import unittest from test import support import gc import weakref import operator import copy import pickle from random import randrange, shuffle import warnings import collections import collections.abc import itertools import string class PassThru(Exception): pass def check_pass_thru(): raise PassThru yield 1 class BadCmp: def __hash__(self): return 1 def __eq__(self, other): raise RuntimeError class ReprWrapper: 'Used to test self-referential repr() calls' def __repr__(self): return repr(self.value) class HashCountingInt(int): 'int-like object that counts the number of times __hash__ is called' def __init__(self, *args): self.hash_count = 0 def __hash__(self): self.hash_count += 1 return int.__hash__(self) class TestJointOps: # Tests common to both set and frozenset def setUp(self): self.word = word = 'simsalabim' self.otherword = 'madagascar' self.letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' self.s = self.thetype(word) self.d = dict.fromkeys(word) def test_new_or_init(self): self.assertRaises(TypeError, self.thetype, [], 2) self.assertRaises(TypeError, set().__init__, a=1) def test_uniquification(self): actual = sorted(self.s) expected = sorted(self.d) self.assertEqual(actual, expected) self.assertRaises(PassThru, self.thetype, check_pass_thru()) self.assertRaises(TypeError, self.thetype, [[]]) def test_len(self): self.assertEqual(len(self.s), len(self.d)) def test_contains(self): for c in self.letters: self.assertEqual(c in self.s, c in self.d) self.assertRaises(TypeError, self.s.__contains__, [[]]) s = self.thetype([frozenset(self.letters)]) self.assertIn(self.thetype(self.letters), s) def test_union(self): u = self.s.union(self.otherword) for c in self.letters: self.assertEqual(c in u, c in self.d or c in self.otherword) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(u), self.basetype) self.assertRaises(PassThru, self.s.union, check_pass_thru()) self.assertRaises(TypeError, self.s.union, [[]]) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').union(C('cdc')), set('abcd')) self.assertEqual(self.thetype('abcba').union(C('efgfe')), set('abcefg')) self.assertEqual(self.thetype('abcba').union(C('ccb')), set('abc')) self.assertEqual(self.thetype('abcba').union(C('ef')), set('abcef')) self.assertEqual(self.thetype('abcba').union(C('ef'), C('fg')), set('abcefg')) # Issue #6573 x = self.thetype() self.assertEqual(x.union(set([1]), x, set([2])), self.thetype([1, 2])) def test_or(self): i = self.s.union(self.otherword) self.assertEqual(self.s | set(self.otherword), i) self.assertEqual(self.s | frozenset(self.otherword), i) try: self.s | self.otherword except TypeError: pass else: self.fail("s|t did not screen-out general iterables") def test_intersection(self): i = self.s.intersection(self.otherword) for c in self.letters: self.assertEqual(c in i, c in self.d and c in self.otherword) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(i), self.basetype) self.assertRaises(PassThru, self.s.intersection, check_pass_thru()) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').intersection(C('cdc')), set('cc')) self.assertEqual(self.thetype('abcba').intersection(C('efgfe')), set('')) self.assertEqual(self.thetype('abcba').intersection(C('ccb')), set('bc')) self.assertEqual(self.thetype('abcba').intersection(C('ef')), set('')) self.assertEqual(self.thetype('abcba').intersection(C('cbcf'), C('bag')), set('b')) s = self.thetype('abcba') z = s.intersection() if self.thetype == frozenset(): self.assertEqual(id(s), id(z)) else: self.assertNotEqual(id(s), id(z)) def test_isdisjoint(self): def f(s1, s2): 'Pure python equivalent of isdisjoint()' return not set(s1).intersection(s2) for larg in '', 'a', 'ab', 'abc', 'ababac', 'cdc', 'cc', 'efgfe', 'ccb', 'ef': s1 = self.thetype(larg) for rarg in '', 'a', 'ab', 'abc', 'ababac', 'cdc', 'cc', 'efgfe', 'ccb', 'ef': for C in set, frozenset, dict.fromkeys, str, list, tuple: s2 = C(rarg) actual = s1.isdisjoint(s2) expected = f(s1, s2) self.assertEqual(actual, expected) self.assertTrue(actual is True or actual is False) def test_and(self): i = self.s.intersection(self.otherword) self.assertEqual(self.s & set(self.otherword), i) self.assertEqual(self.s & frozenset(self.otherword), i) try: self.s & self.otherword except TypeError: pass else: self.fail("s&t did not screen-out general iterables") def test_difference(self): i = self.s.difference(self.otherword) for c in self.letters: self.assertEqual(c in i, c in self.d and c not in