import contextlib import collections import collections.abc from collections import defaultdict from functools import lru_cache, wraps import gc import inspect import itertools import pickle import re import sys from unittest import TestCase, main, skip from unittest.mock import patch from copy import copy, deepcopy from typing import Any, NoReturn, Never, assert_never from typing import overload, get_overloads, clear_overloads from typing import TypeVar, TypeVarTuple, Unpack, AnyStr from typing import T, KT, VT # Not in __all__. from typing import Union, Optional, Literal from typing import Tuple, List, Dict, MutableMapping from typing import Callable from typing import Generic, ClassVar, Final, final, Protocol from typing import assert_type, cast, runtime_checkable from typing import get_type_hints from typing import get_origin, get_args, get_protocol_members from typing import override from typing import is_typeddict, is_protocol from typing import reveal_type from typing import dataclass_transform from typing import no_type_check, no_type_check_decorator from typing import Type from typing import NamedTuple, NotRequired, Required, TypedDict from typing import IO, TextIO, BinaryIO from typing import Pattern, Match from typing import Annotated, ForwardRef from typing import Self, LiteralString from typing import TypeAlias from typing import ParamSpec, Concatenate, ParamSpecArgs, ParamSpecKwargs from typing import TypeGuard import abc import textwrap import typing import weakref import types from test.support import captured_stderr, cpython_only, infinite_recursion from test.typinganndata import mod_generics_cache, _typed_dict_helper CANNOT_SUBCLASS_TYPE = 'Cannot subclass special typing classes' NOT_A_BASE_TYPE = "type 'typing.%s' is not an acceptable base type" CANNOT_SUBCLASS_INSTANCE = 'Cannot subclass an instance of %s' class BaseTestCase(TestCase): def assertIsSubclass(self, cls, class_or_tuple, msg=None): if not issubclass(cls, class_or_tuple): message = '%r is not a subclass of %r' % (cls, class_or_tuple) if msg is not None: message += ' : %s' % msg raise self.failureException(message) def assertNotIsSubclass(self, cls, class_or_tuple, msg=None): if issubclass(cls, class_or_tuple): message = '%r is a subclass of %r' % (cls, class_or_tuple) if msg is not None: message += ' : %s' % msg raise self.failureException(message) def clear_caches(self): for f in typing._cleanups: f() def all_pickle_protocols(test_func): """Runs `test_func` with various values for `proto` argument.""" @wraps(test_func) def wrapper(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(pickle_proto=proto): test_func(self, proto=proto) return wrapper class Employee: pass class Manager(Employee): pass class Founder(Employee): pass class ManagingFounder(Manager, Founder): pass class AnyTests(BaseTestCase): def test_any_instance_type_error(self): with self.assertRaises(TypeError): isinstance(42, Any) def test_repr(self): self.assertEqual(repr(Any), 'typing.Any') class Sub(Any): pass self.assertEqual( repr(Sub), f".Sub'>", ) def test_errors(self): with self.assertRaises(TypeError): issubclass(42, Any) with self.assertRaises(TypeError): Any[int] # Any is not a generic type. def test_can_subclass(self): class Mock(Any): pass self.assertTrue(issubclass(Mock, Any)) self.assertIsInstance(Mock(), Mock) class Something: pass self.assertFalse(issubclass(Something, Any)) self.assertNotIsInstance(Something(), Mock) class MockSomething(Something, Mock): pass self.assertTrue(issubclass(MockSomething, Any)) ms = MockSomething() self.assertIsInstance(ms, MockSomething) self.assertIsInstance(ms, Something) self.assertIsInstance(ms, Mock) def test_cannot_instantiate(self): with self.assertRaises(TypeError): Any() with self.assertRaises(TypeError): type(Any)() def test_any_works_with_alias(self): # These expressions must simply not fail. typing.Match[Any] typing.Pattern[Any] typing.IO[Any] class BottomTypeTestsMixin: bottom_type: ClassVar[Any] def test_equality(self): self.assertEqual(self.bottom_type, self.bottom_type) self.assertIs(self.bottom_type, self.bottom_type) self.assertNotEqual(self.bottom_type, None) def test_get_origin(self): self.assertIs(get_origin(self.bottom_type), None) def test_instance_type_error(self): with self.assertRaises(TypeError): isinstance(42, self.bottom_type) def test_subclass_type_error(self): with self.assertRaises(TypeError): issubclass(Employee, self.bottom_type) with self.assertRaises(TypeError): issubclass(NoReturn, self.bottom_type) def test_not_generic(self): with self.assertRaises(TypeError): self.bottom_type[int] def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, 'Cannot subclass ' + re.escape(str(self.bottom_type))): class A(self.bottom_type): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class B(type(self.bottom_type)): pass def test_cannot_instantiate(self): with self.assertRaises(TypeError): self.bottom_type() with self.assertRaises(TypeError): type(self.bottom_type)() class NoReturnTests(BottomTypeTestsMixin, BaseTestCase): bottom_type = NoReturn def test_repr(self): self.assertEqual(repr(NoReturn), 'typing.NoReturn') def test_get_type_hints(self): def some(arg: NoReturn) -> NoReturn: ... def some_str(arg: 'NoReturn') -> 'typing.NoReturn': ... expected = {'arg': NoReturn, 'return': NoReturn} for target in [some, some_str]: with self.subTest(target=target): self.assertEqual(gth(target), expected) def test_not_equality(self): self.assertNotEqual(NoReturn, Never) self.assertNotEqual(Never, NoReturn) class NeverTests(BottomTypeTestsMixin, BaseTestCase): bottom_type = Never def test_repr(self): self.assertEqual(repr(Never), 'typing.Never') def test_get_type_hints(self): def some(arg: Never) -> Never: ... def some_str(arg: 'Never') -> 'typing.Never': ... expected = {'arg': Never, 'return': Never} for target in [some, some_str]: with self.subTest(target=target): self.assertEqual(gth(target), expected) class AssertNeverTests(BaseTestCase): def test_exception(self): with self.assertRaises(AssertionError): assert_never(None) value = "some value" with self.assertRaisesRegex(AssertionError, value): assert_never(value) # Make sure a huge value doesn't get printed in its entirety huge_value = "a" * 10000 with self.assertRaises(AssertionError) as cm: assert_never(huge_value) self.assertLess( len(cm.exception.args[0]), typing._ASSERT_NEVER_REPR_MAX_LENGTH * 2, ) class SelfTests(BaseTestCase): def test_equality(self): self.assertEqual(Self, Self) self.assertIs(Self, Self) self.assertNotEqual(Self, None) def test_basics(self): class Foo: def bar(self) -> Self: ... class FooStr: def bar(self) -> 'Self': ... class FooStrTyping: def bar(self) -> 'typing.Self': ... for target in [Foo, FooStr, FooStrTyping]: with self.subTest(target=target): self.assertEqual(gth(target.bar), {'return': Self}) self.assertIs(get_origin(Self), None) def test_repr(self): self.assertEqual(repr(Self), 'typing.Self') def test_cannot_subscript(self): with self.assertRaises(TypeError): Self[int] def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class C(type(Self)): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.Self'): class D(Self): pass def test_cannot_init(self): with self.assertRaises(TypeError): Self() with self.assertRaises(TypeError): type(Self)() def test_no_isinstance(self): with self.assertRaises(TypeError): isinstance(1, Self) with self.assertRaises(TypeError): issubclass(int, Self) def test_alias(self): # TypeAliases are not actually part of the spec alias_1 = Tuple[Self, Self] alias_2 = List[Self] alias_3 = ClassVar[Self] self.assertEqual(get_args(alias_1), (Self, Self)) self.assertEqual(get_args(alias_2), (Self,)) self.assertEqual(get_args(alias_3), (Self,)) class LiteralStringTests(BaseTestCase): def test_equality(self): self.assertEqual(LiteralString, LiteralString) self.assertIs(LiteralString, LiteralString) self.assertNotEqual(LiteralString, None) def test_basics(self): class Foo: def bar(self) -> LiteralString: ... class FooStr: def bar(self) -> 'LiteralString': ... class FooStrTyping: def bar(self) -> 'typing.LiteralString': ... for target in [Foo, FooStr, FooStrTyping]: with self.subTest(target=target): self.assertEqual(gth(target.bar), {'return': LiteralString}) self.assertIs(get_origin(LiteralString), None) def test_repr(self): self.assertEqual(repr(LiteralString), 'typing.LiteralString') def test_cannot_subscript(self): with self.assertRaises(TypeError): LiteralString[int] def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class C(type(LiteralString)): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.LiteralString'): class D(LiteralString): pass def test_cannot_init(self): with self.assertRaises(TypeError): LiteralString() with self.assertRaises(TypeError): type(LiteralString)() def test_no_isinstance(self): with self.assertRaises(TypeError): isinstance(1, LiteralString) with self.assertRaises(TypeError): issubclass(int, LiteralString) def test_alias(self): alias_1 = Tuple[LiteralString, LiteralString] alias_2 = List[LiteralString] alias_3 = ClassVar[LiteralString] self.assertEqual(get_args(alias_1), (LiteralString, LiteralString)) self.assertEqual(get_args(alias_2), (LiteralString,)) self.assertEqual(get_args(alias_3), (LiteralString,)) class TypeVarTests(BaseTestCase): def test_basic_plain(self): T = TypeVar('T') # T equals itself. self.assertEqual(T, T) # T is an instance of TypeVar self.assertIsInstance(T, TypeVar) self.assertEqual(T.__name__, 'T') self.assertEqual(T.__constraints__, ()) self.assertIs(T.__bound__, None) self.assertIs(T.__covariant__, False) self.assertIs(T.__contravariant__, False) self.assertIs(T.__infer_variance__, False) self.assertEqual(T.__module__, __name__) def test_basic_with_exec(self): ns = {} exec('from typing import TypeVar; T = TypeVar("T", bound=float)', ns, ns) T = ns['T'] self.assertIsInstance(T, TypeVar) self.assertEqual(T.__name__, 'T') self.assertEqual(T.__constraints__, ()) self.assertIs(T.__bound__, float) self.assertIs(T.__covariant__, False) self.assertIs(T.__contravariant__, False) self.assertIs(T.__infer_variance__, False) self.assertIs(T.__module__, None) def test_attributes(self): T_bound = TypeVar('T_bound', bound=int) self.assertEqual(T_bound.__name__, 'T_bound') self.assertEqual(T_bound.__constraints__, ()) self.assertIs(T_bound.__bound__, int) T_constraints = TypeVar('T_constraints', int, str) self.assertEqual(T_constraints.__name__, 'T_constraints') self.assertEqual(T_constraints.__constraints__, (int, str)) self.assertIs(T_constraints.__bound__, None) T_co = TypeVar('T_co', covariant=True) self.assertEqual(T_co.__name__, 'T_co') self.assertIs(T_co.__covariant__, True) self.assertIs(T_co.__contravariant__, False) self.assertIs(T_co.__infer_variance__, False) T_contra = TypeVar('T_contra', contravariant=True) self.assertEqual(T_contra.__name__, 'T_contra') self.assertIs(T_contra.__covariant__, False) self.assertIs(T_contra.__contravariant__, True) self.assertIs(T_contra.__infer_variance__, False) T_infer = TypeVar('T_infer', infer_variance=True) self.assertEqual(T_infer.__name__, 'T_infer') self.assertIs(T_infer.__covariant__, False) self.assertIs(T_infer.__contravariant__, False) self.assertIs(T_infer.__infer_variance__, True) def test_typevar_instance_type_error(self): T = TypeVar('T') with self.assertRaises(TypeError): isinstance(42, T) def test_typevar_subclass_type_error(self): T = TypeVar('T') with self.assertRaises(TypeError): issubclass(int, T) with self.assertRaises(TypeError): issubclass(T, int) def test_constrained_error(self): with self.assertRaises(TypeError): X = TypeVar('X', int) X def test_union_unique(self): X = TypeVar('X') Y = TypeVar('Y') self.assertNotEqual(X, Y) self.assertEqual(Union[X], X) self.assertNotEqual(Union[X], Union[X, Y]) self.assertEqual(Union[X, X], X) self.assertNotEqual(Union[X, int], Union[X]) self.assertNotEqual(Union[X, int], Union[int]) self.assertEqual(Union[X, int].__args__, (X, int)) self.assertEqual(Union[X, int].__parameters__, (X,)) self.assertIs(Union[X, int].__origin__, Union) def test_or(self): X = TypeVar('X') # use a string because str doesn't implement # __or__/__ror__ itself self.assertEqual(X | "x", Union[X, "x"]) self.assertEqual("x" | X, Union["x", X]) # make sure the order is correct self.assertEqual(get_args(X | "x"), (X, ForwardRef("x"))) self.assertEqual(get_args("x" | X), (ForwardRef("x"), X)) def test_union_constrained(self): A = TypeVar('A', str, bytes) self.assertNotEqual(Union[A, str], Union[A]) def test_repr(self): self.assertEqual(repr(T), '~T') self.assertEqual(repr(KT), '~KT') self.assertEqual(repr(VT), '~VT') self.assertEqual(repr(AnyStr), '~AnyStr') T_co = TypeVar('T_co', covariant=True) self.assertEqual(repr(T_co), '+T_co') T_contra = TypeVar('T_contra', contravariant=True) self.assertEqual(repr(T_contra), '-T_contra') def test_no_redefinition(self): self.assertNotEqual(TypeVar('T'), TypeVar('T')) self.assertNotEqual(TypeVar('T', int, str), TypeVar('T', int, str)) def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, NOT_A_BASE_TYPE % 'TypeVar'): class V(TypeVar): pass T = TypeVar("T") with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_INSTANCE % 'TypeVar'): class W(T): pass def test_cannot_instantiate_vars(self): with self.assertRaises(TypeError): TypeVar('A')() def test_bound_errors(self): with self.assertRaises(TypeError): TypeVar('X', bound=Union) with self.assertRaises(TypeError): TypeVar('X', str, float, bound=Employee) with self.assertRaisesRegex(TypeError, r"Bound must be a type\. Got \(1, 2\)\."): TypeVar('X', bound=(1, 2)) def test_missing__name__(self): # See bpo-39942 code = ("import typing\n" "T = typing.TypeVar('T')\n" ) exec(code, {}) def test_no_bivariant(self): with self.assertRaises(ValueError): TypeVar('T', covariant=True, contravariant=True) def test_cannot_combine_explicit_and_infer(self): with self.assertRaises(ValueError): TypeVar('T', covariant=True, infer_variance=True) with self.assertRaises(ValueError): TypeVar('T', contravariant=True, infer_variance=True) def test_var_substitution(self): T = TypeVar('T') subst = T.__typing_subst__ self.assertIs(subst(int), int) self.assertEqual(subst(list[int]), list[int]) self.assertEqual(subst(List[int]), List[int]) self.assertEqual(subst(List), List) self.assertIs(subst(Any), Any) self.assertIs(subst(None), type(None)) self.assertIs(subst(T), T) self.assertEqual(subst(int|str), int|str) self.assertEqual(subst(Union[int, str]), Union[int, str]) def test_bad_var_substitution(self): T = TypeVar('T') bad_args = ( (), (int, str), Union, Generic, Generic[T], Protocol, Protocol[T], Final, Final[int], ClassVar, ClassVar[int], ) for arg in bad_args: with self.subTest(arg=arg): with self.assertRaises(TypeError): T.