# Very rudimentary test of threading module import test.support from test.support import verbose, strip_python_stderr, import_module from test.script_helper import assert_python_ok import random import re import sys _thread = import_module('_thread') threading = import_module('threading') import _testcapi import time import unittest import weakref import os from test.script_helper import assert_python_ok, assert_python_failure import subprocess from test import lock_tests # A trivial mutable counter. class Counter(object): def __init__(self): self.value = 0 def inc(self): self.value += 1 def dec(self): self.value -= 1 def get(self): return self.value class TestThread(threading.Thread): def __init__(self, name, testcase, sema, mutex, nrunning): threading.Thread.__init__(self, name=name) self.testcase = testcase self.sema = sema self.mutex = mutex self.nrunning = nrunning def run(self): delay = random.random() / 10000.0 if verbose: print('task %s will run for %.1f usec' % (self.name, delay * 1e6)) with self.sema: with self.mutex: self.nrunning.inc() if verbose: print(self.nrunning.get(), 'tasks are running') self.testcase.assertTrue(self.nrunning.get() <= 3) time.sleep(delay) if verbose: print('task', self.name, 'done') with self.mutex: self.nrunning.dec() self.testcase.assertTrue(self.nrunning.get() >= 0) if verbose: print('%s is finished. %d tasks are running' % (self.name, self.nrunning.get())) class BaseTestCase(unittest.TestCase): def setUp(self): self._threads = test.support.threading_setup() def tearDown(self): test.support.threading_cleanup(*self._threads) test.support.reap_children() class ThreadTests(BaseTestCase): # Create a bunch of threads, let each do some work, wait until all are # done. def test_various_ops(self): # This takes about n/3 seconds to run (about n/3 clumps of tasks, # times about 1 second per clump). NUMTASKS = 10 # no more than 3 of the 10 can run at once sema = threading.BoundedSemaphore(value=3) mutex = threading.RLock() numrunning = Counter() threads = [] for i in range(NUMTASKS): t = TestThread(""%i, self, sema, mutex, numrunning) threads.append(t) self.assertEqual(t.ident, None) self.assertTrue(re.match('', repr(t))) t.start() if verbose: print('waiting for all tasks to complete') for t in threads: t.join(NUMTASKS) self.assertTrue(not t.is_alive()) self.assertNotEqual(t.ident, 0) self.assertFalse(t.ident is None) self.assertTrue(re.match('', repr(t))) if verbose: print('all tasks done') self.assertEqual(numrunning.get(), 0) def test_ident_of_no_threading_threads(self): # The ident still must work for the main thread and dummy threads. self.assertFalse(threading.currentThread().ident is None) def f(): ident.append(threading.currentThread().ident) done.set() done = threading.Event() ident = [] _thread.start_new_thread(f, ()) done.wait() self.assertFalse(ident[0] is None) # Kill the "immortal" _DummyThread del threading._active[ident[0]] # run with a small(ish) thread stack size (256kB) def test_various_ops_small_stack(self): if verbose: print('with 256kB thread stack size...') try: threading.stack_size(262144) except _thread.error: raise unittest.SkipTest( 'platform does not support changing thread stack size') self.test_various_ops() threading.stack_size(0) # run with a large thread stack size (1MB) def test_various_ops_large_stack(self): if verbose: print('with 1MB thread stack size...') try: threading.stack_size(0x100000) except _thread.error: raise unittest.SkipTest( 'platform does not support changing thread stack size') self.test_various_ops() threading.stack_size(0) def test_foreign_thread(self): # Check that a "foreign" thread can use the threading module. def f(mutex): # Calling current_thread() forces an entry for the foreign # thread to get made in the threading._active map. threading.current_thread() mutex.release() mutex = threading.Lock() mutex.acquire() tid = _thread.start_new_thread(f, (mutex,)) # Wait for the thread to finish. mutex.acquire() self.assertIn(tid, threading._active) self.assertIsInstance(threading._active[tid], threading._DummyThread) del threading._active[tid] # PyThreadState_SetAsyncExc() is a CPython-only gimmick, not (currently) # exposed at the Python level. This test relies on ctypes to get at