self.otherword) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(i), self.basetype) self.assertRaises(PassThru, self.s.difference, check_pass_thru()) self.assertRaises(TypeError, self.s.difference, [[]]) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').difference(C('cdc')), set('ab')) self.assertEqual(self.thetype('abcba').difference(C('efgfe')), set('abc')) self.assertEqual(self.thetype('abcba').difference(C('ccb')), set('a')) self.assertEqual(self.thetype('abcba').difference(C('ef')), set('abc')) self.assertEqual(self.thetype('abcba').difference(), set('abc')) self.assertEqual(self.thetype('abcba').difference(C('a'), C('b')), set('c')) def test_sub(self): i = self.s.difference(self.otherword) self.assertEqual(self.s - set(self.otherword), i) self.assertEqual(self.s - frozenset(self.otherword), i) try: self.s - self.otherword except TypeError: pass else: self.fail("s-t did not screen-out general iterables") def test_symmetric_difference(self): i = self.s.symmetric_difference(self.otherword) for c in self.letters: self.assertEqual(c in i, (c in self.d) ^ (c in self.otherword)) self.assertEqual(self.s, self.thetype(self.word)) self.assertEqual(type(i), self.basetype) self.assertRaises(PassThru, self.s.symmetric_difference, check_pass_thru()) self.assertRaises(TypeError, self.s.symmetric_difference, [[]]) for C in set, frozenset, dict.fromkeys, str, list, tuple: self.assertEqual(self.thetype('abcba').symmetric_difference(C('cdc')), set('abd')) self.assertEqual(self.thetype('abcba').symmetric_difference(C('efgfe')), set('abcefg')) self.assertEqual(self.thetype('abcba').symmetric_difference(C('ccb')), set('a')) self.assertEqual(self.thetype('abcba').symmetric_difference(C('ef')), set('abcef')) def test_xor(self): i = self.s.symmetric_difference(self.otherword) self.assertEqual(self.s ^ set(self.otherword), i) self.assertEqual(self.s ^ frozenset(self.otherword), i) try: self.s ^ self.otherword except TypeError: pass else: self.fail("s^t did not screen-out general iterables") def test_equality(self): self.assertEqual(self.s, set(self.word)) self.assertEqual(self.s, frozenset(self.word)) self.assertEqual(self.s == self.word, False) self.assertNotEqual(self.s, set(self.otherword)) self.assertNotEqual(self.s, frozenset(self.otherword)) self.assertEqual(self.s != self.word, True) def test_setOfFrozensets(self): t = map(frozenset, ['abcdef', 'bcd', 'bdcb', 'fed', 'fedccba']) s = self.thetype(t) self.assertEqual(len(s), 3) def test_sub_and_super(self): p, q, r = map(self.thetype, ['ab', 'abcde', 'def']) self.assertTrue(p < q) self.assertTrue(p <= q) self.assertTrue(q <= q) self.assertTrue(q > p) self.assertTrue(q >= p) self.assertFalse(q < r) self.assertFalse(q <= r) self.assertFalse(q > r) self.assertFalse(q >= r) self.assertTrue(set('a').issubset('abc')) self.assertTrue(set('abc').issuperset('a')) self.assertFalse(set('a').issubset('cbs')) self.assertFalse(set('cbs').issuperset('a')) def test_pickling(self): for i in range(pickle.HIGHEST_PROTOCOL + 1): p = pickle.dumps(self.s, i) dup = pickle.loads(p) self.assertEqual(self.s, dup, "%s != %s" % (self.s, dup)) if type(self.s) not in (set, frozenset): self.s.x = 10 p = pickle.dumps(self.s, i) dup = pickle.loads(p) self.assertEqual(self.s.x, dup.x) def test_iterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): itorg = iter(self.s) data = self.thetype(self.s) d = pickle.dumps(itorg, proto) it = pickle.loads(d) # Set iterators unpickle as list iterators due to the # undefined order of set items. # self.assertEqual(type(itorg), type(it)) self.assertIsInstance(it, collections.abc.Iterator) self.assertEqual(self.thetype(it), data) it = pickle.loads(d) try: drop = next(it) except StopIteration: continue d = pickle.dumps(it, proto) it = pickle.loads(d) self.assertEqual(self.thetype(it), data - self.thetype((drop,))) def test_deepcopy(self): class Tracer: def __init__(self, value): self.value = value def __hash__(self): return self.value def __deepcopy__(self, memo=None): return Tracer(self.value + 1) t = Tracer(10) s = self.thetype([t]) dup = copy.deepcopy(s) self.assertNotEqual(id(s), id(dup)) for elem in dup: newt = elem self.assertNotEqual(id(t), id(newt)) self.assertEqual(t.value + 1, newt.value) def test_gc(self): # Create a nest of cycles to exercise overall ref count check class A: pass s = set(A() for i in range(1000)) for elem in s: elem.cycle = s elem.sub = elem elem.set = set([elem]) def test_subclass_with_custom_hash(self): # Bug #1257731 class H(self.thetype): def __hash__(self): return int(id(self) & 0x7fffffff) s=H() f=set() f.add(s) self.assertIn(s, f) f.remove(s) f.add(s) f.discard(s) def test_badcmp(self): s = self.thetype([BadCmp()]) # Detect comparison errors during insertion and lookup self.assertRaises(RuntimeError, self.thetype, [BadCmp(), BadCmp()]) self.assertRaises(RuntimeError, s.