__typing_subst__(arg) with self.assertRaises(TypeError): List[T][arg] with self.assertRaises(TypeError): list[T][arg] def test_many_weakrefs(self): # gh-108295: this used to segfault for cls in (ParamSpec, TypeVarTuple, TypeVar): with self.subTest(cls=cls): vals = weakref.WeakValueDictionary() for x in range(10): vals[x] = cls(str(x)) del vals def test_constructor(self): T = TypeVar(name="T") self.assertEqual(T.__name__, "T") self.assertEqual(T.__constraints__, ()) self.assertIs(T.__bound__, None) def template_replace(templates: list[str], replacements: dict[str, list[str]]) -> list[tuple[str]]: """Renders templates with possible combinations of replacements. Example 1: Suppose that: templates = ["dog_breed are awesome", "dog_breed are cool"] replacements = ["dog_breed": ["Huskies", "Beagles"]] Then we would return: [ ("Huskies are awesome", "Huskies are cool"), ("Beagles are awesome", "Beagles are cool") ] Example 2: Suppose that: templates = ["Huskies are word1 but also word2"] replacements = {"word1": ["playful", "cute"], "word2": ["feisty", "tiring"]} Then we would return: [ ("Huskies are playful but also feisty"), ("Huskies are playful but also tiring"), ("Huskies are cute but also feisty"), ("Huskies are cute but also tiring") ] Note that if any of the replacements do not occur in any template: templates = ["Huskies are word1", "Beagles!"] replacements = {"word1": ["playful", "cute"], "word2": ["feisty", "tiring"]} Then we do not generate duplicates, returning: [ ("Huskies are playful", "Beagles!"), ("Huskies are cute", "Beagles!") ] """ # First, build a structure like: # [ # [("word1", "playful"), ("word1", "cute")], # [("word2", "feisty"), ("word2", "tiring")] # ] replacement_combos = [] for original, possible_replacements in replacements.items(): original_replacement_tuples = [] for replacement in possible_replacements: original_replacement_tuples.append((original, replacement)) replacement_combos.append(original_replacement_tuples) # Second, generate rendered templates, including possible duplicates. rendered_templates = [] for replacement_combo in itertools.product(*replacement_combos): # replacement_combo would be e.g. # [("word1", "playful"), ("word2", "feisty")] templates_with_replacements = [] for template in templates: for original, replacement in replacement_combo: template = template.replace(original, replacement) templates_with_replacements.append(template) rendered_templates.append(tuple(templates_with_replacements)) # Finally, remove the duplicates (but keep the order). rendered_templates_no_duplicates = [] for x in rendered_templates: # Inefficient, but should be fine for our purposes. if x not in rendered_templates_no_duplicates: rendered_templates_no_duplicates.append(x) return rendered_templates_no_duplicates class TemplateReplacementTests(BaseTestCase): def test_two_templates_two_replacements_yields_correct_renders(self): actual = template_replace( templates=["Cats are word1", "Dogs are word2"], replacements={ "word1": ["small", "cute"], "word2": ["big", "fluffy"], }, ) expected = [ ("Cats are small", "Dogs are big"), ("Cats are small", "Dogs are fluffy"), ("Cats are cute", "Dogs are big"), ("Cats are cute", "Dogs are fluffy"), ] self.assertEqual(actual, expected) def test_no_duplicates_if_replacement_not_in_templates(self): actual = template_replace( templates=["Cats are word1", "Dogs!"], replacements={ "word1": ["small", "cute"], "word2": ["big", "fluffy"], }, ) expected = [ ("Cats are small", "Dogs!"), ("Cats are cute", "Dogs!"), ] self.assertEqual(actual, expected) class GenericAliasSubstitutionTests(BaseTestCase): """Tests for type variable substitution in generic aliases. For variadic cases, these tests should be regarded as the source of truth, since we hadn't realised the full complexity of variadic substitution at the time of finalizing PEP 646. For full discussion, see https://github.com/python/cpython/issues/91162. """ def test_one_parameter(self): T = TypeVar('T') Ts = TypeVarTuple('Ts') Ts2 = TypeVarTuple('Ts2') class C(Generic[T]): pass generics = ['C', 'list', 'List'] tuple_types = ['tuple', 'Tuple'] tests = [ # Alias # Args # Expected result ('generic[T]', '[()]', 'TypeError'), ('generic[T]', '[int]', 'generic[int]'), ('generic[T]', '[int, str]', 'TypeError'), ('generic[T]', '[tuple_type[int, ...]]', 'generic[tuple_type[int, ...]]'), ('generic[T]', '[*tuple_type[int]]', 'generic[int]'), ('generic[T]', '[*tuple_type[()]]', 'TypeError'), ('generic[T]', '[*tuple_type[int, str]]', 'TypeError'), ('generic[T]', '[*tuple_type[int, ...]]', 'TypeError'), ('generic[T]', '[*Ts]', 'TypeError'), ('generic[T]', '[T, *Ts]', 'TypeError'), ('generic[T]', '[*Ts, T]', 'TypeError'), # Raises TypeError because C is not variadic. # (If C _were_ variadic, it'd be fine.) ('C[T, *tuple_type[int, ...]]', '[int]', 'TypeError'), # Should definitely raise TypeError: list only takes one argument. ('list[T, *tuple_type[int, ...]]', '[int]', 'list[int, *tuple_type[int, ...]]'), ('List[T, *tuple_type[int, ...]]', '[int]', 'TypeError'), # Should raise, because more than one `TypeVarTuple` is not supported. ('generic[*Ts, *Ts2]', '[int]', 'TypeError'), ] for alias_template, args_template, expected_template in tests: rendered_templates = template_replace( templates=[alias_template, args_template, expected_template], replacements={'generic': generics, 'tuple_type': tuple_types} ) for alias_str, args_str, expected_str in rendered_templates: with self.subTest(alias=alias_str, args=args_str, expected=expected_str): if expected_str == 'TypeError': with self.assertRaises(TypeError): eval(alias_str + args_str) else: self.assertEqual( eval(alias_str + args_str), eval(expected_str) ) def test_two_parameters(self): T1 = TypeVar('T1') T2 = TypeVar('T2') Ts = TypeVarTuple('Ts') class C(Generic[T1, T2]): pass generics = ['C', 'dict', 'Dict'] tuple_types = ['tuple', 'Tuple'] tests = [ # Alias # Args # Expected result ('generic[T1, T2]', '[()]', 'TypeError'), ('generic[T1, T2]', '[int]', 'TypeError'), ('generic[T1, T2]', '[int, str]', 'generic[int, str]'), ('generic[T1, T2]', '[int, str, bool]', 'TypeError'), ('generic[T1, T2]', '[*tuple_type[int]]', 'TypeError'), ('generic[T1, T2]', '[*tuple_type[int, str]]', 'generic[int, str]'), ('generic[T1, T2]', '[*tuple_type[int, str, bool]]', 'TypeError'), ('generic[T1, T2]', '[int, *tuple_type[str]]', 'generic[int, str]'), ('generic[T1, T2]', '[*tuple_type[int], str]', 'generic[int, str]'), ('generic[T1, T2]', '[*tuple_type[int], *tuple_type[str]]', 'generic[int, str]'), ('generic[T1, T2]', '[*tuple_type[int, str], *tuple_type[()]]', 'generic[int, str]'), ('generic[T1, T2]', '[*tuple_type[()], *tuple_type[int, str]]', 'generic[int, str]'), ('generic[T1, T2]', '[*tuple_type[int], *tuple_type[()]]', 'TypeError'), ('generic[T1, T2]', '[*tuple_type[()], *tuple_type[int]]', 'TypeError'), ('generic[T1, T2]', '[*tuple_type[int, str], *tuple_type[float]]', 'TypeError'), ('generic[T1, T2]', '[*tuple_type[int], *tuple_type[str, float]]', 'TypeError'), ('generic[T1, T2]', '[*tuple_type[int, str], *tuple_type[float, bool]]', 'TypeError'), ('generic[T1, T2]', '[tuple_type[int, ...]]', 'TypeError'), ('generic[T1, T2]', '[tuple_type[int, ...], tuple_type[str, ...]]', 'generic[tuple_type[int, ...], tuple_type[str, ...]]'), ('generic[T1, T2]', '[*tuple_type[int, ...]]', 'TypeError'), ('generic[T1, T2]', '[int, *tuple_type[str, ...]]', 'TypeError'), ('generic[T1, T2]', '[*tuple_type[int, ...], str]', 'TypeError'), ('generic[T1, T2]', '[*tuple_type[int, ...], *tuple_type[str, ...]]', 'TypeError'), ('generic[T1, T2]', '[*Ts]', 'TypeError'), ('generic[T1, T2]', '[T, *Ts]', 'TypeError'), ('generic[T1, T2]', '[*Ts, T]', 'TypeError'), # This one isn't technically valid - none of the things that # `generic` can be (defined in `generics` above) are variadic, so we # shouldn't really be able to do `generic[T1, *tuple_type[int, ...]]`. # So even if type checkers shouldn't allow it, we allow it at # runtime, in accordance with a general philosophy of "Keep the # runtime lenient so people can experiment with typing constructs". ('generic[T1, *tuple_type[int, ...]]', '[str]', 'generic[str, *tuple_type[int, ...]]'), ] for alias_template, args_template, expected_template in tests: rendered_templates = template_replace( templates=[alias_template, args_template, expected_template], replacements={'generic': generics, 'tuple_type': tuple_types} ) for alias_str, args_str, expected_str in rendered_templates: with self.subTest(alias=alias_str, args=args_str, expected=expected_str): if expected_str == 'TypeError': with self.assertRaises(TypeError): eval(alias_str + args_str) else: self.assertEqual( eval(alias_str + args_str), eval(expected_str) ) def test_three_parameters(self): T1 = TypeVar('T1') T2 = TypeVar('T2') T3 = TypeVar('T3') class C(Generic[T1, T2, T3]): pass generics = ['C'] tuple_types = ['tuple', 'Tuple'] tests = [ # Alias # Args # Expected result ('generic[T1, bool, T2]', '[int, str]', 'generic[int, bool, str]'), ('generic[T1, bool, T2]', '[*tuple_type[int, str]]', 'generic[int, bool, str]'), ] for alias_template, args_template, expected_template in tests: rendered_templates = template_replace( templates=[alias_template, args_template, expected_template], replacements={'generic': generics, 'tuple_type': tuple_types} ) for alias_str, args_str, expected_str in rendered_templates: with self.subTest(alias=alias_str, args=args_str, expected=expected_str): if expected_str == 'TypeError': with self.assertRaises(TypeError): eval(alias_str + args_str) else: self.assertEqual( eval(alias_str + args_str), eval(expected_str) ) def test_variadic_parameters(self): T1 = TypeVar('T1') T2 = TypeVar('T2') Ts = TypeVarTuple('Ts') class C(Generic[*Ts]): pass generics = ['C', 'tuple', 'Tuple'] tuple_types = ['tuple', 'Tuple'] tests = [ # Alias # Args # Expected result ('generic[*Ts]', '[()]', 'generic[()]'), ('generic[*Ts]', '[int]', 'generic[int]'), ('generic[*Ts]', '[int, str]', 'generic[int, str]'), ('generic[*Ts]', '[*tuple_type[int]]', 'generic[int]'), ('generic[*Ts]', '[*tuple_type[*Ts]]', 'generic[*Ts]'), ('generic[*Ts]', '[*tuple_type[int, str]]', 'generic[int, str]'), ('generic[*Ts]', '[str, *tuple_type[int, ...], bool]', 'generic[str, *tuple_type[int, ...], bool]'), ('generic[*Ts]', '[tuple_type[int, ...]]', 'generic[tuple_type[int, ...]]'), ('generic[*Ts]', '[tuple_type[int, ...], tuple_type[str, ...]]', 'generic[tuple_type[int, ...], tuple_type[str, ...]]'), ('generic[*Ts]', '[*tuple_type[int, ...]]', 'generic[*tuple_type[int, ...]]'), ('generic[*Ts]', '[*tuple_type[int, ...], *tuple_type[str, ...]]', 'TypeError'), ('generic[*Ts]', '[*Ts]', 'generic[*Ts]'), ('generic[*Ts]', '[T, *Ts]', 'generic[T, *Ts]'), ('generic[*Ts]', '[*Ts, T]', 'generic[*Ts, T]'), ('generic[T, *Ts]', '[()]', 'TypeError'), ('generic[T, *Ts]', '[int]', 'generic[int]'), ('generic[T, *Ts]', '[int, str]', 'generic[int, str]'), ('generic[T, *Ts]', '[int, str, bool]', 'generic[int, str, bool]'), ('generic[list[T], *Ts]', '[()]', 'TypeError'), ('generic[list[T], *Ts]', '[int]', 'generic[list[int]]'), ('generic[list[T], *Ts]', '[int, str]', 'generic[list[int], str]'), ('generic[list[T], *Ts]', '[int, str, bool]', 'generic[list[int], str, bool]'), ('generic[*Ts, T]', '[()]', 'TypeError'), ('generic[*Ts, T]', '[int]', 'generic[int]'), ('generic[*Ts, T]', '[int, str]', 'generic[int, str]'), ('generic[*Ts, T]', '[int, str, bool]', 'generic[int, str, bool]'), ('generic[*Ts, list[T]]', '[()]', 'TypeError'), ('generic[*Ts, list[T]]', '[int]', 'generic[list[int]]'), ('generic[*Ts, list[T]]', '[int, str]', 'generic[int, list[str]]'), ('generic[*Ts, list[T]]', '[int, str, bool]', 'generic[int, str, list[bool]]'), ('generic[T1, T2, *Ts]', '[()]', 'TypeError'), ('generic[T1, T2, *Ts]', '[int]', 'TypeError'), ('generic[T1, T2, *Ts]', '[int, str]', 'generic[int, str]'), ('generic[T1, T2, *Ts]', '[int, str, bool]', 'generic[int, str, bool]'), ('generic[T1, T2, *Ts]', '[int, str, bool, bytes]', 'generic[int, str, bool, bytes]'), ('generic[*Ts, T1, T2]', '[()]', 'TypeError'), ('generic[*Ts, T1, T2]', '[int]', 'TypeError'), ('generic[*Ts, T1, T2]', '[int, str]', 'generic[int, str]'), ('generic[*Ts, T1, T2]', '[int, str, bool]', 'generic[int, str, bool]'), ('generic[*Ts, T1, T2]', '[int, str, bool, bytes]', 'generic[int, str, bool, bytes]'), ('generic[T1, *Ts, T2]', '[()]', 'TypeError'), ('generic[T1, *Ts, T2]', '[int]', 'TypeError'), ('generic[T1, *Ts, T2]', '[int, str]', 'generic[int, str]'), ('generic[T1, *Ts, T2]', '[int, str, bool]', 'generic[int, str, bool]'), ('generic[T1, *Ts, T2]', '[int, str, bool, bytes]', 'generic[int, str, bool, bytes]'), ('generic[T, *Ts]', '[*tuple_type[int, ...]]', 'generic[int, *tuple_type[int, ...]]'), ('generic[T, *Ts]', '[str, *tuple_type[int, ...]]', 'generic[str, *tuple_type[int, ...]]'), ('generic[T, *Ts]', '[*tuple_type[int, ...], str]', 'generic[int, *tuple_type[int, ...], str]'), ('generic[*Ts, T]', '[*tuple_type[int, ...]]', 'generic[*tuple_type[int, ...], int]'), ('generic[*Ts, T]', '[str, *tuple_type[int, ...]]', 'generic[str, *tuple_type[int, ...], int]'), ('generic[*Ts, T]', '[*tuple_type[int, ...], str]', 'generic[*tuple_type[int, ...], str]'), ('generic[T1, *Ts, T2]', '[*tuple_type[int, ...]]', 'generic[int, *tuple_type[int, ...], int]'), ('generic[T, str, *Ts]', '[*tuple_type[int, ...]]', 'generic[int, str, *tuple_type[int, ...]]'), ('generic[*Ts, str, T]', '[*tuple_type[int, ...]]', 'generic[*tuple_type[int, ...], str, int]'), ('generic[list[T], *Ts]', '[*tuple_type[int, ...]]', 'generic[list[int], *tuple_type[int, ...]]'), ('generic[*Ts, list[T]]', '[*tuple_type[int, ...]]', 'generic[*tuple_type[int, ...], list[int]]'), ('generic[T, *tuple_type[int, ...]]', '[str]', 'generic[str, *tuple_type[int, ...]]'), ('generic[T1, T2, *tuple_type[int, ...]]', '[str, bool]', 'generic[str, bool, *tuple_type[int, ...]]'), ('generic[T1, *tuple_type[int, ...], T2]', '[str, bool]', 'generic[str, *tuple_type[int, ...], bool]'), ('generic[T1, *tuple_type[int, ...], T2]', '[str, bool, float]', 'TypeError'), ('generic[T1, *tuple_type[T2, ...]]', '[int, str]', 'generic[int, *tuple_type[str, ...]]'), ('generic[*tuple_type[T1, ...], T2]', '[int, str]', 'generic[*tuple_type[int, ...], str]'), ('generic[T1, *tuple_type[generic[*Ts], ...]]', '[int, str, bool]', 'generic[int, *tuple_type[generic[str, bool], ...]]'), ('generic[*tuple_type[generic[*Ts], ...], T1]', '[int, str, bool]', 'generic[*tuple_type[generic[int, str], ...], bool]'), ] for alias_template, args_template, expected_template in tests: rendered_templates = template_replace( templates=[alias_template, args_template, expected_template], replacements={'generic': generics, 'tuple_type': tuple_types} ) for alias_str, args_str, expected_str in rendered_templates: with self.subTest(alias=alias_str, args=args_str, expected=expected_str): if expected_str == 'TypeError': with self.assertRaises(TypeError): eval(alias_str + args_str) else: self.assertEqual( eval(alias_str + args_str), eval(expected_str) ) class UnpackTests(BaseTestCase): def test_accepts_single_type(self): (*tuple[int],) Unpack[Tuple[int]] def test_dir(self): dir_items = set(dir(Unpack[Tuple[int]])) for required_item in [ '__args__', '__parameters__', '__origin__', ]: with self.subTest(required_item=required_item): self.assertIn(required_item, dir_items) def test_rejects_multiple_types(self): with self.assertRaises(TypeError): Unpack[Tuple[int], Tuple[str]] # We can't do the equivalent for `*` here - # *(Tuple[int], Tuple[str]) is just plain tuple unpacking, # which is valid. def test_rejects_multiple_parameterization(self): with self.assertRaises(TypeError): (*tuple[int],)[0][tuple[int]] with self.assertRaises(TypeError): Unpack[Tuple[int]][Tuple[int]] def test_cannot_be_called(self): with self.assertRaises(TypeError): Unpack() def test_usage_with_kwargs(self): Movie = TypedDict('Movie', {'name': str, 'year': int}) def foo(**kwargs: Unpack[Movie]): ... self.assertEqual(repr(foo.