it. def test_PyThreadState_SetAsyncExc(self): ctypes = import_module("ctypes") set_async_exc = ctypes.pythonapi.PyThreadState_SetAsyncExc class AsyncExc(Exception): pass exception = ctypes.py_object(AsyncExc) # First check it works when setting the exception from the same thread. tid = threading.get_ident() try: result = set_async_exc(ctypes.c_long(tid), exception) # The exception is async, so we might have to keep the VM busy until # it notices. while True: pass except AsyncExc: pass else: # This code is unreachable but it reflects the intent. If we wanted # to be smarter the above loop wouldn't be infinite. self.fail("AsyncExc not raised") try: self.assertEqual(result, 1) # one thread state modified except UnboundLocalError: # The exception was raised too quickly for us to get the result. pass # `worker_started` is set by the thread when it's inside a try/except # block waiting to catch the asynchronously set AsyncExc exception. # `worker_saw_exception` is set by the thread upon catching that # exception. worker_started = threading.Event() worker_saw_exception = threading.Event() class Worker(threading.Thread): def run(self): self.id = threading.get_ident() self.finished = False try: while True: worker_started.set() time.sleep(0.1) except AsyncExc: self.finished = True worker_saw_exception.set() t = Worker() t.daemon = True # so if this fails, we don't hang Python at shutdown t.start() if verbose: print(" started worker thread") # Try a thread id that doesn't make sense. if verbose: print(" trying nonsensical thread id") result = set_async_exc(ctypes.c_long(-1), exception) self.assertEqual(result, 0) # no thread states modified # Now raise an exception in the worker thread. if verbose: print(" waiting for worker thread to get started") ret = worker_started.wait() self.assertTrue(ret) if verbose: print(" verifying worker hasn't exited") self.assertTrue(not t.finished) if verbose: print(" attempting to raise asynch exception in worker") result = set_async_exc(ctypes.c_long(t.id), exception) self.assertEqual(result, 1) # one thread state modified if verbose: print(" waiting for worker to say it caught the exception") worker_saw_exception.wait(timeout=10) self.assertTrue(t.finished) if verbose: print(" all OK -- joining worker") if t.finished: t.join() # else the thread is still running, and we have no way to kill it def test_limbo_cleanup(self): # Issue 7481: Failure to start thread should cleanup the limbo map. def fail_new_thread(*args): raise threading.ThreadError() _start_new_thread = threading._start_new_thread threading._start_new_thread = fail_new_thread try: t = threading.Thread(target=lambda: None) self.assertRaises(threading.ThreadError, t.start) self.assertFalse( t in threading._limbo, "Failed to cleanup _limbo map on failure of Thread.start().") finally: threading._start_new_thread = _start_new_thread def test_finalize_runnning_thread(self): # Issue 1402: the PyGILState_Ensure / _Release functions may be called # very late on python exit: on deallocation of a running thread for # example. import_module("ctypes") rc, out, err = assert_python_failure("-c", """if 1: import ctypes, sys, time, _thread # This lock is used as a simple event variable. ready = _thread.allocate_lock() ready.acquire() # Module globals are cleared before __del__ is run # So we save the functions in class dict class C: ensure = ctypes.pythonapi.PyGILState_Ensure release = ctypes.pythonapi.PyGILState_Release def __del__(self): state = self.ensure() self.release(state) def waitingThread(): x = C() ready.release() time.sleep(100) _thread.start_new_thread(waitingThread, ()) ready.acquire() # Be sure the other thread is waiting. sys.exit(42) """) self.assertEqual(rc, 42) def test_finalize_with_trace(self): # Issue1733757 # Avoid a deadlock when sys.settrace steps into threading._shutdown assert_python_ok("-c", """if 1: import sys, threading # A deadlock-killer, to prevent the # testsuite to hang forever def killer(): import os, time time.sleep(2) print('program blocked; aborting') os._exit(2) t = threading.Thread(target=killer) t.daemon = True t.start() # This is the trace function def func(frame, event, arg): threading.current_thread() return func sys.settrace(func) """) def