__contains__, BadCmp()) # Detect errors during mutating operations if hasattr(s, 'add'): self.assertRaises(RuntimeError, s.add, BadCmp()) self.assertRaises(RuntimeError, s.discard, BadCmp()) self.assertRaises(RuntimeError, s.remove, BadCmp()) def test_cyclical_repr(self): w = ReprWrapper() s = self.thetype([w]) w.value = s if self.thetype == set: self.assertEqual(repr(s), '{set(...)}') else: name = repr(s).partition('(')[0] # strip class name self.assertEqual(repr(s), '%s({%s(...)})' % (name, name)) def test_cyclical_print(self): w = ReprWrapper() s = self.thetype([w]) w.value = s fo = open(support.TESTFN, "w") try: fo.write(str(s)) fo.close() fo = open(support.TESTFN, "r") self.assertEqual(fo.read(), repr(s)) finally: fo.close() support.unlink(support.TESTFN) def test_do_not_rehash_dict_keys(self): n = 10 d = dict.fromkeys(map(HashCountingInt, range(n))) self.assertEqual(sum(elem.hash_count for elem in d), n) s = self.thetype(d) self.assertEqual(sum(elem.hash_count for elem in d), n) s.difference(d) self.assertEqual(sum(elem.hash_count for elem in d), n) if hasattr(s, 'symmetric_difference_update'): s.symmetric_difference_update(d) self.assertEqual(sum(elem.hash_count for elem in d), n) d2 = dict.fromkeys(set(d)) self.assertEqual(sum(elem.hash_count for elem in d), n) d3 = dict.fromkeys(frozenset(d)) self.assertEqual(sum(elem.hash_count for elem in d), n) d3 = dict.fromkeys(frozenset(d), 123) self.assertEqual(sum(elem.hash_count for elem in d), n) self.assertEqual(d3, dict.fromkeys(d, 123)) def test_container_iterator(self): # Bug #3680: tp_traverse was not implemented for set iterator object class C(object): pass obj = C() ref = weakref.ref(obj) container = set([obj, 1]) obj.x = iter(container) del obj, container gc.collect() self.assertTrue(ref() is None, "Cycle was not collected") def test_free_after_iterating(self): support.check_free_after_iterating(self, iter, self.thetype) class TestSet(TestJointOps, unittest.TestCase): thetype = set basetype = set def test_init(self): s = self.thetype() s.__init__(self.word) self.assertEqual(s, set(self.word)) s.__init__(self.otherword) self.assertEqual(s, set(self.otherword)) self.assertRaises(TypeError, s.__init__, s, 2); self.assertRaises(TypeError, s.__init__, 1); def test_constructor_identity(self): s = self.thetype(range(3)) t = self.thetype(s) self.assertNotEqual(id(s), id(t)) def test_set_literal(self): s = set([1,2,3]) t = {1,2,3} self.assertEqual(s, t) def test_hash(self): self.assertRaises(TypeError, hash, self.s) def test_clear(self): self.s.clear() self.assertEqual(self.s, set()) self.assertEqual(len(self.s), 0) def test_copy(self): dup = self.s.copy() self.assertEqual(self.s, dup) self.assertNotEqual(id(self.s), id(dup)) self.assertEqual(type(dup), self.basetype) def test_add(self): self.s.add('Q') self.assertIn('Q', self.s) dup = self.s.copy() self.s.add('Q') self.assertEqual(self.s, dup) self.assertRaises(TypeError, self.s.add, []) def test_remove(self): self.s.remove('a') self.assertNotIn('a', self.s) self.assertRaises(KeyError, self.s.remove, 'Q') self.assertRaises(TypeError, self.s.remove, []) s = self.thetype([frozenset(self.word)]) self.assertIn(self.thetype(self.word), s) s.remove(self.thetype(self.word)) self.assertNotIn(self.thetype(self.word), s) self.assertRaises(KeyError, self.s.remove, self.thetype(self.word)) def test_remove_keyerror_unpacking(self): # bug: www.python.org/sf/1576657 for v1 in ['Q', (1,)]: try: self.s.remove(v1) except KeyError as e: v2 = e.args[0] self.assertEqual(v1, v2) else: self.fail() def test_remove_keyerror_set(self): key = self.thetype([3, 4]) try: self.s.remove(key) except KeyError as e: self.assertTrue(e.args[0] is key, "KeyError should be {0}, not {1}".format(key, e.args[0])) else: self.fail() def test_discard(self): self.s.discard('a') self.assertNotIn('a', self.s) self.s.discard('Q') self.assertRaises(TypeError, self.s.discard, []) s = self.thetype([frozenset(self.word)]) self.assertIn(self.thetype(self.word), s) s.discard(self.thetype(self.word)) self.assertNotIn(self.thetype(self.word), s) s.discard(self.thetype(self.word)) def test_pop(self): for i in range(len(self.s)): elem = self.s.pop() self.assertNotIn(elem, self.s) self.assertRaises(KeyError, self.s.pop) def test_update(self): retval = self.s.update(self.otherword) self.assertEqual(retval, None) for c in (self.word + self.otherword): self.assertIn(c, self.s) self.assertRaises(PassThru, self.s.update, check_pass_thru()) self.assertRaises(TypeError, self.s.update, [[]]) for p, q in (('cdc', 'abcd'), ('efgfe', 'abcefg'), ('ccb', 'abc'), ('ef', 'abcef')): for C in