__annotations__['kwargs']), f"typing.Unpack[{__name__}.Movie]") class TypeVarTupleTests(BaseTestCase): def assertEndsWith(self, string, tail): if not string.endswith(tail): self.fail(f"String {string!r} does not end with {tail!r}") def test_name(self): Ts = TypeVarTuple('Ts') self.assertEqual(Ts.__name__, 'Ts') Ts2 = TypeVarTuple('Ts2') self.assertEqual(Ts2.__name__, 'Ts2') def test_module(self): Ts = TypeVarTuple('Ts') self.assertEqual(Ts.__module__, __name__) def test_exec(self): ns = {} exec('from typing import TypeVarTuple; Ts = TypeVarTuple("Ts")', ns) Ts = ns['Ts'] self.assertEqual(Ts.__name__, 'Ts') self.assertIs(Ts.__module__, None) def test_instance_is_equal_to_itself(self): Ts = TypeVarTuple('Ts') self.assertEqual(Ts, Ts) def test_different_instances_are_different(self): self.assertNotEqual(TypeVarTuple('Ts'), TypeVarTuple('Ts')) def test_instance_isinstance_of_typevartuple(self): Ts = TypeVarTuple('Ts') self.assertIsInstance(Ts, TypeVarTuple) def test_cannot_call_instance(self): Ts = TypeVarTuple('Ts') with self.assertRaises(TypeError): Ts() def test_unpacked_typevartuple_is_equal_to_itself(self): Ts = TypeVarTuple('Ts') self.assertEqual((*Ts,)[0], (*Ts,)[0]) self.assertEqual(Unpack[Ts], Unpack[Ts]) def test_parameterised_tuple_is_equal_to_itself(self): Ts = TypeVarTuple('Ts') self.assertEqual(tuple[*Ts], tuple[*Ts]) self.assertEqual(Tuple[Unpack[Ts]], Tuple[Unpack[Ts]]) def tests_tuple_arg_ordering_matters(self): Ts1 = TypeVarTuple('Ts1') Ts2 = TypeVarTuple('Ts2') self.assertNotEqual( tuple[*Ts1, *Ts2], tuple[*Ts2, *Ts1], ) self.assertNotEqual( Tuple[Unpack[Ts1], Unpack[Ts2]], Tuple[Unpack[Ts2], Unpack[Ts1]], ) def test_tuple_args_and_parameters_are_correct(self): Ts = TypeVarTuple('Ts') t1 = tuple[*Ts] self.assertEqual(t1.__args__, (*Ts,)) self.assertEqual(t1.__parameters__, (Ts,)) t2 = Tuple[Unpack[Ts]] self.assertEqual(t2.__args__, (Unpack[Ts],)) self.assertEqual(t2.__parameters__, (Ts,)) def test_var_substitution(self): Ts = TypeVarTuple('Ts') T = TypeVar('T') T2 = TypeVar('T2') class G1(Generic[*Ts]): pass class G2(Generic[Unpack[Ts]]): pass for A in G1, G2, Tuple, tuple: B = A[*Ts] self.assertEqual(B[()], A[()]) self.assertEqual(B[float], A[float]) self.assertEqual(B[float, str], A[float, str]) C = A[Unpack[Ts]] self.assertEqual(C[()], A[()]) self.assertEqual(C[float], A[float]) self.assertEqual(C[float, str], A[float, str]) D = list[A[*Ts]] self.assertEqual(D[()], list[A[()]]) self.assertEqual(D[float], list[A[float]]) self.assertEqual(D[float, str], list[A[float, str]]) E = List[A[Unpack[Ts]]] self.assertEqual(E[()], List[A[()]]) self.assertEqual(E[float], List[A[float]]) self.assertEqual(E[float, str], List[A[float, str]]) F = A[T, *Ts, T2] with self.assertRaises(TypeError): F[()] with self.assertRaises(TypeError): F[float] self.assertEqual(F[float, str], A[float, str]) self.assertEqual(F[float, str, int], A[float, str, int]) self.assertEqual(F[float, str, int, bytes], A[float, str, int, bytes]) G = A[T, Unpack[Ts], T2] with self.assertRaises(TypeError): G[()] with self.assertRaises(TypeError): G[float] self.assertEqual(G[float, str], A[float, str]) self.assertEqual(G[float, str, int], A[float, str, int]) self.assertEqual(G[float, str, int, bytes], A[float, str, int, bytes]) H = tuple[list[T], A[*Ts], list[T2]] with self.assertRaises(TypeError): H[()] with self.assertRaises(TypeError): H[float] if A != Tuple: self.assertEqual(H[float, str], tuple[list[float], A[()], list[str]]) self.assertEqual(H[float, str, int], tuple[list[float], A[str], list[int]]) self.assertEqual(H[float, str, int, bytes], tuple[list[float], A[str, int], list[bytes]]) I = Tuple[List[T], A[Unpack[Ts]], List[T2]] with self.assertRaises(TypeError): I[()] with self.assertRaises(TypeError): I[float] if A != Tuple: self.assertEqual(I[float, str], Tuple[List[float], A[()], List[str]]) self.assertEqual(I[float, str, int], Tuple[List[float], A[str], List[int]]) self.assertEqual(I[float, str, int, bytes], Tuple[List[float], A[str, int], List[bytes]]) def test_bad_var_substitution(self): Ts = TypeVarTuple('Ts') T = TypeVar('T') T2 = TypeVar('T2') class G1(Generic[*Ts]): pass class G2(Generic[Unpack[Ts]]): pass for A in G1, G2, Tuple, tuple: B = A[Ts] with self.assertRaises(TypeError): B[int, str] C = A[T, T2] with self.assertRaises(TypeError): C[*Ts] with self.assertRaises(TypeError): C[Unpack[Ts]] B = A[T, *Ts, str, T2] with self.assertRaises(TypeError): B[int, *Ts] with self.assertRaises(TypeError): B[int, *Ts, *Ts] C = A[T, Unpack[Ts], str, T2] with self.assertRaises(TypeError): C[int, Unpack[Ts]] with self.assertRaises(TypeError): C[int, Unpack[Ts], Unpack[Ts]] def test_repr_is_correct(self): Ts = TypeVarTuple('Ts') class G1(Generic[*Ts]): pass class G2(Generic[Unpack[Ts]]): pass self.assertEqual(repr(Ts), 'Ts') self.assertEqual(repr((*Ts,)[0]), 'typing.Unpack[Ts]') self.assertEqual(repr(Unpack[Ts]), 'typing.Unpack[Ts]') self.assertEqual(repr(tuple[*Ts]), 'tuple[typing.Unpack[Ts]]') self.assertEqual(repr(Tuple[Unpack[Ts]]), 'typing.Tuple[typing.Unpack[Ts]]') self.assertEqual(repr(*tuple[*Ts]), '*tuple[typing.Unpack[Ts]]') self.assertEqual(repr(Unpack[Tuple[Unpack[Ts]]]), 'typing.Unpack[typing.Tuple[typing.Unpack[Ts]]]') def test_variadic_class_repr_is_correct(self): Ts = TypeVarTuple('Ts') class A(Generic[*Ts]): pass class B(Generic[Unpack[Ts]]): pass self.assertEndsWith(repr(A[()]), 'A[()]') self.assertEndsWith(repr(B[()]), 'B[()]') self.assertEndsWith(repr(A[float]), 'A[float]') self.assertEndsWith(repr(B[float]), 'B[float]') self.assertEndsWith(repr(A[float, str]), 'A[float, str]') self.assertEndsWith(repr(B[float, str]), 'B[float, str]') self.assertEndsWith(repr(A[*tuple[int, ...]]), 'A[*tuple[int, ...]]') self.assertEndsWith(repr(B[Unpack[Tuple[int, ...]]]), 'B[typing.Unpack[typing.Tuple[int, ...]]]') self.assertEndsWith(repr(A[float, *tuple[int, ...]]), 'A[float, *tuple[int, ...]]') self.assertEndsWith(repr(A[float, Unpack[Tuple[int, ...]]]), 'A[float, typing.Unpack[typing.Tuple[int, ...]]]') self.assertEndsWith(repr(A[*tuple[int, ...], str]), 'A[*tuple[int, ...], str]') self.assertEndsWith(repr(B[Unpack[Tuple[int, ...]], str]), 'B[typing.Unpack[typing.Tuple[int, ...]], str]') self.assertEndsWith(repr(A[float, *tuple[int, ...], str]), 'A[float, *tuple[int, ...], str]') self.assertEndsWith(repr(B[float, Unpack[Tuple[int, ...]], str]), 'B[float, typing.Unpack[typing.Tuple[int, ...]], str]') def test_variadic_class_alias_repr_is_correct(self): Ts = TypeVarTuple('Ts') class A(Generic[Unpack[Ts]]): pass B = A[*Ts] self.assertEndsWith(repr(B), 'A[typing.Unpack[Ts]]') self.assertEndsWith(repr(B[()]), 'A[()]') self.assertEndsWith(repr(B[float]), 'A[float]') self.assertEndsWith(repr(B[float, str]), 'A[float, str]') C = A[Unpack[Ts]] self.assertEndsWith(repr(C), 'A[typing.Unpack[Ts]]') self.assertEndsWith(repr(C[()]), 'A[()]') self.assertEndsWith(repr(C[float]), 'A[float]') self.assertEndsWith(repr(C[float, str]), 'A[float, str]') D = A[*Ts, int] self.assertEndsWith(repr(D), 'A[typing.Unpack[Ts], int]') self.assertEndsWith(repr(D[()]), 'A[int]') self.assertEndsWith(repr(D[float]), 'A[float, int]') self.assertEndsWith(repr(D[float, str]), 'A[float, str, int]') E = A[Unpack[Ts], int] self.assertEndsWith(repr(E), 'A[typing.Unpack[Ts], int]') self.assertEndsWith(repr(E[()]), 'A[int]') self.assertEndsWith(repr(E[float]), 'A[float, int]') self.assertEndsWith(repr(E[float, str]), 'A[float, str, int]') F = A[int, *Ts] self.assertEndsWith(repr(F), 'A[int, typing.Unpack[Ts]]') self.assertEndsWith(repr(F[()]), 'A[int]') self.assertEndsWith(repr(F[float]), 'A[int, float]') self.assertEndsWith(repr(F[float, str]), 'A[int, float, str]') G = A[int, Unpack[Ts]] self.assertEndsWith(repr(G), 'A[int, typing.Unpack[Ts]]') self.assertEndsWith(repr(G[()]), 'A[int]') self.assertEndsWith(repr(G[float]), 'A[int, float]') self.assertEndsWith(repr(G[float, str]), 'A[int, float, str]') H = A[int, *Ts, str] self.assertEndsWith(repr(H), 'A[int, typing.Unpack[Ts], str]') self.assertEndsWith(repr(H[()]), 'A[int, str]') self.assertEndsWith(repr(H[float]), 'A[int, float, str]') self.assertEndsWith(repr(H[float, str]), 'A[int, float, str, str]') I = A[int, Unpack[Ts], str] self.assertEndsWith(repr(I), 'A[int, typing.Unpack[Ts], str]') self.assertEndsWith(repr(I[()]), 'A[int, str]') self.assertEndsWith(repr(I[float]), 'A[int, float, str]') self.assertEndsWith(repr(I[float, str]), 'A[int, float, str, str]') J = A[*Ts, *tuple[str, ...]] self.assertEndsWith(repr(J), 'A[typing.Unpack[Ts], *tuple[str, ...]]') self.assertEndsWith(repr(J[()]), 'A[*tuple[str, ...]]') self.assertEndsWith(repr(J[float]), 'A[float, *tuple[str, ...]]') self.assertEndsWith(repr(J[float, str]), 'A[float, str, *tuple[str, ...]]') K = A[Unpack[Ts], Unpack[Tuple[str, ...]]] self.assertEndsWith(repr(K), 'A[typing.Unpack[Ts], typing.Unpack[typing.Tuple[str, ...]]]') self.assertEndsWith(repr(K[()]), 'A[typing.Unpack[typing.Tuple[str, ...]]]') self.assertEndsWith(repr(K[float]), 'A[float, typing.Unpack[typing.Tuple[str, ...]]]') self.assertEndsWith(repr(K[float, str]), 'A[float, str, typing.Unpack[typing.Tuple[str, ...]]]') def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, NOT_A_BASE_TYPE % 'TypeVarTuple'): class C(TypeVarTuple): pass Ts = TypeVarTuple('Ts') with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_INSTANCE % 'TypeVarTuple'): class D(Ts): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class E(type(Unpack)): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class F(type(*Ts)): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class G(type(Unpack[Ts])): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.Unpack'): class H(Unpack): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing.Unpack\[Ts\]'): class I(*Ts): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing.Unpack\[Ts\]'): class J(Unpack[Ts]): pass def test_variadic_class_args_are_correct(self): T = TypeVar('T') Ts = TypeVarTuple('Ts') class A(Generic[*Ts]): pass class B(Generic[Unpack[Ts]]): pass C = A[()] D = B[()] self.assertEqual(C.__args__, ()) self.assertEqual(D.__args__, ()) E = A[int] F = B[int] self.assertEqual(E.__args__, (int,)) self.assertEqual(F.__args__, (int,)) G = A[int, str] H = B[int, str] self.assertEqual(G.__args__, (int, str)) self.assertEqual(H.__args__, (int, str)) I = A[T] J = B[T] self.assertEqual(I.__args__, (T,)) self.assertEqual(J.__args__, (T,)) K = A[*Ts] L = B[Unpack[Ts]] self.assertEqual(K.__args__, (*Ts,)) self.assertEqual(L.__args__, (Unpack[Ts],)) M = A[T, *Ts] N = B[T, Unpack[Ts]] self.assertEqual(M.__args__, (T, *Ts)) self.assertEqual(N.__args__, (T, Unpack[Ts])) O = A[*Ts, T] P = B[Unpack[Ts], T] self.assertEqual(O.__args__, (*Ts, T)) self.assertEqual(P.__args__, (Unpack[Ts], T)) def test_variadic_class_origin_is_correct(self): Ts = TypeVarTuple('Ts') class C(Generic[*Ts]): pass self.assertIs(C[int].__origin__, C) self.assertIs(C[T].__origin__, C) self.assertIs(C[Unpack[Ts]].__origin__, C) class D(Generic[Unpack[Ts]]): pass self.assertIs(D[int].__origin__, D) self.assertIs(D[T].__origin__, D) self.assertIs(D[Unpack[Ts]].__origin__, D) def test_get_type_hints_on_unpack_args(self): Ts = TypeVarTuple('Ts') def func1(*args: *Ts): pass self.assertEqual(gth(func1), {'args': Unpack[Ts]}) def func2(*args: *tuple[int, str]): pass self.assertEqual(gth(func2), {'args': Unpack[tuple[int, str]]}) class CustomVariadic(Generic[*Ts]): pass def func3(*args: *CustomVariadic[int, str]): pass self.assertEqual(gth(func3), {'args': Unpack[CustomVariadic[int, str]]}) def test_get_type_hints_on_unpack_args_string(self): Ts = TypeVarTuple('Ts') def func1(*args: '*Ts'): pass self.assertEqual(gth(func1, localns={'Ts': Ts}), {'args': Unpack[Ts]}) def func2(*args: '*tuple[int, str]'): pass self.assertEqual(gth(func2), {'args': Unpack[tuple[int, str]]}) class CustomVariadic(Generic[*Ts]): pass def func3(*args: '*CustomVariadic[int, str]'): pass self.assertEqual(gth(func3, localns={'CustomVariadic': CustomVariadic}), {'args': Unpack[CustomVariadic[int, str]]}) def test_tuple_args_are_correct(self): Ts = TypeVarTuple('Ts') self.assertEqual(tuple[*Ts].__args__, (*Ts,)) self.assertEqual(Tuple[Unpack[Ts]].__args__, (Unpack[Ts],)) self.assertEqual(tuple[*Ts, int].__args__, (*Ts, int)) self.assertEqual(Tuple[Unpack[Ts], int].__args__, (Unpack[Ts], int)) self.assertEqual(tuple[int, *Ts].__args__, (int, *Ts)) self.assertEqual(Tuple[int, Unpack[Ts]].__args__, (int, Unpack[Ts])) self.assertEqual(tuple[int, *Ts, str].__args__, (int, *Ts, str)) self.assertEqual(Tuple[int, Unpack[Ts], str].__args__, (int, Unpack[Ts], str)) self.assertEqual(tuple[*Ts, int].__args__, (*Ts, int)) self.assertEqual(Tuple[Unpack[Ts]].__args__, (Unpack[Ts],)) def test_callable_args_are_correct(self): Ts = TypeVarTuple('Ts') Ts1 = TypeVarTuple('Ts1') Ts2 = TypeVarTuple('Ts2') # TypeVarTuple in the arguments a = Callable[[*Ts], None] b = Callable[[Unpack[Ts]], None] self.assertEqual(a.__args__, (*Ts, type(None))) self.assertEqual(b.__args__, (Unpack[Ts], type(None))) c = Callable[[int, *Ts], None] d = Callable[[int, Unpack[Ts]], None] self.assertEqual(c.