test_join_nondaemon_on_shutdown(self): # Issue 1722344 # Raising SystemExit skipped threading._shutdown rc, out, err = assert_python_ok("-c", """if 1: import threading from time import sleep def child(): sleep(1) # As a non-daemon thread we SHOULD wake up and nothing # should be torn down yet print("Woke up, sleep function is:", sleep) threading.Thread(target=child).start() raise SystemExit """) self.assertEqual(out.strip(), b"Woke up, sleep function is: ") self.assertEqual(err, b"") def test_enumerate_after_join(self): # Try hard to trigger #1703448: a thread is still returned in # threading.enumerate() after it has been join()ed. enum = threading.enumerate old_interval = sys.getswitchinterval() try: for i in range(1, 100): sys.setswitchinterval(i * 0.0002) t = threading.Thread(target=lambda: None) t.start() t.join() l = enum() self.assertNotIn(t, l, "#1703448 triggered after %d trials: %s" % (i, l)) finally: sys.setswitchinterval(old_interval) def test_no_refcycle_through_target(self): class RunSelfFunction(object): def __init__(self, should_raise): # The links in this refcycle from Thread back to self # should be cleaned up when the thread completes. self.should_raise = should_raise self.thread = threading.Thread(target=self._run, args=(self,), kwargs={'yet_another':self}) self.thread.start() def _run(self, other_ref, yet_another): if self.should_raise: raise SystemExit cyclic_object = RunSelfFunction(should_raise=False) weak_cyclic_object = weakref.ref(cyclic_object) cyclic_object.thread.join() del cyclic_object self.assertIsNone(weak_cyclic_object(), msg=('%d references still around' % sys.getrefcount(weak_cyclic_object()))) raising_cyclic_object = RunSelfFunction(should_raise=True) weak_raising_cyclic_object = weakref.ref(raising_cyclic_object) raising_cyclic_object.thread.join() del raising_cyclic_object self.assertIsNone(weak_raising_cyclic_object(), msg=('%d references still around' % sys.getrefcount(weak_raising_cyclic_object()))) def test_old_threading_api(self): # Just a quick sanity check to make sure the old method names are # still present t = threading.Thread() t.isDaemon() t.setDaemon(True) t.getName() t.setName("name") t.isAlive() e = threading.Event() e.isSet() threading.activeCount() def test_repr_daemon(self): t = threading.Thread() self.assertFalse('daemon' in repr(t)) t.daemon = True self.assertTrue('daemon' in repr(t)) def test_deamon_param(self): t = threading.Thread() self.assertFalse(t.daemon) t = threading.Thread(daemon=False) self.assertFalse(t.daemon) t = threading.Thread(daemon=True) self.assertTrue(t.daemon) @unittest.skipUnless(hasattr(os, 'fork'), 'test needs fork()') def test_dummy_thread_after_fork(self): # Issue #14308: a dummy thread in the active list doesn't mess up # the after-fork mechanism. code = """if 1: import _thread, threading, os, time def background_thread(evt): # Creates and registers the _DummyThread instance threading.current_thread() evt.set() time.sleep(10) evt = threading.Event() _thread.start_new_thread(background_thread, (evt,)) evt.wait() assert threading.active_count() == 2, threading.active_count() if os.fork() == 0: assert threading.active_count() == 1, threading.active_count() os._exit(0) else: os.wait() """ _, out, err = assert_python_ok("-c", code) self.assertEqual(out, b'') self.assertEqual(err, b'') class ThreadJoinOnShutdown(BaseTestCase): # Between fork() and exec(), only async-safe functions are allowed (issues # #12316 and #11870), and fork() from a worker thread is known to trigger # problems with some operating systems (issue #3863): skip problematic tests # on platforms known to behave badly. platforms_to_skip = ('freebsd4', 'freebsd5', 'freebsd6', 'netbsd5', 'hp-ux11') def _run_and_join(self, script): script = """if 1: import sys, os, time, threading # a thread, which waits for the main program to terminate def joiningfunc(mainthread): mainthread.join() print('end of thread') # stdout is fully buffered because not a tty, we have to flush # before exit. sys.stdout.flush() \n""" + script rc, out, err = assert_python_ok("-c", script) data = out.decode().replace('\r', '') self.assertEqual(data, "end of main\nend of thread\n") def test_1_join_on_shutdown(self): # The usual case: on exit, wait for a