set, frozenset, dict.fromkeys, str, list, tuple: s = self.thetype('abcba') self.assertEqual(s.update(C(p)), None) self.assertEqual(s, set(q)) for p in ('cdc', 'efgfe', 'ccb', 'ef', 'abcda'): q = 'ahi' for C in set, frozenset, dict.fromkeys, str, list, tuple: s = self.thetype('abcba') self.assertEqual(s.update(C(p), C(q)), None) self.assertEqual(s, set(s) | set(p) | set(q)) def test_ior(self): self.s |= set(self.otherword) for c in (self.word + self.otherword): self.assertIn(c, self.s) def test_intersection_update(self): retval = self.s.intersection_update(self.otherword) self.assertEqual(retval, None) for c in (self.word + self.otherword): if c in self.otherword and c in self.word: self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) self.assertRaises(PassThru, self.s.intersection_update, check_pass_thru()) self.assertRaises(TypeError, self.s.intersection_update, [[]]) for p, q in (('cdc', 'c'), ('efgfe', ''), ('ccb', 'bc'), ('ef', '')): for C in set, frozenset, dict.fromkeys, str, list, tuple: s = self.thetype('abcba') self.assertEqual(s.intersection_update(C(p)), None) self.assertEqual(s, set(q)) ss = 'abcba' s = self.thetype(ss) t = 'cbc' self.assertEqual(s.intersection_update(C(p), C(t)), None) self.assertEqual(s, set('abcba')&set(p)&set(t)) def test_iand(self): self.s &= set(self.otherword) for c in (self.word + self.otherword): if c in self.otherword and c in self.word: self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) def test_difference_update(self): retval = self.s.difference_update(self.otherword) self.assertEqual(retval, None) for c in (self.word + self.otherword): if c in self.word and c not in self.otherword: self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) self.assertRaises(PassThru, self.s.difference_update, check_pass_thru()) self.assertRaises(TypeError, self.s.difference_update, [[]]) self.assertRaises(TypeError, self.s.symmetric_difference_update, [[]]) for p, q in (('cdc', 'ab'), ('efgfe', 'abc'), ('ccb', 'a'), ('ef', 'abc')): for C in set, frozenset, dict.fromkeys, str, list, tuple: s = self.thetype('abcba') self.assertEqual(s.difference_update(C(p)), None) self.assertEqual(s, set(q)) s = self.thetype('abcdefghih') s.difference_update() self.assertEqual(s, self.thetype('abcdefghih')) s = self.thetype('abcdefghih') s.difference_update(C('aba')) self.assertEqual(s, self.thetype('cdefghih')) s = self.thetype('abcdefghih') s.difference_update(C('cdc'), C('aba')) self.assertEqual(s, self.thetype('efghih')) def test_isub(self): self.s -= set(self.otherword) for c in (self.word + self.otherword): if c in self.word and c not in self.otherword: self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) def test_symmetric_difference_update(self): retval = self.s.symmetric_difference_update(self.otherword) self.assertEqual(retval, None) for c in (self.word + self.otherword): if (c in self.word) ^ (c in self.otherword): self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) self.assertRaises(PassThru, self.s.symmetric_difference_update, check_pass_thru()) self.assertRaises(TypeError, self.s.symmetric_difference_update, [[]]) for p, q in (('cdc', 'abd'), ('efgfe', 'abcefg'), ('ccb', 'a'), ('ef', 'abcef')): for C in set, frozenset, dict.fromkeys, str, list, tuple: s = self.thetype('abcba') self.assertEqual(s.symmetric_difference_update(C(p)), None) self.assertEqual(s, set(q)) def test_ixor(self): self.s ^= set(self.otherword) for c in (self.word + self.otherword): if (c in self.word) ^ (c in self.otherword): self.assertIn(c, self.s) else: self.assertNotIn(c, self.s) def test_inplace_on_self(self): t = self.s.copy() t |= t self.assertEqual(t, self.s) t &= t self.assertEqual(t, self.s) t -= t self.assertEqual(t, self.thetype()) t = self.s.copy() t ^= t self.assertEqual(t, self.thetype()) def test_weakref(self): s = self.thetype('gallahad') p = weakref.proxy(s) self.assertEqual(str(p), str(s)) s = None self.assertRaises(ReferenceError, str, p) def test_rich_compare(self): class TestRichSetCompare: def __gt__(self, some_set): self.gt_called = True return False def __lt__(self, some_set): self.lt_called = True return False def __ge__(self, some_set): self.ge_called = True return False def __le__(self, some_set): self.le_called = True return False # This first tries the builtin rich set comparison, which doesn't know # how to handle the custom object. Upon returning NotImplemented, the # corresponding comparison on the right object is invoked. myset = {1, 2, 3} myobj = TestRichSetCompare() myset < myobj self.assertTrue(myobj.gt_called) myobj = TestRichSetCompare() myset > myobj self.assertTrue(myobj.lt_called) myobj = TestRichSetCompare() myset <= myobj self.assertTrue(myobj.ge_called) myobj = TestRichSetCompare() myset >= myobj self.assertTrue(myobj.le_called) @unittest.skipUnless(hasattr(set, "test_c_api"), 'C API test only available in a debug build') def test_c_api(self): self.assertEqual(set().test_c_api(), True) class SetSubclass(set): pass class TestSetSubclass(TestSet): thetype = SetSubclass basetype = set class SetSubclassWithKeywordArgs(set): def __init__(self, iterable=[], newarg=None): set.