from test import support, seq_tests import unittest import gc import pickle class TupleTest(seq_tests.CommonTest): type2test = tuple def test_getitem_error(self): msg = "tuple indices must be integers or slices" with self.assertRaisesRegex(TypeError, msg): ()['a'] def test_constructors(self): super().test_constructors() # calling built-in types without argument must return empty self.assertEqual(tuple(), ()) t0_3 = (0, 1, 2, 3) t0_3_bis = tuple(t0_3) self.assertTrue(t0_3 is t0_3_bis) self.assertEqual(tuple([]), ()) self.assertEqual(tuple([0, 1, 2, 3]), (0, 1, 2, 3)) self.assertEqual(tuple(''), ()) self.assertEqual(tuple('spam'), ('s', 'p', 'a', 'm')) self.assertEqual(tuple(x for x in range(10) if x % 2), (1, 3, 5, 7, 9)) def test_keyword_args(self): with self.assertRaisesRegex(TypeError, 'keyword argument'): tuple(sequence=()) def test_truth(self): super().test_truth() self.assertTrue(not ()) self.assertTrue((42, )) def test_len(self): super().test_len() self.assertEqual(len(()), 0) self.assertEqual(len((0,)), 1) self.assertEqual(len((0, 1, 2)), 3) def test_iadd(self): super().test_iadd() u = (0, 1) u2 = u u += (2, 3) self.assertTrue(u is not u2) def test_imul(self): super().test_imul() u = (0, 1) u2 = u u *= 3 self.assertTrue(u is not u2) def test_tupleresizebug(self): # Check that a specific bug in _PyTuple_Resize() is squashed. def f(): for i in range(1000): yield i self.assertEqual(list(tuple(f())), list(range(1000))) # Various tests for hashing of tuples to check that we get few collisions. # # Earlier versions of the tuple hash algorithm had collisions # reported at: # - https://bugs.python.org/issue942952 # - https://bugs.python.org/issue34751 # # Notes: # - The hash of tuples is deterministic: if the test passes once on a given # system, it will always pass. So the probabilities mentioned in the # test_hash functions below should be interpreted assuming that the # hashes are random. # - Due to the structure in the testsuite inputs, collisions are not # independent. For example, if hash((a,b)) == hash((c,d)), then also # hash((a,b,x)) == hash((c,d,x)). But the quoted probabilities assume # independence anyway. # - We limit the hash to 32 bits in the tests to have a good test on # 64-bit systems too. Furthermore, this is also a sanity check that the # lower 32 bits of a 64-bit hash are sufficiently random too. def test_hash1(self): # Check for hash collisions between small integers in range(50) and # certain tuples and nested tuples of such integers. N=50 base = list(range(N)) xp = [(i, j) for i in base for j in base] inps = base + [(i, j) for i in base for j in xp] + \ [(i, j) for i in xp for j in base] + xp + list(zip(base)) self.assertEqual(len(inps), 252600) hashes = set(hash(x) % 2**32 for x in inps) collisions = len(inps) - len(hashes) # For a pure random 32-bit hash and N = 252,600 test items, the # expected number of collisions equals # # 2**(-32) * N(N-1)/2 = 7.4 # # We allow up to 15 collisions, which suffices to make the test # pass with 99.5% confidence. self.assertLessEqual(collisions, 15) def test_hash2(self): # Check for hash collisions between small integers (positive and # negative), tuples and nested tuples of such integers. # All numbers in the interval [-n, ..., n] except -1 because # hash(-1) == hash(-2). n = 5 A = [x for x in range(-n, n+1) if x != -1] B = A + [(a,) for a in A] L2 = [(a,b) for a in A for b in A] L3 = L2 + [(a,b,c) for a in A for b in A for c in A] L4 = L3 + [(a,b,c,d) for a in A for b in A for c in A for d in A] # T = list of testcases. These consist of all (possibly nested # at most 2 levels deep) tuples containing at most 4 items from # the set A. T = A T += [(a,) for a in B + L4] T += [(a,b) for a in L3 for b in B] T += [(a,b) for a in L2 for b in L2] T += [(a,b) for a in B for b in L3] T += [(a,b,c) for a in B for b in B for c in L2] T += [(a,b,c) for a in B for b in L2 for c in B] T += [(a,b,c) for a in L2 for b in B for c in B] T += [(a,b,c,d) for a in B for b in B for c in B for d in B] self.assertEqual(len(T), 345130) hashes = set(hash(x) % 2**32 for x in T) collisions = len(T) - len(hashes) # For a pure random 32-bit hash and N = 345,130 test items, the # expected number of collisions equals # # 2**(-32) * N(N-1)/2 = 13.9 # # We allow up to 20 collisions, which suffices to make the test # pass with 95.5% confidence. self.assertLessEqual(collisions, 20) def