non-daemon thread script = """if 1: import os t = threading.Thread(target=joiningfunc, args=(threading.current_thread(),)) t.start() time.sleep(0.1) print('end of main') """ self._run_and_join(script) @unittest.skipUnless(hasattr(os, 'fork'), "needs os.fork()") @unittest.skipIf(sys.platform in platforms_to_skip, "due to known OS bug") def test_2_join_in_forked_process(self): # Like the test above, but from a forked interpreter script = """if 1: childpid = os.fork() if childpid != 0: os.waitpid(childpid, 0) sys.exit(0) t = threading.Thread(target=joiningfunc, args=(threading.current_thread(),)) t.start() print('end of main') """ self._run_and_join(script) @unittest.skipUnless(hasattr(os, 'fork'), "needs os.fork()") @unittest.skipIf(sys.platform in platforms_to_skip, "due to known OS bug") def test_3_join_in_forked_from_thread(self): # Like the test above, but fork() was called from a worker thread # In the forked process, the main Thread object must be marked as stopped. script = """if 1: main_thread = threading.current_thread() def worker(): childpid = os.fork() if childpid != 0: os.waitpid(childpid, 0) sys.exit(0) t = threading.Thread(target=joiningfunc, args=(main_thread,)) print('end of main') t.start() t.join() # Should not block: main_thread is already stopped w = threading.Thread(target=worker) w.start() """ self._run_and_join(script) def assertScriptHasOutput(self, script, expected_output): rc, out, err = assert_python_ok("-c", script) data = out.decode().replace('\r', '') self.assertEqual(data, expected_output) @unittest.skipUnless(hasattr(os, 'fork'), "needs os.fork()") @unittest.skipIf(sys.platform in platforms_to_skip, "due to known OS bug") def test_4_joining_across_fork_in_worker_thread(self): # There used to be a possible deadlock when forking from a child # thread. See http://bugs.python.org/issue6643. # The script takes the following steps: # - The main thread in the parent process starts a new thread and then # tries to join it. # - The join operation acquires the Lock inside the thread's _block # Condition. (See threading.py:Thread.join().) # - We stub out the acquire method on the condition to force it to wait # until the child thread forks. (See LOCK ACQUIRED HERE) # - The child thread forks. (See LOCK HELD and WORKER THREAD FORKS # HERE) # - The main thread of the parent process enters Condition.wait(), # which releases the lock on the child thread. # - The child process returns. Without the necessary fix, when the # main thread of the child process (which used to be the child thread # in the parent process) attempts to exit, it will try to acquire the # lock in the Thread._block Condition object and hang, because the # lock was held across the fork. script = """if 1: import os, time, threading finish_join = False start_fork = False def worker(): # Wait until this thread's lock is acquired before forking to # create the deadlock. global finish_join while not start_fork: time.sleep(0.01) # LOCK HELD: Main thread holds lock across this call. childpid = os.fork() finish_join = True if childpid != 0: # Parent process just waits for child. os.waitpid(childpid, 0) # Child process should just return. w = threading.Thread(target=worker) # Stub out the private condition variable's lock acquire method. # This acquires the lock and then waits until the child has forked # before returning, which will release the lock soon after. If # someone else tries to fix this test case by acquiring this lock # before forking instead of resetting it, the test case will # deadlock when it shouldn't. condition = w._block orig_acquire = condition.acquire call_count_lock = threading.Lock() call_count = 0 def my_acquire(): global call_count global start_fork orig_acquire() # LOCK ACQUIRED HERE start_fork = True if call_count == 0: while not finish_join: time.sleep(0.01) # WORKER THREAD FORKS HERE with call_count_lock: call_count += 1 condition.acquire = my_acquire w.start() w.join() print('end of main') """ self.assertScriptHasOutput(script, "end of main\n") @unittest.skipUnless(hasattr(os, 'fork'), "needs os.fork()") @unittest.skipIf(sys.platform in platforms_to_skip, "due to known OS bug") def test_5_clear_waiter_locks_to_avoid_crash(self): # Check that a spawned thread