from test.test_support import verify, verbose, TestFailed, fcmp from string import join from random import random, randint # SHIFT should match the value in longintrepr.h for best testing. SHIFT = 15 BASE = 2 ** SHIFT MASK = BASE - 1 KARATSUBA_CUTOFF = 70 # from longobject.c # Max number of base BASE digits to use in test cases. Doubling # this will more than double the runtime. MAXDIGITS = 15 # build some special values special = map(long, [0, 1, 2, BASE, BASE >> 1]) special.append(0x5555555555555555L) special.append(0xaaaaaaaaaaaaaaaaL) # some solid strings of one bits p2 = 4L # 0 and 1 already added for i in range(2*SHIFT): special.append(p2 - 1) p2 = p2 << 1 del p2 # add complements & negations special = special + map(lambda x: ~x, special) + \ map(lambda x: -x, special) # ------------------------------------------------------------ utilities # Use check instead of assert so the test still does something # under -O. def check(ok, *args): if not ok: raise TestFailed, join(map(str, args), " ") # Get quasi-random long consisting of ndigits digits (in base BASE). # quasi == the most-significant digit will not be 0, and the number # is constructed to contain long strings of 0 and 1 bits. These are # more likely than random bits to provoke digit-boundary errors. # The sign of the number is also random. def getran(ndigits): verify(ndigits > 0) nbits_hi = ndigits * SHIFT nbits_lo = nbits_hi - SHIFT + 1 answer = 0L nbits = 0 r = int(random() * (SHIFT * 2)) | 1 # force 1 bits to start while nbits < nbits_lo: bits = (r >> 1) + 1 bits = min(bits, nbits_hi - nbits) verify(1 <= bits <= SHIFT) nbits = nbits + bits answer = answer << bits if r & 1: answer = answer | ((1 << bits) - 1) r = int(random() * (SHIFT * 2)) verify(nbits_lo <= nbits <= nbits_hi) if random() < 0.5: answer = -answer return answer # Get random long consisting of ndigits random digits (relative to base # BASE). The sign bit is also random. def getran2(ndigits): answer = 0L for i in range(ndigits): answer = (answer << SHIFT) | randint(0, MASK) if random() < 0.5: answer = -answer return answer # --------------------------------------------------------------- divmod def test_division_2(x, y): q, r = divmod(x, y) q2, r2 = x//y, x%y pab, pba = x*y, y*x check(pab == pba, "multiplication does not commute for", x, y) check(q == q2, "divmod returns different quotient than / for", x, y) check(r == r2, "divmod returns different mod than % for", x, y) check(x == q*y + r, "x != q*y + r after divmod on", x, y) if y > 0: check(0 <= r < y, "bad mod from divmod on", x, y) else: check(y < r <= 0, "bad mod from divmod on", x, y) def test_division(maxdigits=MAXDIGITS): if verbose: print "long / * % divmod" digits = range(1, maxdigits+1) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 14) digits.append(KARATSUBA_CUTOFF * 3) for lenx in digits: x = getran(lenx) for leny in digits: y = getran(leny) or 1L test_division_2(x, y) # ------------------------------------------------------------ karatsuba def test_karatsuba(): if verbose: print "Karatsuba" digits = range(1, 5) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 10) digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100]) bits = [digit * SHIFT for digit in digits] # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) == # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check. for abits in bits: a = (1L << abits) - 1 for bbits in bits: if bbits < abits: continue b = (1L << bbits) - 1 x = a * b y = ((1L << (abits + bbits)) - (1L << abits) - (1L << bbits) + 1) check(x == y, "bad result for", a, "*", b, x, y) # -------------------------------------------------------------- ~ & | ^ def test_bitop_identities_1(x): check(x & 0 == 0, "x & 0 != 0 for", x) check(x | 0 == x, "x | 0 != x for", x) check(x ^ 0 == x, "x ^ 0 != x for", x) check(x & -1 == x, "x & -1 != x for", x) check(x | -1 == -1, "x | -1 != -1 for", x) check(x ^ -1 == ~x, "x ^ -1 != ~x for", x) check(x == ~~x, "x != ~~x for", x) check(x & x == x, "x & x != x for", x) check(x | x == x, "x | x != x for", x) check(x ^ x == 0, "x ^ x != 0 for", x) check(x & ~x == 0, "x & ~x != 0 for", x) check(x | ~x == -1, "x | ~x != -1 for", x) check(x ^ ~x == -1, "x ^ ~x != -1 for", x) check(-x == 1 + ~x == ~(x-1), "not -x == 1 + ~x == ~(x-1) for", x) for n in range(2*SHIFT): p2 = 2L ** n check(x << n >> n == x, "x << n >> n != x for", x, n) check(x // p2 == x >> n, "x // p2 != x >> n for x n p2", x, n, p2) check(x * p2 == x << n, "x * p2 != x << n for x n p2", x, n, p2) check(x & -p2 == x >> n << n == x & ~(p2 - 1), "not x & -p2 == x >> n << n == x & ~(p2 - 1) for x n p2", x, n, p2) def test_bitop_identities_2(x, y): check(x & y == y & x, "x & y != y & x for", x, y) check(x | y == y | x, "x | y != y | x for", x, y) check(x ^ y == y ^ x, "x ^ y != y ^ x for", x, y) check(x ^ y ^ x == y, "x ^ y ^ x != y for", x, y) check(x & y == ~(~x | ~y), "x & y != ~(~x | ~y) for", x, y) check(x | y == ~(~x & ~y), "x | y != ~(~x & ~y) for", x, y) check(x ^ y == (x | y) & ~(x & y), "x ^ y != (x | y) & ~(x & y) for", x, y) check(x ^ y == (x & ~y) | (~x & y), "x ^ y == (x & ~y) | (~x & y) for", x, y) check(x ^ y == (x | y) & (~x | ~y), "x ^ y == (x | y) & (~x | ~y) for", x, y) def test_bitop_identities_3(x, y, z): check((x & y) & z == x & (y & z), "(x & y) & z != x & (y & z) for", x, y, z) check((x | y) | z == x | (y | z), "(x | y) | z != x | (y | z) for", x, y, z) check((x ^ y) ^ z == x ^ (y ^ z), "(x ^ y) ^ z != x ^ (y ^ z) for", x, y, z) check(x & (y | z) == (x & y) | (x & z), "x & (y | z) != (x & y) | (x & z) for", x, y, z) check(x | (y & z) == (x | y) & (x | z), "x | (y & z) != (x | y) & (x | z) for", x, y, z) def test_bitop_identities(maxdigits=MAXDIGITS): if verbose: print "long bit-operation identities" for x in special: test_bitop_identities_1(x) digits = range(1, maxdigits+1) for lenx in digits: x = getran(lenx) test_bitop_identities_1(x) for leny in digits: y = getran(leny) test_bitop_identities_2(x, y) test_bitop_identities_3(x, y, getran((lenx + leny)//2)) # ------------------------------------------------- hex oct repr str atol def slow_format(x, base): if (x, base) == (0, 8): # this is an oddball! return "0L" digits = [] sign = 0 if x < 0: sign, x = 1, -x while x: x, r = divmod(x, base) digits.append(int(r)) digits.reverse() digits = digits or [0] return '-'[:sign] + \ {8: '0', 10: '', 16: '0x'}[base] + \ join(map(lambda i: "0123456789ABCDEF"[i], digits), '') + \ "L" def test_format_1(x): from string import atol for base, mapper in (8, oct), (10, repr), (16, hex): got = mapper(x) expected = slow_format(x, base) check(got == expected, mapper.__name__, "returned", got, "but expected", expected, "for", x) check(atol(got, 0) == x, 'atol("%s", 0) !=' % got, x) # str() has to be checked a little differently since there's no # trailing "L" got = str(x) expected = slow_format(x, 10)[:-1] check(got == expected, mapper.__name__, "returned", got, "but expected", expected, "for", x) def test_format(maxdigits=MAXDIGITS): if verbose: print "long str/hex/oct/atol" for x in special: test_format_1(x) for i in range(10): for lenx in range(1, maxdigits+1): x = getran(lenx) test_format_1(x) # ----------------------------------------------------------------- misc def test_misc(maxdigits=MAXDIGITS): if verbose: print "long miscellaneous operations" import sys # check the extremes in int<->long conversion hugepos = sys.maxint hugeneg = -hugepos - 1 hugepos_aslong = long(hugepos) hugeneg_aslong = long(hugeneg) check(hugepos == hugepos_aslong, "long(sys.maxint) != sys.maxint") check(hugeneg == hugeneg_aslong, "long(-sys.maxint-1) != -sys.maxint-1") # long -> int should not fail for hugepos_aslong or hugeneg_aslong try: check(int(hugepos_aslong) == hugepos, "converting sys.maxint to long and back to int fails") except OverflowError: raise TestFailed, "int(long(sys.maxint)) overflowed!" try: check(int(hugeneg_aslong) == hugeneg, "converting -sys.maxint-1 to long and back to int fails") except OverflowError: raise TestFailed, "int(long(-sys.maxint-1)) overflowed!" # but long -> int should overflow for hugepos+1 and hugeneg-1 x = hugepos_aslong + 1 try: y = int(x) except OverflowError: raise TestFailed, "int(long(sys.maxint) + 1) mustn't overflow" if not isinstance(y, long): raise TestFailed("int(long(sys.maxint) + 1) should have returned long") x = hugeneg_aslong - 1 try: y = int(x) except OverflowError: raise TestFailed, "int(long(-sys.maxint-1) - 1) mustn't overflow" if not isinstance(y, long): raise TestFailed("int(long(-sys.maxint-1) - 1) should have returned long") class long2(long): pass x = long2(1L<<100) y = int(x) if type(y) is not long: raise TestFailed("overflowing int conversion must return long not long subtype") # ----------------------------------- tests of auto int->long conversion def test_auto_overflow(): import math, sys if verbose: print "auto-convert int->long on overflow" special = [0, 1, 2, 3, sys.maxint-1, sys.maxint, sys.maxint+1] sqrt = int(math.sqrt(sys.maxint)) special.extend([sqrt-1, sqrt, sqrt+1]) special.extend([-i for i in special]) def checkit(*args): # Heavy use of nested scopes here! verify(got == expected, "for %r expected %r got %r" % (args, expected, got)) for x in special: longx = long(x) expected = -longx got = -x checkit('-', x) for y in special: longy = long(y) expected = longx + longy got = x + y checkit(x, '+', y) expected = longx - longy got = x - y checkit(x, '-', y) expected = longx * longy got = x * y checkit(x, '*', y) if y: expected = longx / longy got = x / y checkit(x, '/', y) expected = longx // longy got = x // y checkit(x, '//', y) expected = divmod(longx, longy) got = divmod(longx, longy) checkit(x, 'divmod', y) if abs(y) < 5 and not (x == 0 and y < 0): expected = longx ** longy got = x ** y checkit(x, '**', y) for z in special: if z != 0 : if y >= 0: expected = pow(longx, longy, long(z)) got = pow(x, y, z) checkit('pow', x, y, '%', z) else: try: pow(longx, longy, long(z)) except TypeError: pass else: raise TestFailed("pow%r should have raised " "TypeError" % ((longx, longy, long(z)),)) # ---------------------------------------- tests of long->float overflow def test_float_overflow(): import math if verbose: print "long->float overflow" for x in -2.0, -1.0, 0.0, 1.0, 2.0: verify(float(long(x)) == x) shuge = '12345' * 120 huge = 1L << 30000 mhuge = -huge namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math} for test in ["float(huge)", "float(mhuge)", "complex(huge)", "complex(mhuge)", "complex(huge, 1)", "complex(mhuge, 1)", "complex(1, huge)", "complex(1, mhuge)", "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.", "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.", "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.", "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.", "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.", "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.", "math.sin(huge)", "math.sin(mhuge)", "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better "math.floor(huge)", "math.floor(mhuge)", "float(shuge) == int(shuge)"]: try: eval(test, namespace) except OverflowError: pass else: raise TestFailed("expected OverflowError from %s" % test) # ---------------------------------------------- test huge log and log10 def test_logs(): import math if verbose: print "log and log10" LOG10E = math.log10(math.e) for exp in range(10) + [100, 1000, 10000]: value = 10 ** exp log10 = math.log10(value) verify(fcmp(log10, exp) == 0) # log10(value) == exp, so log(value) == log10(value)/log10(e) == # exp/LOG10E expected = exp / LOG10E log = math.log(value) verify(fcmp(log, expected) == 0) for bad in -(1L << 10000), -2L, 0L: try: math.log(bad) raise TestFailed("expected ValueError from log(<= 0)") except ValueError: pass try: math.log10(bad) raise TestFailed("expected ValueError from log10(<= 0)") except ValueError: pass # ---------------------------------------------------------------- do it test_division() test_karatsuba() test_bitop_identities() test_format() test_misc() test_auto_overflow() test_float_overflow() test_logs()