__args__, (int, *Ts, type(None))) self.assertEqual(d.__args__, (int, Unpack[Ts], type(None))) e = Callable[[*Ts, int], None] f = Callable[[Unpack[Ts], int], None] self.assertEqual(e.__args__, (*Ts, int, type(None))) self.assertEqual(f.__args__, (Unpack[Ts], int, type(None))) g = Callable[[str, *Ts, int], None] h = Callable[[str, Unpack[Ts], int], None] self.assertEqual(g.__args__, (str, *Ts, int, type(None))) self.assertEqual(h.__args__, (str, Unpack[Ts], int, type(None))) # TypeVarTuple as the return i = Callable[[None], *Ts] j = Callable[[None], Unpack[Ts]] self.assertEqual(i.__args__, (type(None), *Ts)) self.assertEqual(j.__args__, (type(None), Unpack[Ts])) k = Callable[[None], tuple[int, *Ts]] l = Callable[[None], Tuple[int, Unpack[Ts]]] self.assertEqual(k.__args__, (type(None), tuple[int, *Ts])) self.assertEqual(l.__args__, (type(None), Tuple[int, Unpack[Ts]])) m = Callable[[None], tuple[*Ts, int]] n = Callable[[None], Tuple[Unpack[Ts], int]] self.assertEqual(m.__args__, (type(None), tuple[*Ts, int])) self.assertEqual(n.__args__, (type(None), Tuple[Unpack[Ts], int])) o = Callable[[None], tuple[str, *Ts, int]] p = Callable[[None], Tuple[str, Unpack[Ts], int]] self.assertEqual(o.__args__, (type(None), tuple[str, *Ts, int])) self.assertEqual(p.__args__, (type(None), Tuple[str, Unpack[Ts], int])) # TypeVarTuple in both q = Callable[[*Ts], *Ts] r = Callable[[Unpack[Ts]], Unpack[Ts]] self.assertEqual(q.__args__, (*Ts, *Ts)) self.assertEqual(r.__args__, (Unpack[Ts], Unpack[Ts])) s = Callable[[*Ts1], *Ts2] u = Callable[[Unpack[Ts1]], Unpack[Ts2]] self.assertEqual(s.__args__, (*Ts1, *Ts2)) self.assertEqual(u.__args__, (Unpack[Ts1], Unpack[Ts2])) def test_variadic_class_with_duplicate_typevartuples_fails(self): Ts1 = TypeVarTuple('Ts1') Ts2 = TypeVarTuple('Ts2') with self.assertRaises(TypeError): class C(Generic[*Ts1, *Ts1]): pass with self.assertRaises(TypeError): class D(Generic[Unpack[Ts1], Unpack[Ts1]]): pass with self.assertRaises(TypeError): class E(Generic[*Ts1, *Ts2, *Ts1]): pass with self.assertRaises(TypeError): class F(Generic[Unpack[Ts1], Unpack[Ts2], Unpack[Ts1]]): pass def test_type_concatenation_in_variadic_class_argument_list_succeeds(self): Ts = TypeVarTuple('Ts') class C(Generic[Unpack[Ts]]): pass C[int, *Ts] C[int, Unpack[Ts]] C[*Ts, int] C[Unpack[Ts], int] C[int, *Ts, str] C[int, Unpack[Ts], str] C[int, bool, *Ts, float, str] C[int, bool, Unpack[Ts], float, str] def test_type_concatenation_in_tuple_argument_list_succeeds(self): Ts = TypeVarTuple('Ts') tuple[int, *Ts] tuple[*Ts, int] tuple[int, *Ts, str] tuple[int, bool, *Ts, float, str] Tuple[int, Unpack[Ts]] Tuple[Unpack[Ts], int] Tuple[int, Unpack[Ts], str] Tuple[int, bool, Unpack[Ts], float, str] def test_variadic_class_definition_using_packed_typevartuple_fails(self): Ts = TypeVarTuple('Ts') with self.assertRaises(TypeError): class C(Generic[Ts]): pass def test_variadic_class_definition_using_concrete_types_fails(self): Ts = TypeVarTuple('Ts') with self.assertRaises(TypeError): class F(Generic[*Ts, int]): pass with self.assertRaises(TypeError): class E(Generic[Unpack[Ts], int]): pass def test_variadic_class_with_2_typevars_accepts_2_or_more_args(self): Ts = TypeVarTuple('Ts') T1 = TypeVar('T1') T2 = TypeVar('T2') class A(Generic[T1, T2, *Ts]): pass A[int, str] A[int, str, float] A[int, str, float, bool] class B(Generic[T1, T2, Unpack[Ts]]): pass B[int, str] B[int, str, float] B[int, str, float, bool] class C(Generic[T1, *Ts, T2]): pass C[int, str] C[int, str, float] C[int, str, float, bool] class D(Generic[T1, Unpack[Ts], T2]): pass D[int, str] D[int, str, float] D[int, str, float, bool] class E(Generic[*Ts, T1, T2]): pass E[int, str] E[int, str, float] E[int, str, float, bool] class F(Generic[Unpack[Ts], T1, T2]): pass F[int, str] F[int, str, float] F[int, str, float, bool] def test_variadic_args_annotations_are_correct(self): Ts = TypeVarTuple('Ts') def f(*args: Unpack[Ts]): pass def g(*args: *Ts): pass self.assertEqual(f.__annotations__, {'args': Unpack[Ts]}) self.assertEqual(g.__annotations__, {'args': (*Ts,)[0]}) def test_variadic_args_with_ellipsis_annotations_are_correct(self): def a(*args: *tuple[int, ...]): pass self.assertEqual(a.__annotations__, {'args': (*tuple[int, ...],)[0]}) def b(*args: Unpack[Tuple[int, ...]]): pass self.assertEqual(b.__annotations__, {'args': Unpack[Tuple[int, ...]]}) def test_concatenation_in_variadic_args_annotations_are_correct(self): Ts = TypeVarTuple('Ts') # Unpacking using `*`, native `tuple` type def a(*args: *tuple[int, *Ts]): pass self.assertEqual( a.__annotations__, {'args': (*tuple[int, *Ts],)[0]}, ) def b(*args: *tuple[*Ts, int]): pass self.assertEqual( b.__annotations__, {'args': (*tuple[*Ts, int],)[0]}, ) def c(*args: *tuple[str, *Ts, int]): pass self.assertEqual( c.__annotations__, {'args': (*tuple[str, *Ts, int],)[0]}, ) def d(*args: *tuple[int, bool, *Ts, float, str]): pass self.assertEqual( d.__annotations__, {'args': (*tuple[int, bool, *Ts, float, str],)[0]}, ) # Unpacking using `Unpack`, `Tuple` type from typing.py def e(*args: Unpack[Tuple[int, Unpack[Ts]]]): pass self.assertEqual( e.__annotations__, {'args': Unpack[Tuple[int, Unpack[Ts]]]}, ) def f(*args: Unpack[Tuple[Unpack[Ts], int]]): pass self.assertEqual( f.__annotations__, {'args': Unpack[Tuple[Unpack[Ts], int]]}, ) def g(*args: Unpack[Tuple[str, Unpack[Ts], int]]): pass self.assertEqual( g.__annotations__, {'args': Unpack[Tuple[str, Unpack[Ts], int]]}, ) def h(*args: Unpack[Tuple[int, bool, Unpack[Ts], float, str]]): pass self.assertEqual( h.__annotations__, {'args': Unpack[Tuple[int, bool, Unpack[Ts], float, str]]}, ) def test_variadic_class_same_args_results_in_equalty(self): Ts = TypeVarTuple('Ts') class C(Generic[*Ts]): pass class D(Generic[Unpack[Ts]]): pass self.assertEqual(C[int], C[int]) self.assertEqual(D[int], D[int]) Ts1 = TypeVarTuple('Ts1') Ts2 = TypeVarTuple('Ts2') self.assertEqual( C[*Ts1], C[*Ts1], ) self.assertEqual( D[Unpack[Ts1]], D[Unpack[Ts1]], ) self.assertEqual( C[*Ts1, *Ts2], C[*Ts1, *Ts2], ) self.assertEqual( D[Unpack[Ts1], Unpack[Ts2]], D[Unpack[Ts1], Unpack[Ts2]], ) self.assertEqual( C[int, *Ts1, *Ts2], C[int, *Ts1, *Ts2], ) self.assertEqual( D[int, Unpack[Ts1], Unpack[Ts2]], D[int, Unpack[Ts1], Unpack[Ts2]], ) def test_variadic_class_arg_ordering_matters(self): Ts = TypeVarTuple('Ts') class C(Generic[*Ts]): pass class D(Generic[Unpack[Ts]]): pass self.assertNotEqual( C[int, str], C[str, int], ) self.assertNotEqual( D[int, str], D[str, int], ) Ts1 = TypeVarTuple('Ts1') Ts2 = TypeVarTuple('Ts2') self.assertNotEqual( C[*Ts1, *Ts2], C[*Ts2, *Ts1], ) self.assertNotEqual( D[Unpack[Ts1], Unpack[Ts2]], D[Unpack[Ts2], Unpack[Ts1]], ) def test_variadic_class_arg_typevartuple_identity_matters(self): Ts = TypeVarTuple('Ts') Ts1 = TypeVarTuple('Ts1') Ts2 = TypeVarTuple('Ts2') class C(Generic[*Ts]): pass class D(Generic[Unpack[Ts]]): pass self.assertNotEqual(C[*Ts1], C[*Ts2]) self.assertNotEqual(D[Unpack[Ts1]], D[Unpack[Ts2]]) class TypeVarTuplePicklingTests(BaseTestCase): # These are slightly awkward tests to run, because TypeVarTuples are only # picklable if defined in the global scope. We therefore need to push # various things defined in these tests into the global scope with `global` # statements at the start of each test. @all_pickle_protocols def test_pickling_then_unpickling_results_in_same_identity(self, proto): global global_Ts1 # See explanation at start of class. global_Ts1 = TypeVarTuple('global_Ts1') global_Ts2 = pickle.loads(pickle.dumps(global_Ts1, proto)) self.assertIs(global_Ts1, global_Ts2) @all_pickle_protocols def test_pickling_then_unpickling_unpacked_results_in_same_identity(self, proto): global global_Ts # See explanation at start of class. global_Ts = TypeVarTuple('global_Ts') unpacked1 = (*global_Ts,)[0] unpacked2 = pickle.loads(pickle.dumps(unpacked1, proto)) self.assertIs(unpacked1, unpacked2) unpacked3 = Unpack[global_Ts] unpacked4 = pickle.loads(pickle.dumps(unpacked3, proto)) self.assertIs(unpacked3, unpacked4) @all_pickle_protocols def test_pickling_then_unpickling_tuple_with_typevartuple_equality( self, proto ): global global_T, global_Ts # See explanation at start of class. global_T = TypeVar('global_T') global_Ts = TypeVarTuple('global_Ts') tuples = [ tuple[*global_Ts], Tuple[Unpack[global_Ts]], tuple[T, *global_Ts], Tuple[T, Unpack[global_Ts]], tuple[int, *global_Ts], Tuple[int, Unpack[global_Ts]], ] for t in tuples: t2 = pickle.loads(pickle.dumps(t, proto)) self.assertEqual(t, t2) class UnionTests(BaseTestCase): def test_basics(self): u = Union[int, float] self.assertNotEqual(u, Union) def test_subclass_error(self): with self.assertRaises(TypeError): issubclass(int, Union) with self.assertRaises(TypeError): issubclass(Union, int) with self.assertRaises(TypeError): issubclass(Union[int, str], int) def test_union_any(self): u = Union[Any] self.assertEqual(u, Any) u1 = Union[int, Any] u2 = Union[Any, int] u3 = Union[Any, object] self.assertEqual(u1, u2) self.assertNotEqual(u1, Any) self.assertNotEqual(u2, Any) self.assertNotEqual(u3, Any) def test_union_object(self): u = Union[object] self.assertEqual(u, object) u1 = Union[int, object] u2 = Union[object, int] self.assertEqual(u1, u2) self.assertNotEqual(u1, object) self.assertNotEqual(u2, object) def test_unordered(self): u1 = Union[int, float] u2 = Union[float, int] self.assertEqual(u1, u2) def test_single_class_disappears(self): t = Union[Employee] self.assertIs(t, Employee) def test_base_class_kept(self): u = Union[Employee, Manager] self.assertNotEqual(u, Employee) self.assertIn(Employee, u.__args__) self.assertIn(Manager, u.__args__) def test_union_union(self): u = Union[int, float] v = Union[u, Employee] self.assertEqual(v, Union[int, float, Employee]) def test_repr(self): self.assertEqual(repr(Union), 'typing.Union') u = Union[Employee, int] self.assertEqual(repr(u), 'typing.Union[%s.Employee, int]' % __name__) u = Union[int, Employee] self.assertEqual(repr(u), 'typing.Union[int, %s.Employee]' % __name__) T = TypeVar('T') u = Union[T, int][int] self.assertEqual(repr(u), repr(int)) u = Union[List[int], int] self.assertEqual(repr(u), 'typing.Union[typing.List[int], int]') u = Union[list[int], dict[str, float]] self.assertEqual(repr(u), 'typing.Union[list[int], dict[str, float]]') u = Union[int | float] self.assertEqual(repr(u), 'typing.Union[int, float]') u = Union[None, str] self.assertEqual(repr(u), 'typing.Optional[str]') u = Union[str, None] self.assertEqual(repr(u), 'typing.Optional[str]') u = Union[None, str, int] self.assertEqual(repr(u), 'typing.Union[NoneType, str, int]') u = Optional[str] self.assertEqual(repr(u), 'typing.Optional[str]') def test_dir(self): dir_items = set(dir(Union[str, int])) for required_item in [ '__args__', '__parameters__', '__origin__', ]: with self.subTest(required_item=required_item): self.assertIn(required_item, dir_items) def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.Union'): class C(Union): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class D(type(Union)): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.Union\[int, str\]'): class E(Union[int, str]): pass def test_cannot_instantiate(self): with self.assertRaises(TypeError): Union() with self.assertRaises(TypeError): type(Union)() u = Union[int, float] with self.assertRaises(TypeError): u() with self.assertRaises(TypeError): type(u)() def test_union_generalization(self): self.assertFalse(Union[str, typing.Iterable[int]] == str) self.assertFalse(Union[str, typing.Iterable[int]] == typing.Iterable[int]) self.assertIn(str, Union[str, typing.Iterable[int]].__args__) self.assertIn(typing.Iterable[int], Union[str, typing.Iterable[int]].__args__) def test_union_compare_other(self): self.assertNotEqual(Union, object) self.assertNotEqual(Union, Any) self.assertNotEqual(ClassVar, Union) self.assertNotEqual(Optional, Union) self.assertNotEqual([None], Optional) self.assertNotEqual(Optional, typing.Mapping) self.assertNotEqual(Optional[typing.MutableMapping], Union) def test_optional(self): o = Optional[int] u = Union[int, None] self.assertEqual(o, u) def test_empty(self): with self.assertRaises(TypeError): Union[()] def test_no_eval_union(self): u = Union[int, str] def f(x: u): ... self.assertIs(get_type_hints(f)['x'], u) def test_function_repr_union(self): def fun() -> int: ... self.assertEqual(repr(Union[fun, int]), 'typing.Union[fun, int]') def test_union_str_pattern(self): # Shouldn't crash; see http://bugs.python.org/issue25390 A = Union[str, Pattern] A def test_etree(self): # See https://github.com/python/typing/issues/229 # (Only relevant for Python 2.) from xml.etree.ElementTree import Element Union[Element, str] # Shouldn't crash def Elem(*args): return Element(*args) Union[Elem, str] # Nor should this def test_union_of_literals(self): self.assertEqual(Union[Literal[1], Literal[2]].__args__, (Literal[1], Literal[2])) self.assertEqual(Union[Literal[1], Literal[1]], Literal[1]) self.assertEqual(Union[Literal[False], Literal[0]].__args__, (Literal[False], Literal[0])) self.assertEqual(Union[Literal[True], Literal[1]].__args__, (Literal[True], Literal[1])) import enum class Ints(enum.IntEnum): A = 0 B = 1 self.assertEqual(Union[Literal[Ints.A], Literal[Ints.A]], Literal[Ints.A]) self.assertEqual(Union[Literal[Ints.B], Literal[Ints.B]], Literal[Ints.B]) self.assertEqual(Union[Literal[Ints.A], Literal[Ints.B]].__args__, (Literal[Ints.A], Literal[Ints.B])) self.assertEqual(Union[Literal[0], Literal[Ints.A], Literal[False]].__args__, (Literal[0], Literal[Ints.A], Literal[False])) self.assertEqual(Union[Literal[1], Literal[Ints.B], Literal[True]].