that forks doesn't segfault on certain # platforms, namely OS X. This used to happen if there was a waiter # lock in the thread's condition variable's waiters list. Even though # we know the lock will be held across the fork, it is not safe to # release locks held across forks on all platforms, so releasing the # waiter lock caused a segfault on OS X. Furthermore, since locks on # OS X are (as of this writing) implemented with a mutex + condition # variable instead of a semaphore, while we know that the Python-level # lock will be acquired, we can't know if the internal mutex will be # acquired at the time of the fork. script = """if True: import os, time, threading start_fork = False def worker(): # Wait until the main thread has attempted to join this thread # before continuing. while not start_fork: time.sleep(0.01) childpid = os.fork() if childpid != 0: # Parent process just waits for child. (cpid, rc) = os.waitpid(childpid, 0) assert cpid == childpid assert rc == 0 print('end of worker thread') else: # Child process should just return. pass w = threading.Thread(target=worker) # Stub out the private condition variable's _release_save method. # This releases the condition's lock and flips the global that # causes the worker to fork. At this point, the problematic waiter # lock has been acquired once by the waiter and has been put onto # the waiters list. condition = w._block orig_release_save = condition._release_save def my_release_save(): global start_fork orig_release_save() # Waiter lock held here, condition lock released. start_fork = True condition._release_save = my_release_save w.start() w.join() print('end of main thread') """ output = "end of worker thread\nend of main thread\n" self.assertScriptHasOutput(script, output) @unittest.skipIf(sys.platform in platforms_to_skip, "due to known OS bug") def test_6_daemon_threads(self): # Check that a daemon thread cannot crash the interpreter on shutdown # by manipulating internal structures that are being disposed of in # the main thread. script = """if True: import os import random import sys import time import threading thread_has_run = set() def random_io(): '''Loop for a while sleeping random tiny amounts and doing some I/O.''' while True: in_f = open(os.__file__, 'rb') stuff = in_f.read(200) null_f = open(os.devnull, 'wb') null_f.write(stuff) time.sleep(random.random() / 1995) null_f.close() in_f.close() thread_has_run.add(threading.current_thread()) def main(): count = 0 for _ in range(40): new_thread = threading.Thread(target=random_io) new_thread.daemon = True new_thread.start() count += 1 while len(thread_has_run) < count: time.sleep(0.001) # Trigger process shutdown sys.exit(0) main() """ rc, out, err = assert_python_ok('-c', script) self.assertFalse(err) @unittest.skipUnless(hasattr(os, 'fork'), "needs os.fork()") @unittest.skipIf(sys.platform in platforms_to_skip, "due to known OS bug") def test_reinit_tls_after_fork(self): # Issue #13817: fork() would deadlock in a multithreaded program with # the ad-hoc TLS implementation. def do_fork_and_wait(): # just fork a child process and wait it pid = os.fork() if pid > 0: os.waitpid(pid, 0) else: os._exit(0) # start a bunch of threads that will fork() child processes threads = [] for i in range(16): t = threading.Thread(target=do_fork_and_wait) threads.append(t) t.start() for t in threads: t.join() @unittest.skipUnless(hasattr(os, 'fork'), "needs os.fork()") def test_clear_threads_states_after_fork(self): # Issue #17094: check that threads states are cleared after fork() # start a bunch of threads threads = [] for i in range(16): t = threading.Thread(target=lambda : time.sleep(0.3)) threads.append(t) t.start() pid = os.fork() if pid == 0: # check that threads states have been cleared if len(sys._current_frames()) == 1: os._exit(0) else: os._exit(1) else: _, status = os.waitpid(pid, 0) self.assertEqual(0, status) for t in threads: t.join() class SubinterpThreadingTests(BaseTestCase): def test_threads_join(self): # Non-daemon threads should be joined at subinterpreter shutdown # (issue #18808) r, w = os.pipe() self.addCleanup(os.close, r) self.addCleanup(os.close, w) code = r"""if 1: import os import threading import time def f(): # Sleep a bit so