__init__(self, iterable) class TestSetSubclassWithKeywordArgs(TestSet): def test_keywords_in_subclass(self): 'SF bug #1486663 -- this used to erroneously raise a TypeError' SetSubclassWithKeywordArgs(newarg=1) class TestFrozenSet(TestJointOps, unittest.TestCase): thetype = frozenset basetype = frozenset def test_init(self): s = self.thetype(self.word) s.__init__(self.otherword) self.assertEqual(s, set(self.word)) def test_singleton_empty_frozenset(self): f = frozenset() efs = [frozenset(), frozenset([]), frozenset(()), frozenset(''), frozenset(), frozenset([]), frozenset(()), frozenset(''), frozenset(range(0)), frozenset(frozenset()), frozenset(f), f] # All of the empty frozensets should have just one id() self.assertEqual(len(set(map(id, efs))), 1) def test_constructor_identity(self): s = self.thetype(range(3)) t = self.thetype(s) self.assertEqual(id(s), id(t)) def test_hash(self): self.assertEqual(hash(self.thetype('abcdeb')), hash(self.thetype('ebecda'))) # make sure that all permutations give the same hash value n = 100 seq = [randrange(n) for i in range(n)] results = set() for i in range(200): shuffle(seq) results.add(hash(self.thetype(seq))) self.assertEqual(len(results), 1) def test_copy(self): dup = self.s.copy() self.assertEqual(id(self.s), id(dup)) def test_frozen_as_dictkey(self): seq = list(range(10)) + list('abcdefg') + ['apple'] key1 = self.thetype(seq) key2 = self.thetype(reversed(seq)) self.assertEqual(key1, key2) self.assertNotEqual(id(key1), id(key2)) d = {} d[key1] = 42 self.assertEqual(d[key2], 42) def test_hash_caching(self): f = self.thetype('abcdcda') self.assertEqual(hash(f), hash(f)) def test_hash_effectiveness(self): n = 13 hashvalues = set() addhashvalue = hashvalues.add elemmasks = [(i+1, 1<=": "issuperset", } reverse = {"==": "==", "!=": "!=", "<": ">", ">": "<", "<=": ">=", ">=": "<=", } def test_issubset(self): x = self.left y = self.right for case in "!=", "==", "<", "<=", ">", ">=": expected = case in self.cases # Test the binary infix spelling. result = eval("x" + case + "y", locals()) self.assertEqual(result, expected) # Test the "friendly" method-name spelling, if one exists. if case in TestSubsets.case2method: method = getattr(x, TestSubsets.case2method[case]) result = method(y) self.assertEqual(result, expected) # Now do the same for the operands reversed. rcase = TestSubsets.reverse[case] result = eval("y" + rcase + "x", locals()) self.assertEqual(result, expected) if rcase in TestSubsets.case2method: method = getattr(y, TestSubsets.case2method[rcase]) result = method(x) self.assertEqual(result, expected) #------------------------------------------------------------------------------ class TestSubsetEqualEmpty(TestSubsets, unittest.TestCase): left = set() right = set() name = "both empty" cases = "==", "<=", ">=" #------------------------------------------------------------------------------ class TestSubsetEqualNonEmpty(TestSubsets, unittest.TestCase): left = set([1, 2]) right = set([1, 2]) name = "equal pair" cases = "==", "<=", ">=" #------------------------------------------------------------------------------ class TestSubsetEmptyNonEmpty(TestSubsets, unittest.TestCase): left = set() right = set([1, 2]) name = "one empty, one non-empty" cases = "!=", "<", "<=" #------------------------------------------------------------------------------ class TestSubsetPartial(TestSubsets, unittest.TestCase): left = set([1]) right = set([1, 2]) name = "one a non-empty proper subset of other" cases = "!=", "<", "<=" #------------------------------------------------------------------------------ class TestSubsetNonOverlap(TestSubsets, unittest.TestCase): left = set([1]) right = set([2]) name = "neither empty, neither contains" cases = "!