__args__, (Literal[1], Literal[Ints.B], Literal[True])) class TupleTests(BaseTestCase): def test_basics(self): with self.assertRaises(TypeError): issubclass(Tuple, Tuple[int, str]) with self.assertRaises(TypeError): issubclass(tuple, Tuple[int, str]) class TP(tuple): ... self.assertIsSubclass(tuple, Tuple) self.assertIsSubclass(TP, Tuple) def test_equality(self): self.assertEqual(Tuple[int], Tuple[int]) self.assertEqual(Tuple[int, ...], Tuple[int, ...]) self.assertNotEqual(Tuple[int], Tuple[int, int]) self.assertNotEqual(Tuple[int], Tuple[int, ...]) def test_tuple_subclass(self): class MyTuple(tuple): pass self.assertIsSubclass(MyTuple, Tuple) self.assertIsSubclass(Tuple, Tuple) self.assertIsSubclass(tuple, Tuple) def test_tuple_instance_type_error(self): with self.assertRaises(TypeError): isinstance((0, 0), Tuple[int, int]) self.assertIsInstance((0, 0), Tuple) def test_repr(self): self.assertEqual(repr(Tuple), 'typing.Tuple') self.assertEqual(repr(Tuple[()]), 'typing.Tuple[()]') self.assertEqual(repr(Tuple[int, float]), 'typing.Tuple[int, float]') self.assertEqual(repr(Tuple[int, ...]), 'typing.Tuple[int, ...]') self.assertEqual(repr(Tuple[list[int]]), 'typing.Tuple[list[int]]') def test_errors(self): with self.assertRaises(TypeError): issubclass(42, Tuple) with self.assertRaises(TypeError): issubclass(42, Tuple[int]) class BaseCallableTests: def test_self_subclass(self): Callable = self.Callable with self.assertRaises(TypeError): issubclass(types.FunctionType, Callable[[int], int]) self.assertIsSubclass(types.FunctionType, Callable) self.assertIsSubclass(Callable, Callable) def test_eq_hash(self): Callable = self.Callable C = Callable[[int], int] self.assertEqual(C, Callable[[int], int]) self.assertEqual(len({C, Callable[[int], int]}), 1) self.assertNotEqual(C, Callable[[int], str]) self.assertNotEqual(C, Callable[[str], int]) self.assertNotEqual(C, Callable[[int, int], int]) self.assertNotEqual(C, Callable[[], int]) self.assertNotEqual(C, Callable[..., int]) self.assertNotEqual(C, Callable) def test_dir(self): Callable = self.Callable dir_items = set(dir(Callable[..., int])) for required_item in [ '__args__', '__parameters__', '__origin__', ]: with self.subTest(required_item=required_item): self.assertIn(required_item, dir_items) def test_cannot_instantiate(self): Callable = self.Callable with self.assertRaises(TypeError): Callable() with self.assertRaises(TypeError): type(Callable)() c = Callable[[int], str] with self.assertRaises(TypeError): c() with self.assertRaises(TypeError): type(c)() def test_callable_wrong_forms(self): Callable = self.Callable with self.assertRaises(TypeError): Callable[int] def test_callable_instance_works(self): Callable = self.Callable def f(): pass self.assertIsInstance(f, Callable) self.assertNotIsInstance(None, Callable) def test_callable_instance_type_error(self): Callable = self.Callable def f(): pass with self.assertRaises(TypeError): isinstance(f, Callable[[], None]) with self.assertRaises(TypeError): isinstance(f, Callable[[], Any]) with self.assertRaises(TypeError): isinstance(None, Callable[[], None]) with self.assertRaises(TypeError): isinstance(None, Callable[[], Any]) def test_repr(self): Callable = self.Callable fullname = f'{Callable.__module__}.Callable' ct0 = Callable[[], bool] self.assertEqual(repr(ct0), f'{fullname}[[], bool]') ct2 = Callable[[str, float], int] self.assertEqual(repr(ct2), f'{fullname}[[str, float], int]') ctv = Callable[..., str] self.assertEqual(repr(ctv), f'{fullname}[..., str]') ct3 = Callable[[str, float], list[int]] self.assertEqual(repr(ct3), f'{fullname}[[str, float], list[int]]') def test_callable_with_ellipsis(self): Callable = self.Callable def foo(a: Callable[..., T]): pass self.assertEqual(get_type_hints(foo, globals(), locals()), {'a': Callable[..., T]}) def test_ellipsis_in_generic(self): Callable = self.Callable # Shouldn't crash; see https://github.com/python/typing/issues/259 typing.List[Callable[..., str]] def test_or_and_ror(self): Callable = self.Callable self.assertEqual(Callable | Tuple, Union[Callable, Tuple]) self.assertEqual(Tuple | Callable, Union[Tuple, Callable]) def test_basic(self): Callable = self.Callable alias = Callable[[int, str], float] if Callable is collections.abc.Callable: self.assertIsInstance(alias, types.GenericAlias) self.assertIs(alias.__origin__, collections.abc.Callable) self.assertEqual(alias.__args__, (int, str, float)) self.assertEqual(alias.__parameters__, ()) def test_weakref(self): Callable = self.Callable alias = Callable[[int, str], float] self.assertEqual(weakref.ref(alias)(), alias) def test_pickle(self): global T_pickle, P_pickle, TS_pickle # needed for pickling Callable = self.Callable T_pickle = TypeVar('T_pickle') P_pickle = ParamSpec('P_pickle') TS_pickle = TypeVarTuple('TS_pickle') samples = [ Callable[[int, str], float], Callable[P_pickle, int], Callable[P_pickle, T_pickle], Callable[Concatenate[int, P_pickle], int], Callable[Concatenate[*TS_pickle, P_pickle], int], ] for alias in samples: for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(alias=alias, proto=proto): s = pickle.dumps(alias, proto) loaded = pickle.loads(s) self.assertEqual(alias.__origin__, loaded.__origin__) self.assertEqual(alias.__args__, loaded.__args__) self.assertEqual(alias.__parameters__, loaded.__parameters__) del T_pickle, P_pickle, TS_pickle # cleaning up global state def test_var_substitution(self): Callable = self.Callable fullname = f"{Callable.__module__}.Callable" C1 = Callable[[int, T], T] C2 = Callable[[KT, T], VT] C3 = Callable[..., T] self.assertEqual(C1[str], Callable[[int, str], str]) self.assertEqual(C1[None], Callable[[int, type(None)], type(None)]) self.assertEqual(C2[int, float, str], Callable[[int, float], str]) self.assertEqual(C3[int], Callable[..., int]) self.assertEqual(C3[NoReturn], Callable[..., NoReturn]) # multi chaining C4 = C2[int, VT, str] self.assertEqual(repr(C4), f"{fullname}[[int, ~VT], str]") self.assertEqual(repr(C4[dict]), f"{fullname}[[int, dict], str]") self.assertEqual(C4[dict], Callable[[int, dict], str]) # substitute a nested GenericAlias (both typing and the builtin # version) C5 = Callable[[typing.List[T], tuple[KT, T], VT], int] self.assertEqual(C5[int, str, float], Callable[[typing.List[int], tuple[str, int], float], int]) def test_type_subst_error(self): Callable = self.Callable P = ParamSpec('P') T = TypeVar('T') pat = "Expected a list of types, an ellipsis, ParamSpec, or Concatenate." with self.assertRaisesRegex(TypeError, pat): Callable[P, T][0, int] def test_type_erasure(self): Callable = self.Callable class C1(Callable): def __call__(self): return None a = C1[[int], T] self.assertIs(a().__class__, C1) self.assertEqual(a().__orig_class__, C1[[int], T]) def test_paramspec(self): Callable = self.Callable fullname = f"{Callable.__module__}.Callable" P = ParamSpec('P') P2 = ParamSpec('P2') C1 = Callable[P, T] # substitution self.assertEqual(C1[[int], str], Callable[[int], str]) self.assertEqual(C1[[int, str], str], Callable[[int, str], str]) self.assertEqual(C1[[], str], Callable[[], str]) self.assertEqual(C1[..., str], Callable[..., str]) self.assertEqual(C1[P2, str], Callable[P2, str]) self.assertEqual(C1[Concatenate[int, P2], str], Callable[Concatenate[int, P2], str]) self.assertEqual(repr(C1), f"{fullname}[~P, ~T]") self.assertEqual(repr(C1[[int, str], str]), f"{fullname}[[int, str], str]") with self.assertRaises(TypeError): C1[int, str] C2 = Callable[P, int] self.assertEqual(C2[[int]], Callable[[int], int]) self.assertEqual(C2[[int, str]], Callable[[int, str], int]) self.assertEqual(C2[[]], Callable[[], int]) self.assertEqual(C2[...], Callable[..., int]) self.assertEqual(C2[P2], Callable[P2, int]) self.assertEqual(C2[Concatenate[int, P2]], Callable[Concatenate[int, P2], int]) # special case in PEP 612 where # X[int, str, float] == X[[int, str, float]] self.assertEqual(C2[int], Callable[[int], int]) self.assertEqual(C2[int, str], Callable[[int, str], int]) self.assertEqual(repr(C2), f"{fullname}[~P, int]") self.assertEqual(repr(C2[int, str]), f"{fullname}[[int, str], int]") def test_concatenate(self): Callable = self.Callable fullname = f"{Callable.__module__}.Callable" T = TypeVar('T') P = ParamSpec('P') P2 = ParamSpec('P2') C = Callable[Concatenate[int, P], T] self.assertEqual(repr(C), f"{fullname}[typing.Concatenate[int, ~P], ~T]") self.assertEqual(C[P2, int], Callable[Concatenate[int, P2], int]) self.assertEqual(C[[str, float], int], Callable[[int, str, float], int]) self.assertEqual(C[[], int], Callable[[int], int]) self.assertEqual(C[Concatenate[str, P2], int], Callable[Concatenate[int, str, P2], int]) self.assertEqual(C[..., int], Callable[Concatenate[int, ...], int]) C = Callable[Concatenate[int, P], int] self.assertEqual(repr(C), f"{fullname}[typing.Concatenate[int, ~P], int]") self.assertEqual(C[P2], Callable[Concatenate[int, P2], int]) self.assertEqual(C[[str, float]], Callable[[int, str, float], int]) self.assertEqual(C[str, float], Callable[[int, str, float], int]) self.assertEqual(C[[]], Callable[[int], int]) self.assertEqual(C[Concatenate[str, P2]], Callable[Concatenate[int, str, P2], int]) self.assertEqual(C[...], Callable[Concatenate[int, ...], int]) def test_nested_paramspec(self): # Since Callable has some special treatment, we want to be sure # that substituion works correctly, see gh-103054 Callable = self.Callable P = ParamSpec('P') P2 = ParamSpec('P2') T = TypeVar('T') T2 = TypeVar('T2') Ts = TypeVarTuple('Ts') class My(Generic[P, T]): pass self.assertEqual(My.__parameters__, (P, T)) C1 = My[[int, T2], Callable[P2, T2]] self.assertEqual(C1.__args__, ((int, T2), Callable[P2, T2])) self.assertEqual(C1.__parameters__, (T2, P2)) self.assertEqual(C1[str, [list[int], bytes]], My[[int, str], Callable[[list[int], bytes], str]]) C2 = My[[Callable[[T2], int], list[T2]], str] self.assertEqual(C2.__args__, ((Callable[[T2], int], list[T2]), str)) self.assertEqual(C2.__parameters__, (T2,)) self.assertEqual(C2[list[str]], My[[Callable[[list[str]], int], list[list[str]]], str]) C3 = My[[Callable[P2, T2], T2], T2] self.assertEqual(C3.__args__, ((Callable[P2, T2], T2), T2)) self.assertEqual(C3.__parameters__, (P2, T2)) self.assertEqual(C3[[], int], My[[Callable[[], int], int], int]) self.assertEqual(C3[[str, bool], int], My[[Callable[[str, bool], int], int], int]) self.assertEqual(C3[[str, bool], T][int], My[[Callable[[str, bool], int], int], int]) C4 = My[[Callable[[int, *Ts, str], T2], T2], T2] self.assertEqual(C4.__args__, ((Callable[[int, *Ts, str], T2], T2), T2)) self.assertEqual(C4.__parameters__, (Ts, T2)) self.assertEqual(C4[bool, bytes, float], My[[Callable[[int, bool, bytes, str], float], float], float]) def test_errors(self): Callable = self.Callable alias = Callable[[int, str], float] with self.assertRaisesRegex(TypeError, "is not a generic class"): alias[int] P = ParamSpec('P') C1 = Callable[P, T] with self.assertRaisesRegex(TypeError, "many arguments for"): C1[int, str, str] with self.assertRaisesRegex(TypeError, "few arguments for"): C1[int] class TypingCallableTests(BaseCallableTests, BaseTestCase): Callable = typing.Callable def test_consistency(self): # bpo-42195 # Testing collections.abc.Callable's consistency with typing.Callable c1 = typing.Callable[[int, str], dict] c2 = collections.abc.Callable[[int, str], dict] self.assertEqual(c1.__args__, c2.__args__) self.assertEqual(hash(c1.__args__), hash(c2.__args__)) class CollectionsCallableTests(BaseCallableTests, BaseTestCase): Callable = collections.abc.Callable class LiteralTests(BaseTestCase): def test_basics(self): # All of these are allowed. Literal[1] Literal[1, 2, 3] Literal["x", "y", "z"] Literal[None] Literal[True] Literal[1, "2", False] Literal[Literal[1, 2], Literal[4, 5]] Literal[b"foo", u"bar"] def test_enum(self): import enum class My(enum.Enum): A = 'A' self.assertEqual(Literal[My.A].__args__, (My.A,)) def test_illegal_parameters_do_not_raise_runtime_errors(self): # Type checkers should reject these types, but we do not # raise errors at runtime to maintain maximum flexibility. Literal[int] Literal[3j + 2, ..., ()] Literal[{"foo": 3, "bar": 4}] Literal[T] def test_literals_inside_other_types(self): List[Literal[1, 2, 3]] List[Literal[("foo", "bar", "baz")]] def test_repr(self): self.assertEqual(repr(Literal[1]), "typing.Literal[1]") self.assertEqual(repr(Literal[1, True, "foo"]), "typing.Literal[1, True, 'foo']") self.assertEqual(repr(Literal[int]), "typing.Literal[int]") self.assertEqual(repr(Literal), "typing.Literal") self.assertEqual(repr(Literal[None]), "typing.Literal[None]") self.assertEqual(repr(Literal[1, 2, 3, 3]), "typing.Literal[1, 2, 3]") def test_dir(self): dir_items = set(dir(Literal[1, 2, 3])) for required_item in [ '__args__', '__parameters__', '__origin__', ]: with self.subTest(required_item=required_item): self.assertIn(required_item, dir_items) def test_cannot_init(self): with self.assertRaises(TypeError): Literal() with self.assertRaises(TypeError): Literal[1]() with self.assertRaises(TypeError): type(Literal)() with self.assertRaises(TypeError): type(Literal[1])() def test_no_isinstance_or_issubclass(self): with self.assertRaises(TypeError): isinstance(1, Literal[1]) with self.assertRaises(TypeError): isinstance(int, Literal[1]) with self.assertRaises(TypeError): issubclass(1, Literal[1]) with self.assertRaises(TypeError): issubclass(int, Literal[1]) def test_no_subclassing(self): with self.assertRaises(TypeError): class Foo(Literal[1]): pass with self.assertRaises(TypeError): class Bar(Literal): pass def test_no_multiple_subscripts(self): with self.assertRaises(TypeError): Literal[1][1] def test_equal(self): self.assertNotEqual(Literal[0], Literal[False]) self.assertNotEqual(Literal[True], Literal[1]) self.assertNotEqual(Literal[1], Literal[2]) self.assertNotEqual(Literal[1, True], Literal[1]) self.assertNotEqual(Literal[1, True], Literal[1, 1]) self.assertNotEqual(Literal[1, 2], Literal[True, 2]) self.assertEqual(Literal[1], Literal[1]) self.assertEqual(Literal[1, 2], Literal[2, 1]) self.assertEqual(Literal[1, 2, 3], Literal[1, 2, 3, 3]) def test_hash(self): self.assertEqual(hash(Literal[1]), hash(Literal[1])) self.assertEqual(hash(Literal[1, 2]), hash(Literal[2, 1])) self.assertEqual(hash(Literal[1, 2, 3]), hash(Literal[1, 2, 3, 3])) def test_args(self): self.assertEqual(Literal[1, 2, 3].__args__, (1, 2, 3)) self.assertEqual(Literal[1, 2, 3, 3].__args__, (1, 2, 3)) self.assertEqual(Literal[1, Literal[2], Literal[3, 4]].__args__, (1, 2, 3, 4)) # Mutable arguments will not be deduplicated self.assertEqual(Literal[[], []].__args__, ([], [])) def test_flatten(self): l1 = Literal[Literal[1], Literal[2], Literal[3]] l2 = Literal[Literal[1, 2], 3] l3 = Literal[Literal[1, 2, 3]] for l in l1, l2, l3: self.assertEqual(l, Literal[1, 2, 3]) self.assertEqual(l.__args__, (1, 2, 3)) def test_does_not_flatten_enum(self): import enum class Ints(enum.IntEnum): A = 1 B = 2 l = Literal[ Literal[Ints.A], Literal[Ints.B], Literal[1], Literal[2], ] self.assertEqual(l.