test_hash3(self): # Check for hash collisions between tuples containing 0.0 and 0.5. # The hashes of 0.0 and 0.5 itself differ only in one high bit. # So this implicitly tests propagation of high bits to low bits. from itertools import product T = list(product([0.0, 0.5], repeat=18)) self.assertEqual(len(T), 262144) hashes = set(hash(x) % 2**32 for x in T) collisions = len(T) - len(hashes) # For a pure random 32-bit hash and N = 262,144 test items, the # expected number of collisions equals # # 2**(-32) * N(N-1)/2 = 8.0 # # We allow up to 15 collisions, which suffices to make the test # pass with 99.1% confidence. self.assertLessEqual(collisions, 15) def test_repr(self): l0 = tuple() l2 = (0, 1, 2) a0 = self.type2test(l0) a2 = self.type2test(l2) self.assertEqual(str(a0), repr(l0)) self.assertEqual(str(a2), repr(l2)) self.assertEqual(repr(a0), "()") self.assertEqual(repr(a2), "(0, 1, 2)") def _not_tracked(self, t): # Nested tuples can take several collections to untrack gc.collect() gc.collect() self.assertFalse(gc.is_tracked(t), t) def _tracked(self, t): self.assertTrue(gc.is_tracked(t), t) gc.collect() gc.collect() self.assertTrue(gc.is_tracked(t), t) @support.cpython_only def test_track_literals(self): # Test GC-optimization of tuple literals x, y, z = 1.5, "a", [] self._not_tracked(()) self._not_tracked((1,)) self._not_tracked((1, 2)) self._not_tracked((1, 2, "a")) self._not_tracked((1, 2, (None, True, False, ()), int)) self._not_tracked((object(),)) self._not_tracked(((1, x), y, (2, 3))) # Tuples with mutable elements are always tracked, even if those # elements are not tracked right now. self._tracked(([],)) self._tracked(([1],)) self._tracked(({},)) self._tracked((set(),)) self._tracked((x, y, z)) def check_track_dynamic(self, tp, always_track): x, y, z = 1.5, "a", [] check = self._tracked if always_track else self._not_tracked check(tp()) check(tp([])) check(tp(set())) check(tp([1, x, y])) check(tp(obj for obj in [1, x, y])) check(tp(set([1, x, y]))) check(tp(tuple([obj]) for obj in [1, x, y])) check(tuple(tp([obj]) for obj in [1, x, y])) self._tracked(tp([z])) self._tracked(tp([[x, y]])) self._tracked(tp([{x: y}])) self._tracked(tp(obj for obj in [x, y, z])) self._tracked(tp(tuple([obj]) for obj in [x, y, z])) self._tracked(tuple(tp([obj]) for obj in [x, y, z])) @support.cpython_only def test_track_dynamic(self): # Test GC-optimization of dynamically constructed tuples. self.check_track_dynamic(tuple, False) @support.cpython_only def test_track_subtypes(self): # Tuple subtypes must always be tracked class MyTuple(tuple): pass self.check_track_dynamic(MyTuple, True) @support.cpython_only def test_bug7466(self): # Trying to untrack an unfinished tuple could crash Python self._not_tracked(tuple(gc.collect() for i in range(101))) def test_repr_large(self): # Check the repr of large list objects def check(n): l = (0,) * n s = repr(l) self.assertEqual(s, '(' + ', '.join(['0'] * n) + ')') check(10) # check our checking code check(1000000) def test_iterator_pickle(self): # Userlist iterators don't support pickling yet since # they are based on generators. data = self.type2test([4, 5, 6, 7]) for proto in range(pickle.HIGHEST_PROTOCOL + 1): itorg = iter(data) d = pickle.dumps(itorg, proto) it = pickle.loads(d) self.assertEqual(type(itorg), type(it)) self.assertEqual(self.type2test(it), self.type2test(data)) it = pickle.loads(d) next(it) d = pickle.dumps(it, proto) self.assertEqual(self.type2test(it), self.type2test(data)[1:]) def test_reversed_pickle(self): data = self.type2test([4, 5, 6, 7]) for proto in range(pickle.HIGHEST_PROTOCOL + 1): itorg = reversed(data) d = pickle.dumps(itorg, proto) it = pickle.loads(d) self.assertEqual(type(itorg), type(it)) self.assertEqual(self.type2test(it), self.type2test(reversed(data))) it = pickle.loads(d) next(it) d = pickle.dumps(it, proto) self.assertEqual(self.type2test(it), self.type2test(reversed(data))[1:]) def test_no_comdat_folding(self): # Issue 8847: In the PGO build, the MSVC linker's COMDAT folding # optimization causes failures in code that relies on distinct # function addresses. class T(tuple): pass with self.assertRaises(TypeError): [3,] + T((1,2)) def test_lexicographic_ordering(self): # Issue 21100 a = self.type2test([1, 2]) b = self.type2test([1, 2, 0]) c = self.type2test([1, 3]) self.assertLess(a, b) self.assertLess(b, c) if __name__ == "__main__": unittest.main()