_heapify(self): for size in range(30): heap = [random.random() for dummy in range(size)] heapify(heap) self.check_invariant(heap) def test_naive_nbest(self): data = [random.randrange(2000) for i in range(1000)] heap = [] for item in data: heappush(heap, item) if len(heap) > 10: heappop(heap) heap.sort() self.assertEqual(heap, sorted(data)[-10:]) def test_nbest(self): # Less-naive "N-best" algorithm, much faster (if len(data) is big # enough ) than sorting all of data. However, if we had a max # heap instead of a min heap, it could go faster still via # heapify'ing all of data (linear time), then doing 10 heappops # (10 log-time steps). data = [random.randrange(2000) for i in range(1000)] heap = data[:10] heapify(heap) for item in data[10:]: if item > heap[0]: # this gets rarer the longer we run heapreplace(heap, item) self.assertEqual(list(heapiter(heap)), sorted(data)[-10:]) def test_heapsort(self): # Exercise everything with repeated heapsort checks for trial in xrange(100): size = random.randrange(50) data = [random.randrange(25) for i in range(size)] if trial & 1: # Half of the time, use heapify heap = data[:] heapify(heap) else: # The rest of the time, use heappush heap = [] for item in data: heappush(heap, item) heap_sorted = [heappop(heap) for i in range(size)] self.assertEqual(heap_sorted, sorted(data)) def test_nsmallest(self): data = [random.randrange(2000) for i in range(1000)] for n in (0, 1, 2, 10, 100, 400, 999, 1000, 1100): self.assertEqual(nsmallest(n, data), sorted(data)[:n]) def test_largest(self): data = [random.randrange(2000) for i in range(1000)] for n in (0, 1, 2, 10, 100, 400, 999, 1000, 1100): self.assertEqual(nlargest(n, data), sorted(data, reverse=True)[:n]) def test_main(verbose=None): test_classes = [TestHeap] test_support.run_unittest(*test_classes) # verify reference counting if verbose and hasattr(sys, "gettotalrefcount"): import gc counts = [None] * 5 for i in xrange(len(counts)): test_support.run_unittest(*test_classes) gc.collect() counts[i] = sys.gettotalrefcount() print counts if __name__ == "__main__": test_main(verbose=True)