that the thread is still running when # Py_EndInterpreter is called. time.sleep(0.05) os.write(%d, b"x") threading.Thread(target=f).start() """ % (w,) ret = _testcapi.run_in_subinterp(code) self.assertEqual(ret, 0) # The thread was joined properly. self.assertEqual(os.read(r, 1), b"x") def test_daemon_threads_fatal_error(self): subinterp_code = r"""if 1: import os import threading import time def f(): # Make sure the daemon thread is still running when # Py_EndInterpreter is called. time.sleep(10) threading.Thread(target=f, daemon=True).start() """ script = r"""if 1: import _testcapi _testcapi.run_in_subinterp(%r) """ % (subinterp_code,) rc, out, err = assert_python_failure("-c", script) self.assertIn("Fatal Python error: Py_EndInterpreter: " "not the last thread", err.decode()) class ThreadingExceptionTests(BaseTestCase): # A RuntimeError should be raised if Thread.start() is called # multiple times. def test_start_thread_again(self): thread = threading.Thread() thread.start() self.assertRaises(RuntimeError, thread.start) def test_joining_current_thread(self): current_thread = threading.current_thread() self.assertRaises(RuntimeError, current_thread.join); def test_joining_inactive_thread(self): thread = threading.Thread() self.assertRaises(RuntimeError, thread.join) def test_daemonize_active_thread(self): thread = threading.Thread() thread.start() self.assertRaises(RuntimeError, setattr, thread, "daemon", True) def test_releasing_unacquired_lock(self): lock = threading.Lock() self.assertRaises(RuntimeError, lock.release) @unittest.skipUnless(sys.platform == 'darwin' and test.support.python_is_optimized(), 'test macosx problem') def test_recursion_limit(self): # Issue 9670 # test that excessive recursion within a non-main thread causes # an exception rather than crashing the interpreter on platforms # like Mac OS X or FreeBSD which have small default stack sizes # for threads script = """if True: import threading def recurse(): return recurse() def outer(): try: recurse() except RuntimeError: pass w = threading.Thread(target=outer) w.start() w.join() print('end of main thread') """ expected_output = "end of main thread\n" p = subprocess.Popen([sys.executable, "-c", script], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() data = stdout.decode().replace('\r', '') self.assertEqual(p.returncode, 0, "Unexpected error: " + stderr.decode()) self.assertEqual(data, expected_output) class TimerTests(BaseTestCase): def setUp(self): BaseTestCase.setUp(self) self.callback_args = [] self.callback_event = threading.Event() def test_init_immutable_default_args(self): # Issue 17435: constructor defaults were mutable objects, they could be # mutated via the object attributes and affect other Timer objects. timer1 = threading.Timer(0.01, self._callback_spy) timer1.start() self.callback_event.wait() timer1.args.append("blah") timer1.kwargs["foo"] = "bar" self.callback_event.clear() timer2 = threading.Timer(0.01, self._callback_spy) timer2.start() self.callback_event.wait() self.assertEqual(len(self.callback_args), 2) self.assertEqual(self.callback_args, [((), {}), ((), {})]) def _callback_spy(self, *args, **kwargs): self.callback_args.append((args[:], kwargs.copy())) self.callback_event.set() class LockTests(lock_tests.LockTests): locktype = staticmethod(threading.Lock) class PyRLockTests(lock_tests.RLockTests): locktype = staticmethod(threading._PyRLock) @unittest.skipIf(threading._CRLock is None, 'RLock not implemented in C') class CRLockTests(lock_tests.RLockTests): locktype = staticmethod(threading._CRLock) class EventTests(lock_tests.EventTests): eventtype = staticmethod(threading.Event) class ConditionAsRLockTests(lock_tests.RLockTests): # An Condition uses an RLock by default and exports its API. locktype = staticmethod(threading.Condition) class ConditionTests(lock_tests.ConditionTests): condtype = staticmethod(threading.Condition) class SemaphoreTests(lock_tests.SemaphoreTests): semtype = staticmethod(threading.Semaphore) class BoundedSemaphoreTests(lock_tests.BoundedSemaphoreTests): semtype = staticmethod(threading.BoundedSemaphore) class BarrierTests(lock_tests.BarrierTests): barriertype = staticmethod(threading.Barrier) if __name__ == "__main__": unittest.main()