__args__, (Ints.A, Ints.B, 1, 2)) XK = TypeVar('XK', str, bytes) XV = TypeVar('XV') class SimpleMapping(Generic[XK, XV]): def __getitem__(self, key: XK) -> XV: ... def __setitem__(self, key: XK, value: XV): ... def get(self, key: XK, default: XV = None) -> XV: ... class MySimpleMapping(SimpleMapping[XK, XV]): def __init__(self): self.store = {} def __getitem__(self, key: str): return self.store[key] def __setitem__(self, key: str, value): self.store[key] = value def get(self, key: str, default=None): try: return self.store[key] except KeyError: return default class Coordinate(Protocol): x: int y: int @runtime_checkable class Point(Coordinate, Protocol): label: str class MyPoint: x: int y: int label: str class XAxis(Protocol): x: int class YAxis(Protocol): y: int @runtime_checkable class Position(XAxis, YAxis, Protocol): pass @runtime_checkable class Proto(Protocol): attr: int def meth(self, arg: str) -> int: ... class Concrete(Proto): pass class Other: attr: int = 1 def meth(self, arg: str) -> int: if arg == 'this': return 1 return 0 class NT(NamedTuple): x: int y: int @runtime_checkable class HasCallProtocol(Protocol): __call__: typing.Callable class ProtocolTests(BaseTestCase): def test_basic_protocol(self): @runtime_checkable class P(Protocol): def meth(self): pass class C: pass class D: def meth(self): pass def f(): pass self.assertIsSubclass(D, P) self.assertIsInstance(D(), P) self.assertNotIsSubclass(C, P) self.assertNotIsInstance(C(), P) self.assertNotIsSubclass(types.FunctionType, P) self.assertNotIsInstance(f, P) def test_runtime_checkable_generic_non_protocol(self): # Make sure this doesn't raise AttributeError with self.assertRaisesRegex( TypeError, "@runtime_checkable can be only applied to protocol classes", ): @runtime_checkable class Foo[T]: ... def test_runtime_checkable_generic(self): @runtime_checkable class Foo[T](Protocol): def meth(self) -> T: ... class Impl: def meth(self) -> int: ... self.assertIsSubclass(Impl, Foo) class NotImpl: def method(self) -> int: ... self.assertNotIsSubclass(NotImpl, Foo) def test_pep695_generics_can_be_runtime_checkable(self): @runtime_checkable class HasX(Protocol): x: int class Bar[T]: x: T def __init__(self, x): self.x = x class Capybara[T]: y: str def __init__(self, y): self.y = y self.assertIsInstance(Bar(1), HasX) self.assertNotIsInstance(Capybara('a'), HasX) def test_everything_implements_empty_protocol(self): @runtime_checkable class Empty(Protocol): pass class C: pass def f(): pass for thing in (object, type, tuple, C, types.FunctionType): self.assertIsSubclass(thing, Empty) for thing in (object(), 1, (), typing, f): self.assertIsInstance(thing, Empty) def test_function_implements_protocol(self): def f(): pass self.assertIsInstance(f, HasCallProtocol) def test_no_inheritance_from_nominal(self): class C: pass class BP(Protocol): pass with self.assertRaises(TypeError): class P(C, Protocol): pass with self.assertRaises(TypeError): class Q(Protocol, C): pass with self.assertRaises(TypeError): class R(BP, C, Protocol): pass class D(BP, C): pass class E(C, BP): pass self.assertNotIsInstance(D(), E) self.assertNotIsInstance(E(), D) def test_no_instantiation(self): class P(Protocol): pass with self.assertRaises(TypeError): P() class C(P): pass self.assertIsInstance(C(), C) with self.assertRaises(TypeError): C(42) T = TypeVar('T') class PG(Protocol[T]): pass with self.assertRaises(TypeError): PG() with self.assertRaises(TypeError): PG[int]() with self.assertRaises(TypeError): PG[T]() class CG(PG[T]): pass self.assertIsInstance(CG[int](), CG) with self.assertRaises(TypeError): CG[int](42) def test_protocol_defining_init_does_not_get_overridden(self): # check that P.__init__ doesn't get clobbered # see https://bugs.python.org/issue44807 class P(Protocol): x: int def __init__(self, x: int) -> None: self.x = x class C: pass c = C() P.__init__(c, 1) self.assertEqual(c.x, 1) def test_concrete_class_inheriting_init_from_protocol(self): class P(Protocol): x: int def __init__(self, x: int) -> None: self.x = x class C(P): pass c = C(1) self.assertIsInstance(c, C) self.assertEqual(c.x, 1) def test_cannot_instantiate_abstract(self): @runtime_checkable class P(Protocol): @abc.abstractmethod def ameth(self) -> int: raise NotImplementedError class B(P): pass class C(B): def ameth(self) -> int: return 26 with self.assertRaises(TypeError): B() self.assertIsInstance(C(), P) def test_subprotocols_extending(self): class P1(Protocol): def meth1(self): pass @runtime_checkable class P2(P1, Protocol): def meth2(self): pass class C: def meth1(self): pass def meth2(self): pass class C1: def meth1(self): pass class C2: def meth2(self): pass self.assertNotIsInstance(C1(), P2) self.assertNotIsInstance(C2(), P2) self.assertNotIsSubclass(C1, P2) self.assertNotIsSubclass(C2, P2) self.assertIsInstance(C(), P2) self.assertIsSubclass(C, P2) def test_subprotocols_merging(self): class P1(Protocol): def meth1(self): pass class P2(Protocol): def meth2(self): pass @runtime_checkable class P(P1, P2, Protocol): pass class C: def meth1(self): pass def meth2(self): pass class C1: def meth1(self): pass class C2: def meth2(self): pass self.assertNotIsInstance(C1(), P) self.assertNotIsInstance(C2(), P) self.assertNotIsSubclass(C1, P) self.assertNotIsSubclass(C2, P) self.assertIsInstance(C(), P) self.assertIsSubclass(C, P) def test_protocols_issubclass(self): T = TypeVar('T') @runtime_checkable class P(Protocol): def x(self): ... @runtime_checkable class PG(Protocol[T]): def x(self): ... class BadP(Protocol): def x(self): ... class BadPG(Protocol[T]): def x(self): ... class C: def x(self): ... self.assertIsSubclass(C, P) self.assertIsSubclass(C, PG) self.assertIsSubclass(BadP, PG) no_subscripted_generics = ( "Subscripted generics cannot be used with class and instance checks" ) with self.assertRaisesRegex(TypeError, no_subscripted_generics): issubclass(C, PG[T]) with self.assertRaisesRegex(TypeError, no_subscripted_generics): issubclass(C, PG[C]) only_runtime_checkable_protocols = ( "Instance and class checks can only be used with " "@runtime_checkable protocols" ) with self.assertRaisesRegex(TypeError, only_runtime_checkable_protocols): issubclass(C, BadP) with self.assertRaisesRegex(TypeError, only_runtime_checkable_protocols): issubclass(C, BadPG) with self.assertRaisesRegex(TypeError, no_subscripted_generics): issubclass(P, PG[T]) with self.assertRaisesRegex(TypeError, no_subscripted_generics): issubclass(PG, PG[int]) only_classes_allowed = r"issubclass\(\) arg 1 must be a class" with self.assertRaisesRegex(TypeError, only_classes_allowed): issubclass(1, P) with self.assertRaisesRegex(TypeError, only_classes_allowed): issubclass(1, PG) with self.assertRaisesRegex(TypeError, only_classes_allowed): issubclass(1, BadP) with self.assertRaisesRegex(TypeError, only_classes_allowed): issubclass(1, BadPG) def test_implicit_issubclass_between_two_protocols(self): @runtime_checkable class CallableMembersProto(Protocol): def meth(self): ... # All the below protocols should be considered "subclasses" # of CallableMembersProto at runtime, # even though none of them explicitly subclass CallableMembersProto class IdenticalProto(Protocol): def meth(self): ... class SupersetProto(Protocol): def meth(self): ... def meth2(self): ... class NonCallableMembersProto(Protocol): meth: Callable[[], None] class NonCallableMembersSupersetProto(Protocol): meth: Callable[[], None] meth2: Callable[[str, int], bool] class MixedMembersProto1(Protocol): meth: Callable[[], None] def meth2(self): ... class MixedMembersProto2(Protocol): def meth(self): ... meth2: Callable[[str, int], bool] for proto in ( IdenticalProto, SupersetProto, NonCallableMembersProto, NonCallableMembersSupersetProto, MixedMembersProto1, MixedMembersProto2 ): with self.subTest(proto=proto.__name__): self.assertIsSubclass(proto, CallableMembersProto) # These two shouldn't be considered subclasses of CallableMembersProto, however, # since they don't have the `meth` protocol member class EmptyProtocol(Protocol): ... class UnrelatedProtocol(Protocol): def wut(self): ... self.assertNotIsSubclass(EmptyProtocol, CallableMembersProto) self.assertNotIsSubclass(UnrelatedProtocol, CallableMembersProto) # These aren't protocols at all (despite having annotations), # so they should only be considered subclasses of CallableMembersProto # if they *actually have an attribute* matching the `meth` member # (just having an annotation is insufficient) class AnnotatedButNotAProtocol: meth: Callable[[], None] class NotAProtocolButAnImplicitSubclass: def meth(self): pass class NotAProtocolButAnImplicitSubclass2: meth: Callable[[], None] def meth(self): pass class NotAProtocolButAnImplicitSubclass3: meth: Callable[[], None] meth2: Callable[[int, str], bool] def meth(self): pass def meth2(self, x, y): return True self.assertNotIsSubclass(AnnotatedButNotAProtocol, CallableMembersProto) self.assertIsSubclass(NotAProtocolButAnImplicitSubclass, CallableMembersProto) self.assertIsSubclass(NotAProtocolButAnImplicitSubclass2, CallableMembersProto) self.assertIsSubclass(NotAProtocolButAnImplicitSubclass3, CallableMembersProto) def test_isinstance_checks_not_at_whim_of_gc(self): self.addCleanup(gc.enable) gc.disable() with self.assertRaisesRegex( TypeError, "Protocols can only inherit from other protocols" ): class Foo(collections.abc.Mapping, Protocol): pass self.assertNotIsInstance([], collections.abc.Mapping) def test_issubclass_and_isinstance_on_Protocol_itself(self): class C: def x(self): pass self.assertNotIsSubclass(object, Protocol) self.assertNotIsInstance(object(), Protocol) self.assertNotIsSubclass(str, Protocol) self.assertNotIsInstance('foo', Protocol) self.assertNotIsSubclass(C, Protocol) self.assertNotIsInstance(C(), Protocol) only_classes_allowed = r"issubclass\(\) arg 1 must be a class" with self.assertRaisesRegex(TypeError, only_classes_allowed): issubclass(1, Protocol) with self.assertRaisesRegex(TypeError, only_classes_allowed): issubclass('foo', Protocol) with self.assertRaisesRegex(TypeError, only_classes_allowed): issubclass(C(), Protocol) T = TypeVar('T') @runtime_checkable class EmptyProtocol(Protocol): pass @runtime_checkable class SupportsStartsWith(Protocol): def startswith(self, x: str) -> bool: ... @runtime_checkable class SupportsX(Protocol[T]): def x(self): ... for proto in EmptyProtocol, SupportsStartsWith, SupportsX: with self.subTest(proto=proto.__name__): self.assertIsSubclass(proto, Protocol) # gh-105237 / PR #105239: # check that the presence of Protocol subclasses # where `issubclass(X, )` evaluates to True # doesn't influence the result of `issubclass(X, Protocol)` self.assertIsSubclass(object, EmptyProtocol) self.assertIsInstance(object(), EmptyProtocol) self.assertNotIsSubclass(object, Protocol) self.assertNotIsInstance(object(), Protocol) self.assertIsSubclass(str, SupportsStartsWith) self.assertIsInstance('foo', SupportsStartsWith) self.assertNotIsSubclass(str, Protocol) self.assertNotIsInstance('foo', Protocol) self.assertIsSubclass(C, SupportsX) self.assertIsInstance(C(), SupportsX) self.assertNotIsSubclass(C, Protocol) self.assertNotIsInstance(C(), Protocol) def test_protocols_issubclass_non_callable(self): class C: x = 1 @runtime_checkable class PNonCall(Protocol): x = 1 non_callable_members_illegal = ( "Protocols with non-method members don't support issubclass()" ) with self.assertRaisesRegex(TypeError, non_callable_members_illegal): issubclass(C, PNonCall) self.assertIsInstance(C(), PNonCall) PNonCall.register(C) with self.assertRaisesRegex(TypeError, non_callable_members_illegal): issubclass(C, PNonCall) self.assertIsInstance(C(), PNonCall) # check that non-protocol subclasses are not affected class D(PNonCall): ... self.assertNotIsSubclass(C, D) self.assertNotIsInstance(C(), D) D.register(C) self.assertIsSubclass(C, D) self.assertIsInstance(C(), D) with self.assertRaisesRegex(TypeError, non_callable_members_illegal): issubclass(D, PNonCall) def test_no_weird_caching_with_issubclass_after_isinstance(self): @runtime_checkable class Spam(Protocol): x: int class Eggs: def __init__(self) -> None: self.x = 42 self.assertIsInstance(Eggs(), Spam) # gh-104555: If we didn't override ABCMeta.__subclasscheck__ in _ProtocolMeta, # TypeError wouldn't be raised here, # as the cached result of the isinstance() check immediately above # would mean the issubclass() call would short-circuit # before we got to the "raise TypeError" line with self.assertRaisesRegex( TypeError, "Protocols with non-method members don't support issubclass()" ): issubclass(Eggs, Spam) def test_no_weird_caching_with_issubclass_after_isinstance_2(self): @runtime_checkable class Spam(Protocol): x: int class Eggs: ... self.assertNotIsInstance(Eggs(), Spam) # gh-104555: If we didn't override ABCMeta.__subclasscheck__ in _ProtocolMeta, # TypeError wouldn't be raised here, # as the cached result of the isinstance() check immediately above # would mean the issubclass() call would short-circuit # before we got to the "raise TypeError" line with self.assertRaisesRegex( TypeError, "Protocols with non-method members don't support issubclass()" ): issubclass(Eggs, Spam) def test_no_weird_caching_with_issubclass_after_isinstance_3(self): @runtime_checkable class Spam(Protocol): x: int class Eggs: def __getattr__(self, attr): if attr == "x": return 42 raise AttributeError(attr) self.assertNotIsInstance(Eggs(), Spam) # gh-104555: If we didn't override ABCMeta.__subclasscheck__ in _ProtocolMeta, # TypeError wouldn't be raised here, # as the cached result of the isinstance() check immediately above # would mean the issubclass() call would short-circuit # before we got to the "raise TypeError" line with self.assertRaisesRegex( TypeError, "Protocols with non-method members don't support issubclass()" ): issubclass(Eggs, Spam) def test_no_weird_caching_with_issubclass_after_isinstance_pep695(self): @runtime_checkable class Spam[T](Protocol): x: T class Eggs[T]: def __init__(self, x: T) -> None: self.x = x self.assertIsInstance(Eggs(42), Spam) # gh-104555: If we didn't override ABCMeta.__subclasscheck__ in _ProtocolMeta, # TypeError wouldn't be raised here, # as the cached result of the isinstance() check immediately above # would mean the issubclass() call would short-circuit # before we got to the "raise TypeError" line with self.assertRaisesRegex( TypeError, "Protocols with non-method members don't support issubclass()" ): issubclass(Eggs, Spam) def test_protocols_isinstance(self): T = TypeVar('T') @runtime_checkable class P(Protocol): def meth(x): ... @runtime_checkable class PG(Protocol[T]): def meth(x): ... @runtime_checkable class WeirdProto(Protocol): meth = str.maketrans @runtime_checkable class WeirdProto2(Protocol): meth = lambda *args, **kwargs: None class CustomCallable: def __call__(self, *args, **kwargs): pass @runtime_checkable class WeirderProto(Protocol): meth = CustomCallable() class BadP(Protocol): def meth(x): ... class BadPG(Protocol[T]): def meth(x): ... class C: def meth(x): ... class C2: def __init__(self): self.meth = lambda: None for klass in C, C2: for proto in P, PG, WeirdProto, WeirdProto2, WeirderProto: with self.subTest(klass=klass.