=" #============================================================================== class TestOnlySetsInBinaryOps: def test_eq_ne(self): # Unlike the others, this is testing that == and != *are* allowed. self.assertEqual(self.other == self.set, False) self.assertEqual(self.set == self.other, False) self.assertEqual(self.other != self.set, True) self.assertEqual(self.set != self.other, True) def test_ge_gt_le_lt(self): self.assertRaises(TypeError, lambda: self.set < self.other) self.assertRaises(TypeError, lambda: self.set <= self.other) self.assertRaises(TypeError, lambda: self.set > self.other) self.assertRaises(TypeError, lambda: self.set >= self.other) self.assertRaises(TypeError, lambda: self.other < self.set) self.assertRaises(TypeError, lambda: self.other <= self.set) self.assertRaises(TypeError, lambda: self.other > self.set) self.assertRaises(TypeError, lambda: self.other >= self.set) def test_update_operator(self): try: self.set |= self.other except TypeError: pass else: self.fail("expected TypeError") def test_update(self): if self.otherIsIterable: self.set.update(self.other) else: self.assertRaises(TypeError, self.set.update, self.other) def test_union(self): self.assertRaises(TypeError, lambda: self.set | self.other) self.assertRaises(TypeError, lambda: self.other | self.set) if self.otherIsIterable: self.set.union(self.other) else: self.assertRaises(TypeError, self.set.union, self.other) def test_intersection_update_operator(self): try: self.set &= self.other except TypeError: pass else: self.fail("expected TypeError") def test_intersection_update(self): if self.otherIsIterable: self.set.intersection_update(self.other) else: self.assertRaises(TypeError, self.set.intersection_update, self.other) def test_intersection(self): self.assertRaises(TypeError, lambda: self.set & self.other) self.assertRaises(TypeError, lambda: self.other & self.set) if self.otherIsIterable: self.set.intersection(self.other) else: self.assertRaises(TypeError, self.set.intersection, self.other) def test_sym_difference_update_operator(self): try: self.set ^= self.other except TypeError: pass else: self.fail("expected TypeError") def test_sym_difference_update(self): if self.otherIsIterable: self.set.symmetric_difference_update(self.other) else: self.assertRaises(TypeError, self.set.symmetric_difference_update, self.other) def test_sym_difference(self): self.assertRaises(TypeError, lambda: self.set ^ self.other) self.assertRaises(TypeError, lambda: self.other ^ self.set) if self.otherIsIterable: self.set.symmetric_difference(self.other) else: self.assertRaises(TypeError, self.set.symmetric_difference, self.other) def test_difference_update_operator(self): try: self.set -= self.other except TypeError: pass else: self.fail("expected TypeError") def test_difference_update(self): if self.otherIsIterable: self.set.difference_update(self.other) else: self.assertRaises(TypeError, self.set.difference_update, self.other) def test_difference(self): self.assertRaises(TypeError, lambda: self.set - self.other) self.assertRaises(TypeError, lambda: self.other - self.set) if self.otherIsIterable: self.set.difference(self.other) else: self.assertRaises(TypeError, self.set.difference, self.other) #------------------------------------------------------------------------------ class TestOnlySetsNumeric(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): self.set = set((1, 2, 3)) self.other = 19 self.otherIsIterable = False #------------------------------------------------------------------------------ class TestOnlySetsDict(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): self.set = set((1, 2, 3)) self.other = {1:2, 3:4} self.otherIsIterable = True #------------------------------------------------------------------------------ class TestOnlySetsOperator(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): self.set = set((1, 2, 3)) self.other = operator.add self.otherIsIterable = False #------------------------------------------------------------------------------ class TestOnlySetsTuple(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): self.set = set((1, 2, 3)) self.other = (2, 4, 6) self.otherIsIterable = True #------------------------------------------------------------------------------ class TestOnlySetsString(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): self.set = set((1, 2, 3)) self.other = 'abc' self.otherIsIterable = True #------------------------------------------------------------------------------ class TestOnlySetsGenerator(TestOnlySetsInBinaryOps, unittest.TestCase): def setUp(self): def gen(): for i in range(0, 10, 2): yield i self.set = set((1, 2, 3)) self.other = gen() self.otherIsIterable = True #============================================================================== class TestCopying: def test_copy(self): dup = self.set.copy() dup_list = sorted(dup, key=repr) set_list = sorted(self.set, key=repr) self.assertEqual(len(dup_list), len(set_list)) for i in range(len(dup_list)): self.assertTrue(dup_list[i] is set_list[i]) def test_deep_copy(self): dup = copy.deepcopy(self.set) ##print