__name__, proto=proto.__name__): self.assertIsInstance(klass(), proto) no_subscripted_generics = "Subscripted generics cannot be used with class and instance checks" with self.assertRaisesRegex(TypeError, no_subscripted_generics): isinstance(C(), PG[T]) with self.assertRaisesRegex(TypeError, no_subscripted_generics): isinstance(C(), PG[C]) only_runtime_checkable_msg = ( "Instance and class checks can only be used " "with @runtime_checkable protocols" ) with self.assertRaisesRegex(TypeError, only_runtime_checkable_msg): isinstance(C(), BadP) with self.assertRaisesRegex(TypeError, only_runtime_checkable_msg): isinstance(C(), BadPG) def test_protocols_isinstance_properties_and_descriptors(self): class C: @property def attr(self): return 42 class CustomDescriptor: def __get__(self, obj, objtype=None): return 42 class D: attr = CustomDescriptor() # Check that properties set on superclasses # are still found by the isinstance() logic class E(C): ... class F(D): ... class Empty: ... T = TypeVar('T') @runtime_checkable class P(Protocol): @property def attr(self): ... @runtime_checkable class P1(Protocol): attr: int @runtime_checkable class PG(Protocol[T]): @property def attr(self): ... @runtime_checkable class PG1(Protocol[T]): attr: T @runtime_checkable class MethodP(Protocol): def attr(self): ... @runtime_checkable class MethodPG(Protocol[T]): def attr(self) -> T: ... for protocol_class in P, P1, PG, PG1, MethodP, MethodPG: for klass in C, D, E, F: with self.subTest( klass=klass.__name__, protocol_class=protocol_class.__name__ ): self.assertIsInstance(klass(), protocol_class) with self.subTest(klass="Empty", protocol_class=protocol_class.__name__): self.assertNotIsInstance(Empty(), protocol_class) class BadP(Protocol): @property def attr(self): ... class BadP1(Protocol): attr: int class BadPG(Protocol[T]): @property def attr(self): ... class BadPG1(Protocol[T]): attr: T cases = ( PG[T], PG[C], PG1[T], PG1[C], MethodPG[T], MethodPG[C], BadP, BadP1, BadPG, BadPG1 ) for obj in cases: for klass in C, D, E, F, Empty: with self.subTest(klass=klass.__name__, obj=obj): with self.assertRaises(TypeError): isinstance(klass(), obj) def test_protocols_isinstance_not_fooled_by_custom_dir(self): @runtime_checkable class HasX(Protocol): x: int class CustomDirWithX: x = 10 def __dir__(self): return [] class CustomDirWithoutX: def __dir__(self): return ["x"] self.assertIsInstance(CustomDirWithX(), HasX) self.assertNotIsInstance(CustomDirWithoutX(), HasX) def test_protocols_isinstance_attribute_access_with_side_effects(self): class C: @property def attr(self): raise AttributeError('no') class CustomDescriptor: def __get__(self, obj, objtype=None): raise RuntimeError("NO") class D: attr = CustomDescriptor() # Check that properties set on superclasses # are still found by the isinstance() logic class E(C): ... class F(D): ... class WhyWouldYouDoThis: def __getattr__(self, name): raise RuntimeError("wut") T = TypeVar('T') @runtime_checkable class P(Protocol): @property def attr(self): ... @runtime_checkable class P1(Protocol): attr: int @runtime_checkable class PG(Protocol[T]): @property def attr(self): ... @runtime_checkable class PG1(Protocol[T]): attr: T @runtime_checkable class MethodP(Protocol): def attr(self): ... @runtime_checkable class MethodPG(Protocol[T]): def attr(self) -> T: ... for protocol_class in P, P1, PG, PG1, MethodP, MethodPG: for klass in C, D, E, F: with self.subTest( klass=klass.__name__, protocol_class=protocol_class.__name__ ): self.assertIsInstance(klass(), protocol_class) with self.subTest( klass="WhyWouldYouDoThis", protocol_class=protocol_class.__name__ ): self.assertNotIsInstance(WhyWouldYouDoThis(), protocol_class) def test_protocols_isinstance___slots__(self): # As per the consensus in https://github.com/python/typing/issues/1367, # this is desirable behaviour @runtime_checkable class HasX(Protocol): x: int class HasNothingButSlots: __slots__ = ("x",) self.assertIsInstance(HasNothingButSlots(), HasX) def test_protocols_isinstance_py36(self): class APoint: def __init__(self, x, y, label): self.x = x self.y = y self.label = label class BPoint: label = 'B' def __init__(self, x, y): self.x = x self.y = y class C: def __init__(self, attr): self.attr = attr def meth(self, arg): return 0 class Bad: pass self.assertIsInstance(APoint(1, 2, 'A'), Point) self.assertIsInstance(BPoint(1, 2), Point) self.assertNotIsInstance(MyPoint(), Point) self.assertIsInstance(BPoint(1, 2), Position) self.assertIsInstance(Other(), Proto) self.assertIsInstance(Concrete(), Proto) self.assertIsInstance(C(42), Proto) self.assertNotIsInstance(Bad(), Proto) self.assertNotIsInstance(Bad(), Point) self.assertNotIsInstance(Bad(), Position) self.assertNotIsInstance(Bad(), Concrete) self.assertNotIsInstance(Other(), Concrete) self.assertIsInstance(NT(1, 2), Position) def test_protocols_isinstance_init(self): T = TypeVar('T') @runtime_checkable class P(Protocol): x = 1 @runtime_checkable class PG(Protocol[T]): x = 1 class C: def __init__(self, x): self.x = x self.assertIsInstance(C(1), P) self.assertIsInstance(C(1), PG) def test_protocols_isinstance_monkeypatching(self): @runtime_checkable class HasX(Protocol): x: int class Foo: ... f = Foo() self.assertNotIsInstance(f, HasX) f.x = 42 self.assertIsInstance(f, HasX) del f.x self.assertNotIsInstance(f, HasX) def test_protocol_checks_after_subscript(self): class P(Protocol[T]): pass class C(P[T]): pass class Other1: pass class Other2: pass CA = C[Any] self.assertNotIsInstance(Other1(), C) self.assertNotIsSubclass(Other2, C) class D1(C[Any]): pass class D2(C[Any]): pass CI = C[int] self.assertIsInstance(D1(), C) self.assertIsSubclass(D2, C) def test_protocols_support_register(self): @runtime_checkable class P(Protocol): x = 1 class PM(Protocol): def meth(self): pass class D(PM): pass class C: pass D.register(C) P.register(C) self.assertIsInstance(C(), P) self.assertIsInstance(C(), D) def test_none_on_non_callable_doesnt_block_implementation(self): @runtime_checkable class P(Protocol): x = 1 class A: x = 1 class B(A): x = None class C: def __init__(self): self.x = None self.assertIsInstance(B(), P) self.assertIsInstance(C(), P) def test_none_on_callable_blocks_implementation(self): @runtime_checkable class P(Protocol): def x(self): ... class A: def x(self): ... class B(A): x = None class C: def __init__(self): self.x = None self.assertNotIsInstance(B(), P) self.assertNotIsInstance(C(), P) def test_non_protocol_subclasses(self): class P(Protocol): x = 1 @runtime_checkable class PR(Protocol): def meth(self): pass class NonP(P): x = 1 class NonPR(PR): pass class C(metaclass=abc.ABCMeta): x = 1 class D(metaclass=abc.ABCMeta): def meth(self): pass self.assertNotIsInstance(C(), NonP) self.assertNotIsInstance(D(), NonPR) self.assertNotIsSubclass(C, NonP) self.assertNotIsSubclass(D, NonPR) self.assertIsInstance(NonPR(), PR) self.assertIsSubclass(NonPR, PR) self.assertNotIn("__protocol_attrs__", vars(NonP)) self.assertNotIn("__protocol_attrs__", vars(NonPR)) self.assertNotIn("__callable_proto_members_only__", vars(NonP)) self.assertNotIn("__callable_proto_members_only__", vars(NonPR)) self.assertEqual(get_protocol_members(P), {"x"}) self.assertEqual(get_protocol_members(PR), {"meth"}) # the returned object should be immutable, # and should be a different object to the original attribute # to prevent users from (accidentally or deliberately) # mutating the attribute on the original class self.assertIsInstance(get_protocol_members(P), frozenset) self.assertIsNot(get_protocol_members(P), P.__protocol_attrs__) self.assertIsInstance(get_protocol_members(PR), frozenset) self.assertIsNot(get_protocol_members(PR), P.__protocol_attrs__) acceptable_extra_attrs = { '_is_protocol', '_is_runtime_protocol', '__parameters__', '__init__', '__annotations__', '__subclasshook__', } self.assertLessEqual(vars(NonP).keys(), vars(C).keys() | acceptable_extra_attrs) self.assertLessEqual( vars(NonPR).keys(), vars(D).keys() | acceptable_extra_attrs ) def test_custom_subclasshook(self): class P(Protocol): x = 1 class OKClass: pass class BadClass: x = 1 class C(P): @classmethod def __subclasshook__(cls, other): return other.__name__.startswith("OK") self.assertIsInstance(OKClass(), C) self.assertNotIsInstance(BadClass(), C) self.assertIsSubclass(OKClass, C) self.assertNotIsSubclass(BadClass, C) def test_custom_subclasshook_2(self): @runtime_checkable class HasX(Protocol): # The presence of a non-callable member # would mean issubclass() checks would fail with TypeError # if it weren't for the custom `__subclasshook__` method x = 1 @classmethod def __subclasshook__(cls, other): return hasattr(other, 'x') class Empty: pass class ImplementsHasX: x = 1 self.assertIsInstance(ImplementsHasX(), HasX) self.assertNotIsInstance(Empty(), HasX) self.assertIsSubclass(ImplementsHasX, HasX) self.assertNotIsSubclass(Empty, HasX) # isinstance() and issubclass() checks against this still raise TypeError, # despite the presence of the custom __subclasshook__ method, # as it's not decorated with @runtime_checkable class NotRuntimeCheckable(Protocol): @classmethod def __subclasshook__(cls, other): return hasattr(other, 'x') must_be_runtime_checkable = ( "Instance and class checks can only be used " "with @runtime_checkable protocols" ) with self.assertRaisesRegex(TypeError, must_be_runtime_checkable): issubclass(object, NotRuntimeCheckable) with self.assertRaisesRegex(TypeError, must_be_runtime_checkable): isinstance(object(), NotRuntimeCheckable) def test_issubclass_fails_correctly(self): @runtime_checkable class P(Protocol): x = 1 class C: pass with self.assertRaisesRegex(TypeError, r"issubclass\(\) arg 1 must be a class"): issubclass(C(), P) def test_defining_generic_protocols(self): T = TypeVar('T') S = TypeVar('S') @runtime_checkable class PR(Protocol[T, S]): def meth(self): pass class P(PR[int, T], Protocol[T]): y = 1 with self.assertRaises(TypeError): PR[int] with self.assertRaises(TypeError): P[int, str] class C(PR[int, T]): pass self.assertIsInstance(C[str](), C) def test_defining_generic_protocols_old_style(self): T = TypeVar('T') S = TypeVar('S') @runtime_checkable class PR(Protocol, Generic[T, S]): def meth(self): pass class P(PR[int, str], Protocol): y = 1 with self.assertRaises(TypeError): issubclass(PR[int, str], PR) self.assertIsSubclass(P, PR) with self.assertRaises(TypeError): PR[int] class P1(Protocol, Generic[T]): def bar(self, x: T) -> str: ... class P2(Generic[T], Protocol): def bar(self, x: T) -> str: ... @runtime_checkable class PSub(P1[str], Protocol): x = 1 class Test: x = 1 def bar(self, x: str) -> str: return x self.assertIsInstance(Test(), PSub) def test_pep695_generic_protocol_callable_members(self): @runtime_checkable class Foo[T](Protocol): def meth(self, x: T) -> None: ... class Bar[T]: def meth(self, x: T) -> None: ... self.assertIsInstance(Bar(), Foo) self.assertIsSubclass(Bar, Foo) @runtime_checkable class SupportsTrunc[T](Protocol): def __trunc__(self) -> T: ... self.assertIsInstance(0.0, SupportsTrunc) self.assertIsSubclass(float, SupportsTrunc) def test_init_called(self): T = TypeVar('T') class P(Protocol[T]): pass class C(P[T]): def __init__(self): self.test = 'OK' self.assertEqual(C[int]().test, 'OK') class B: def __init__(self): self.test = 'OK' class D1(B, P[T]): pass self.assertEqual(D1[int]().test, 'OK') class D2(P[T], B): pass self.assertEqual(D2[int]().test, 'OK') def test_new_called(self): T = TypeVar('T') class P(Protocol[T]): pass class C(P[T]): def __new__(cls, *args): self = super().__new__(cls, *args) self.test = 'OK' return self self.assertEqual(C[int]().test, 'OK') with self.assertRaises(TypeError): C[int](42) with self.assertRaises(TypeError): C[int](a=42) def test_protocols_bad_subscripts(self): T = TypeVar('T') S = TypeVar('S') with self.assertRaises(TypeError): class P(Protocol[T, T]): pass with self.assertRaises(TypeError): class Q(Protocol[int]): pass with self.assertRaises(TypeError): class R(Protocol[T], Protocol[S]): pass with self.assertRaises(TypeError): class S(typing.Mapping[T, S], Protocol[T]): pass def test_generic_protocols_repr(self): T = TypeVar('T') S = TypeVar('S') class P(Protocol[T, S]): pass self.assertTrue(repr(P[T, S]).endswith('P[~T, ~S]')) self.assertTrue(repr(P[int, str]).endswith('P[int, str]')) def test_generic_protocols_eq(self): T = TypeVar('T') S = TypeVar('S') class P(Protocol[T, S]): pass self.assertEqual(P, P) self.assertEqual(P[int, T], P[int, T]) self.assertEqual(P[T, T][Tuple[T, S]][int, str], P[Tuple[int, str], Tuple[int, str]]) def test_generic_protocols_special_from_generic(self): T = TypeVar('T') class P(Protocol[T]): pass self.assertEqual(P.__parameters__, (T,)) self.assertEqual(P[int].__parameters__, ()) self.assertEqual(P[int].__args__, (int,)) self.assertIs(P[int].__origin__, P) def test_generic_protocols_special_from_protocol(self): @runtime_checkable class PR(Protocol): x = 1 class P(Protocol): def meth(self): pass T = TypeVar('T') class PG(Protocol[T]): x = 1 def meth(self): pass self.assertTrue(P._is_protocol) self.assertTrue(PR._is_protocol) self.assertTrue(PG._is_protocol) self.assertFalse(P._is_runtime_protocol) self.assertTrue(PR._is_runtime_protocol) self.assertTrue(PG[int]._is_protocol) self.assertEqual(typing._get_protocol_attrs(P), {'meth'}) self.assertEqual(typing._get_protocol_attrs(PR), {'x'}) self.assertEqual(frozenset(typing._get_protocol_attrs(PG)), frozenset({'x', 'meth'})) def test_no_runtime_deco_on_nominal(self): with self.assertRaises(TypeError): @runtime_checkable class C: pass class Proto(Protocol): x = 1 with self.assertRaises(TypeError): @runtime_checkable class Concrete(Proto): pass def test_none_treated_correctly(self): @runtime_checkable class P(Protocol): x = None # type: int class B(object): pass self.assertNotIsInstance(B(), P) class C: x = 1 class D: x = None self.assertIsInstance(C(), P) self.assertIsInstance(D(), P) class CI: def __init__(self): self.x = 1 class DI: def __init__(self): self.x = None self.assertIsInstance(CI(), P) self.assertIsInstance(DI(), P) def test_protocols_in_unions(self): class P(Protocol): x = None # type: int Alias = typing.Union[typing.Iterable, P] Alias2 = typing.Union[P, typing.Iterable] self.assertEqual(Alias, Alias2) def test_protocols_pickleable(self): global P, CP # pickle wants to reference the class by name T = TypeVar('T') @runtime_checkable class P(Protocol[T]): x = 1 class CP(P[int]): pass c = CP() c.foo = 42 c.bar = 'abc' for proto in range(pickle.HIGHEST_PROTOCOL + 1): z = pickle.dumps(c, proto) x = pickle.loads(z) self.assertEqual(x.foo, 42) self.assertEqual(x.bar, 'abc') self.assertEqual(x.x, 1) self.assertEqual(x.