type(dup), repr(dup) dup_list = sorted(dup, key=repr) set_list = sorted(self.set, key=repr) self.assertEqual(len(dup_list), len(set_list)) for i in range(len(dup_list)): self.assertEqual(dup_list[i], set_list[i]) #------------------------------------------------------------------------------ class TestCopyingEmpty(TestCopying, unittest.TestCase): def setUp(self): self.set = set() #------------------------------------------------------------------------------ class TestCopyingSingleton(TestCopying, unittest.TestCase): def setUp(self): self.set = set(["hello"]) #------------------------------------------------------------------------------ class TestCopyingTriple(TestCopying, unittest.TestCase): def setUp(self): self.set = set(["zero", 0, None]) #------------------------------------------------------------------------------ class TestCopyingTuple(TestCopying, unittest.TestCase): def setUp(self): self.set = set([(1, 2)]) #------------------------------------------------------------------------------ class TestCopyingNested(TestCopying, unittest.TestCase): def setUp(self): self.set = set([((1, 2), (3, 4))]) #============================================================================== class TestIdentities(unittest.TestCase): def setUp(self): self.a = set('abracadabra') self.b = set('alacazam') def test_binopsVsSubsets(self): a, b = self.a, self.b self.assertTrue(a - b < a) self.assertTrue(b - a < b) self.assertTrue(a & b < a) self.assertTrue(a & b < b) self.assertTrue(a | b > a) self.assertTrue(a | b > b) self.assertTrue(a ^ b < a | b) def test_commutativity(self): a, b = self.a, self.b self.assertEqual(a&b, b&a) self.assertEqual(a|b, b|a) self.assertEqual(a^b, b^a) if a != b: self.assertNotEqual(a-b, b-a) def test_summations(self): # check that sums of parts equal the whole a, b = self.a, self.b self.assertEqual((a-b)|(a&b)|(b-a), a|b) self.assertEqual((a&b)|(a^b), a|b) self.assertEqual(a|(b-a), a|b) self.assertEqual((a-b)|b, a|b) self.assertEqual((a-b)|(a&b), a) self.assertEqual((b-a)|(a&b), b) self.assertEqual((a-b)|(b-a), a^b) def test_exclusion(self): # check that inverse operations show non-overlap a, b, zero = self.a, self.b, set() self.assertEqual((a-b)&b, zero) self.assertEqual((b-a)&a, zero) self.assertEqual((a&b)&(a^b), zero) # Tests derived from test_itertools.py ======================================= def R(seqn): 'Regular generator' for i in seqn: yield i class G: 'Sequence using __getitem__' def __init__(self, seqn): self.seqn = seqn def __getitem__(self, i): return self.seqn[i] class I: 'Sequence using iterator protocol' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): return self def __next__(self): if self.i >= len(self.seqn): raise StopIteration v = self.seqn[self.i] self.i += 1 return v class Ig: 'Sequence using iterator protocol defined with a generator' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): for val in self.seqn: yield val class X: 'Missing __getitem__ and __iter__' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __next__(self): if self.i >= len(self.seqn): raise StopIteration v = self.seqn[self.i] self.i += 1 return v class N: 'Iterator missing __next__()' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): return self class E: 'Test propagation of exceptions' def __init__(self, seqn): self.seqn = seqn self.i = 0 def __iter__(self): return self def __next__(self): 3 // 0 class S: 'Test immediate stop' def __init__(self, seqn): pass def __iter__(self): return self def __next__(self): raise StopIteration from itertools import chain def L(seqn): 'Test multiple tiers of iterators' return chain(map(lambda x:x, R(Ig(G(seqn))))) class TestVariousIteratorArgs(unittest.TestCase): def test_constructor(self): for cons in (set, frozenset): for s in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5)): for g in (G, I, Ig, S, L, R): self.assertEqual(sorted(cons(g(s)), key=repr), sorted(g(s), key=repr)) self.assertRaises(TypeError, cons , X(s)) self.assertRaises(TypeError, cons , N(s)) self.assertRaises(ZeroDivisionError, cons , E(s)) def test_inline_methods(self): s = set('november') for data in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5), 'december'): for meth in (s.union, s.intersection, s.difference, s.symmetric_difference, s.isdisjoint): for g in (G, I, Ig, L, R): expected = meth(data) actual = meth(g(data)) if isinstance(expected, bool): self.assertEqual(actual, expected) else: self.assertEqual(sorted(actual, key=repr), sorted(expected, key=repr)) self.assertRaises(TypeError, meth, X(s)) self.assertRaises(TypeError, meth, N(s)) self.assertRaises(ZeroDivisionError, meth, E(s)) def test_inplace_methods(self): for data in ("123", "", range(1000), ('do', 1.2), range(2000,2200,5), 'december'): for methname in ('update', 'intersection_update', 'difference_update', 'symmetric_difference_update'): for g in (G, I, Ig, S, L, R): s = set('january') t = s.copy() getattr(s, methname)(list(g(data))) getattr(t, methname)(g(data)) self.assertEqual(sorted(s, key=repr), sorted(t, key=repr)) self.assertRaises(TypeError, getattr(set('january'), methname), X(data)) self.assertRaises(TypeError, getattr(set('january'), methname), N(data)) self.assertRaises(ZeroDivisionError, getattr(set('january'), methname), E(data)) class bad_eq: def __eq__(self, other): if be_bad: set2.clear() raise ZeroDivisionError return self is other def __hash__(self): return 0 class bad_dict_clear: def __eq__(self, other): if be_bad: dict2.clear() return self is other def __hash__(self): return 0 class TestWeirdBugs(unittest.TestCase): def test_8420_set_merge(self): # This used to segfault global be_bad, set2, dict2 be_bad = False set1 = {bad_eq()} set2 = {bad_eq() for i in range(75)} be_bad = True self.assertRaises(ZeroDivisionError, set1.update, set2) be_bad = False set1 = {bad_dict_clear()} dict2 = {bad_dict_clear(): None} be_bad = True set1.symmetric_difference_update(dict2) def test_iter_and_mutate(self): # Issue #24581 s = set(range(100)) s.clear() s.update(range(100)) si = iter(s) s.clear() a = list(range(100)) s.update(range(100)) list(si) def test_merge_and_mutate(self): class X: def __hash__(self): return hash(0) def __eq__(self, o): other.clear() return False other = set() other = {X() for i in range(10)} s = {0} s.update(other) # Application tests (based on David Eppstein's graph recipes ==================================== def powerset(U): """Generates all subsets of a set or sequence U.""" U = iter(U) try: x = frozenset([next(U)]) for S in powerset(U): yield S yield S | x except StopIteration: yield frozenset() def cube(n): """Graph of n-dimensional hypercube.""" singletons = [frozenset([x]) for x in range(n)] return dict([(x, frozenset([x^s for s in singletons])) for x in powerset(range(n))]) def linegraph(G): """Graph, the vertices of which are edges of G, with two vertices being adjacent iff the corresponding edges share a vertex.""" L = {} for x in G: for y in G[x]: nx = [frozenset([x,z]) for z in G[x] if z != y] ny = [frozenset([y,z]) for z in G[y] if z != x] L[frozenset([x,y])] = frozenset(nx+ny) return L def faces(G): 'Return a set of faces in G. Where a face is a set of vertices on that face' # currently limited to triangles,squares, and pentagons f = set() for v1, edges in G.items(): for v2 in edges: for v3 in G[v2]: if v1 == v3: continue if v1 in G[v3]: f.add(frozenset([v1, v2, v3])) else: for v4 in G[v3]: if v4 == v2: continue if v1 in G[v4]: f.add(frozenset([v1, v2, v3, v4])) else: for v5 in G[v4]: if v5 == v3 or v5 == v2: continue if v1 in G[v5]: f.add(frozenset([v1, v2, v3, v4, v5])) return f class TestGraphs(unittest.TestCase): def test_cube(self): g = cube(3) # vert --> {v1, v2, v3} vertices1 = set(g) self.assertEqual(len(vertices1), 8) # eight vertices for edge in g.values(): self.assertEqual(len(edge), 3) # each vertex connects to three edges vertices2 = set(v for edges in g.values() for v in edges) self.assertEqual(vertices1, vertices2) # edge vertices in original set cubefaces = faces(g) self.assertEqual(len(cubefaces), 6) # six faces for face in cubefaces: self.assertEqual(len(face), 4) # each face is a square def test_cuboctahedron(self): # http://en.wikipedia.org/wiki/Cuboctahedron # 8 triangular faces and 6 square faces # 12 indentical vertices each connecting a triangle and square g = cube(3) cuboctahedron = linegraph(g) # V( --> {V1, V2, V3, V4} self.assertEqual(len(cuboctahedron), 12)# twelve vertices vertices = set(cuboctahedron) for edges in cuboctahedron.values(): self.assertEqual(len(edges), 4) # each vertex connects to four other vertices othervertices = set(edge for edges in cuboctahedron.values() for edge in edges) self.assertEqual(vertices, othervertices) # edge vertices in original set cubofaces = faces(cuboctahedron) facesizes = collections.defaultdict(int) for face in cubofaces: facesizes[len(face)] += 1 self.assertEqual(facesizes[3], 8) # eight triangular faces self.assertEqual(facesizes[4], 6) # six square faces for vertex in cuboctahedron: edge = vertex # Cuboctahedron vertices are edges in Cube self.assertEqual(len(edge), 2) # Two cube vertices define an edge for cubevert in edge: self.assertIn(cubevert, g) #============================================================================== if __name__ == "__main__": unittest.main()