__dict__, {'foo': 42, 'bar': 'abc'}) s = pickle.dumps(P, proto) D = pickle.loads(s) class E: x = 1 self.assertIsInstance(E(), D) def test_runtime_checkable_with_match_args(self): @runtime_checkable class P_regular(Protocol): x: int y: int @runtime_checkable class P_match(Protocol): __match_args__ = ('x', 'y') x: int y: int class Regular: def __init__(self, x: int, y: int): self.x = x self.y = y class WithMatch: __match_args__ = ('x', 'y', 'z') def __init__(self, x: int, y: int, z: int): self.x = x self.y = y self.z = z class Nope: ... self.assertIsInstance(Regular(1, 2), P_regular) self.assertIsInstance(Regular(1, 2), P_match) self.assertIsInstance(WithMatch(1, 2, 3), P_regular) self.assertIsInstance(WithMatch(1, 2, 3), P_match) self.assertNotIsInstance(Nope(), P_regular) self.assertNotIsInstance(Nope(), P_match) def test_supports_int(self): self.assertIsSubclass(int, typing.SupportsInt) self.assertNotIsSubclass(str, typing.SupportsInt) def test_supports_float(self): self.assertIsSubclass(float, typing.SupportsFloat) self.assertNotIsSubclass(str, typing.SupportsFloat) def test_supports_complex(self): class C: def __complex__(self): return 0j self.assertIsSubclass(complex, typing.SupportsComplex) self.assertIsSubclass(C, typing.SupportsComplex) self.assertNotIsSubclass(str, typing.SupportsComplex) def test_supports_bytes(self): class B: def __bytes__(self): return b'' self.assertIsSubclass(bytes, typing.SupportsBytes) self.assertIsSubclass(B, typing.SupportsBytes) self.assertNotIsSubclass(str, typing.SupportsBytes) def test_supports_abs(self): self.assertIsSubclass(float, typing.SupportsAbs) self.assertIsSubclass(int, typing.SupportsAbs) self.assertNotIsSubclass(str, typing.SupportsAbs) def test_supports_round(self): issubclass(float, typing.SupportsRound) self.assertIsSubclass(float, typing.SupportsRound) self.assertIsSubclass(int, typing.SupportsRound) self.assertNotIsSubclass(str, typing.SupportsRound) def test_reversible(self): self.assertIsSubclass(list, typing.Reversible) self.assertNotIsSubclass(int, typing.Reversible) def test_supports_index(self): self.assertIsSubclass(int, typing.SupportsIndex) self.assertNotIsSubclass(str, typing.SupportsIndex) def test_bundled_protocol_instance_works(self): self.assertIsInstance(0, typing.SupportsAbs) class C1(typing.SupportsInt): def __int__(self) -> int: return 42 class C2(C1): pass c = C2() self.assertIsInstance(c, C1) def test_collections_protocols_allowed(self): @runtime_checkable class Custom(collections.abc.Iterable, Protocol): def close(self): ... class A: pass class B: def __iter__(self): return [] def close(self): return 0 self.assertIsSubclass(B, Custom) self.assertNotIsSubclass(A, Custom) @runtime_checkable class ReleasableBuffer(collections.abc.Buffer, Protocol): def __release_buffer__(self, mv: memoryview) -> None: ... class C: pass class D: def __buffer__(self, flags: int) -> memoryview: return memoryview(b'') def __release_buffer__(self, mv: memoryview) -> None: pass self.assertIsSubclass(D, ReleasableBuffer) self.assertIsInstance(D(), ReleasableBuffer) self.assertNotIsSubclass(C, ReleasableBuffer) self.assertNotIsInstance(C(), ReleasableBuffer) def test_builtin_protocol_allowlist(self): with self.assertRaises(TypeError): class CustomProtocol(TestCase, Protocol): pass class CustomContextManager(typing.ContextManager, Protocol): pass def test_non_runtime_protocol_isinstance_check(self): class P(Protocol): x: int with self.assertRaisesRegex(TypeError, "@runtime_checkable"): isinstance(1, P) def test_super_call_init(self): class P(Protocol): x: int class Foo(P): def __init__(self): super().__init__() Foo() # Previously triggered RecursionError def test_get_protocol_members(self): with self.assertRaisesRegex(TypeError, "not a Protocol"): get_protocol_members(object) with self.assertRaisesRegex(TypeError, "not a Protocol"): get_protocol_members(object()) with self.assertRaisesRegex(TypeError, "not a Protocol"): get_protocol_members(Protocol) with self.assertRaisesRegex(TypeError, "not a Protocol"): get_protocol_members(Generic) class P(Protocol): a: int def b(self) -> str: ... @property def c(self) -> int: ... self.assertEqual(get_protocol_members(P), {'a', 'b', 'c'}) self.assertIsInstance(get_protocol_members(P), frozenset) self.assertIsNot(get_protocol_members(P), P.__protocol_attrs__) class Concrete: a: int def b(self) -> str: return "capybara" @property def c(self) -> int: return 5 with self.assertRaisesRegex(TypeError, "not a Protocol"): get_protocol_members(Concrete) with self.assertRaisesRegex(TypeError, "not a Protocol"): get_protocol_members(Concrete()) class ConcreteInherit(P): a: int = 42 def b(self) -> str: return "capybara" @property def c(self) -> int: return 5 with self.assertRaisesRegex(TypeError, "not a Protocol"): get_protocol_members(ConcreteInherit) with self.assertRaisesRegex(TypeError, "not a Protocol"): get_protocol_members(ConcreteInherit()) def test_is_protocol(self): self.assertTrue(is_protocol(Proto)) self.assertTrue(is_protocol(Point)) self.assertFalse(is_protocol(Concrete)) self.assertFalse(is_protocol(Concrete())) self.assertFalse(is_protocol(Generic)) self.assertFalse(is_protocol(object)) # Protocol is not itself a protocol self.assertFalse(is_protocol(Protocol)) def test_interaction_with_isinstance_checks_on_superclasses_with_ABCMeta(self): # Ensure the cache is empty, or this test won't work correctly collections.abc.Sized._abc_registry_clear() class Foo(collections.abc.Sized, Protocol): pass # gh-105144: this previously raised TypeError # if a Protocol subclass of Sized had been created # before any isinstance() checks against Sized self.assertNotIsInstance(1, collections.abc.Sized) def test_interaction_with_isinstance_checks_on_superclasses_with_ABCMeta_2(self): # Ensure the cache is empty, or this test won't work correctly collections.abc.Sized._abc_registry_clear() class Foo(typing.Sized, Protocol): pass # gh-105144: this previously raised TypeError # if a Protocol subclass of Sized had been created # before any isinstance() checks against Sized self.assertNotIsInstance(1, typing.Sized) def test_empty_protocol_decorated_with_final(self): @final @runtime_checkable class EmptyProtocol(Protocol): ... self.assertIsSubclass(object, EmptyProtocol) self.assertIsInstance(object(), EmptyProtocol) def test_protocol_decorated_with_final_callable_members(self): @final @runtime_checkable class ProtocolWithMethod(Protocol): def startswith(self, string: str) -> bool: ... self.assertIsSubclass(str, ProtocolWithMethod) self.assertNotIsSubclass(int, ProtocolWithMethod) self.assertIsInstance('foo', ProtocolWithMethod) self.assertNotIsInstance(42, ProtocolWithMethod) def test_protocol_decorated_with_final_noncallable_members(self): @final @runtime_checkable class ProtocolWithNonCallableMember(Protocol): x: int class Foo: x = 42 only_callable_members_please = ( r"Protocols with non-method members don't support issubclass()" ) with self.assertRaisesRegex(TypeError, only_callable_members_please): issubclass(Foo, ProtocolWithNonCallableMember) with self.assertRaisesRegex(TypeError, only_callable_members_please): issubclass(int, ProtocolWithNonCallableMember) self.assertIsInstance(Foo(), ProtocolWithNonCallableMember) self.assertNotIsInstance(42, ProtocolWithNonCallableMember) def test_protocol_decorated_with_final_mixed_members(self): @final @runtime_checkable class ProtocolWithMixedMembers(Protocol): x: int def method(self) -> None: ... class Foo: x = 42 def method(self) -> None: ... only_callable_members_please = ( r"Protocols with non-method members don't support issubclass()" ) with self.assertRaisesRegex(TypeError, only_callable_members_please): issubclass(Foo, ProtocolWithMixedMembers) with self.assertRaisesRegex(TypeError, only_callable_members_please): issubclass(int, ProtocolWithMixedMembers) self.assertIsInstance(Foo(), ProtocolWithMixedMembers) self.assertNotIsInstance(42, ProtocolWithMixedMembers) class GenericTests(BaseTestCase): def test_basics(self): X = SimpleMapping[str, Any] self.assertEqual(X.__parameters__, ()) with self.assertRaises(TypeError): X[str] with self.assertRaises(TypeError): X[str, str] Y = SimpleMapping[XK, str] self.assertEqual(Y.__parameters__, (XK,)) Y[str] with self.assertRaises(TypeError): Y[str, str] SM1 = SimpleMapping[str, int] with self.assertRaises(TypeError): issubclass(SM1, SimpleMapping) self.assertIsInstance(SM1(), SimpleMapping) T = TypeVar("T") self.assertEqual(List[list[T] | float].__parameters__, (T,)) def test_generic_errors(self): T = TypeVar('T') S = TypeVar('S') with self.assertRaises(TypeError): Generic[T][T] with self.assertRaises(TypeError): Generic[T][S] with self.assertRaises(TypeError): class C(Generic[T], Generic[T]): ... with self.assertRaises(TypeError): isinstance([], List[int]) with self.assertRaises(TypeError): issubclass(list, List[int]) with self.assertRaises(TypeError): class NewGeneric(Generic): ... with self.assertRaises(TypeError): class MyGeneric(Generic[T], Generic[S]): ... with self.assertRaises(TypeError): class MyGeneric2(List[T], Generic[S]): ... with self.assertRaises(TypeError): Generic[()] class D(Generic[T]): pass with self.assertRaises(TypeError): D[()] def test_generic_subclass_checks(self): for typ in [list[int], List[int], tuple[int, str], Tuple[int, str], typing.Callable[..., None], collections.abc.Callable[..., None]]: with self.subTest(typ=typ): self.assertRaises(TypeError, issubclass, typ, object) self.assertRaises(TypeError, issubclass, typ, type) self.assertRaises(TypeError, issubclass, typ, typ) self.assertRaises(TypeError, issubclass, object, typ) # isinstance is fine: self.assertTrue(isinstance(typ, object)) # but, not when the right arg is also a generic: self.assertRaises(TypeError, isinstance, typ, typ) def test_init(self): T = TypeVar('T') S = TypeVar('S') with self.assertRaises(TypeError): Generic[T, T] with self.assertRaises(TypeError): Generic[T, S, T] def test_init_subclass(self): class X(typing.Generic[T]): def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) cls.attr = 42 class Y(X): pass self.assertEqual(Y.attr, 42) with self.assertRaises(AttributeError): X.attr X.attr = 1 Y.attr = 2 class Z(Y): pass class W(X[int]): pass self.assertEqual(Y.attr, 2) self.assertEqual(Z.attr, 42) self.assertEqual(W.attr, 42) def test_repr(self): self.assertEqual(repr(SimpleMapping), f"") self.assertEqual(repr(MySimpleMapping), f"") def test_chain_repr(self): T = TypeVar('T') S = TypeVar('S') class C(Generic[T]): pass X = C[Tuple[S, T]] self.assertEqual(X, C[Tuple[S, T]]) self.assertNotEqual(X, C[Tuple[T, S]]) Y = X[T, int] self.assertEqual(Y, X[T, int]) self.assertNotEqual(Y, X[S, int]) self.assertNotEqual(Y, X[T, str]) Z = Y[str] self.assertEqual(Z, Y[str]) self.assertNotEqual(Z, Y[int]) self.assertNotEqual(Z, Y[T]) self.assertTrue(str(Z).endswith( '.C[typing.Tuple[str, int]]')) def test_new_repr(self): T = TypeVar('T') U = TypeVar('U', covariant=True) S = TypeVar('S') self.assertEqual(repr(List), 'typing.List') self.assertEqual(repr(List[T]), 'typing.List[~T]') self.assertEqual(repr(List[U]), 'typing.List[+U]') self.assertEqual(repr(List[S][T][int]), 'typing.List[int]') self.assertEqual(repr(List[int]), 'typing.List[int]') def test_new_repr_complex(self): T = TypeVar('T') TS = TypeVar('TS') self.assertEqual(repr(typing.Mapping[T, TS][TS, T]), 'typing.Mapping[~TS, ~T]') self.assertEqual(repr(List[Tuple[T, TS]][int, T]), 'typing.List[typing.Tuple[int, ~T]]') self.assertEqual( repr(List[Tuple[T, T]][List[int]]), 'typing.List[typing.Tuple[typing.List[int], typing.List[int]]]' ) def test_new_repr_bare(self): T = TypeVar('T') self.assertEqual(repr(Generic[T]), 'typing.Generic[~T]') self.assertEqual(repr(typing.Protocol[T]), 'typing.Protocol[~T]') class C(typing.Dict[Any, Any]): ... # this line should just work repr(C.__mro__) def test_dict(self): T = TypeVar('T') class B(Generic[T]): pass b = B() b.foo = 42 self.assertEqual(b.__dict__, {'foo': 42}) class C(B[int]): pass c = C() c.bar = 'abc' self.assertEqual(c.__dict__, {'bar': 'abc'}) def test_subscripted_generics_as_proxies(self): T = TypeVar('T') class C(Generic[T]): x = 'def' self.assertEqual(C[int].x, 'def') self.assertEqual(C[C[int]].x, 'def') C[C[int]].x = 'changed' self.assertEqual(C.x, 'changed') self.assertEqual(C[str].x, 'changed') C[List[str]].z = 'new' self.assertEqual(C.z, 'new') self.assertEqual(C[Tuple[int]].z, 'new') self.assertEqual(C().x, 'changed') self.assertEqual(C[Tuple[str]]().z, 'new') class D(C[T]): pass self.assertEqual(D[int].x, 'changed') self.assertEqual(D.z, 'new') D.z = 'from derived z' D[int].x = 'from derived x' self.assertEqual(C.x, 'changed') self.assertEqual(C[int].z, 'new') self.assertEqual(D.x, 'from derived x') self.assertEqual(D[str].z, 'from derived z') def test_abc_registry_kept(self): T = TypeVar('T') class C(collections.abc.Mapping, Generic[T]): ... C.register(int) self.assertIsInstance(1, C) C[int] self.assertIsInstance(1, C) C._abc_registry_clear() C._abc_caches_clear() # To keep refleak hunting mode clean def test_false_subclasses(self): class MyMapping(MutableMapping[str, str]): pass self.assertNotIsInstance({}, MyMapping) self.assertNotIsSubclass(dict, MyMapping) def test_abc_bases(self): class MM(MutableMapping[str, str]): def __getitem__(self, k): return None def __setitem__(self, k, v): pass def __delitem__(self, k): pass def __iter__(self): return iter(()) def __len__(self): return 0 # this should just work MM().update() self.assertIsInstance(MM(), collections.abc.MutableMapping) self.assertIsInstance(MM(), MutableMapping) self.assertNotIsInstance(MM(), List) self.assertNotIsInstance({}, MM) def test_multiple_bases(self): class MM1(MutableMapping[str, str], collections.abc.MutableMapping): pass class MM2(collections.abc.MutableMapping, MutableMapping[str, str]): pass self.assertEqual(MM2.__bases__, (collections.abc.MutableMapping, Generic)) def test_orig_bases(self): T = TypeVar('T') class C(typing.Dict[str, T]): ... self.assertEqual(C.__orig_bases__, (typing.Dict[str, T],)) def test_naive_runtime_checks(self): def naive_dict_check(obj, tp): # Check if a dictionary conforms to Dict type if len(tp.__parameters__) > 0: raise NotImplementedError if tp.__args__: KT, VT = tp.__args__ return all( isinstance(k, KT) and isinstance(v, VT) for k, v in obj.items() ) self.assertTrue(naive_dict_check({'x': 1}, typing.Dict[str, int])) self.assertFalse(naive_dict_check({1: 'x'}, typing.Dict[str, int])) with self.assertRaises(NotImplementedError): naive_dict_check({1: 'x'}, typing.Dict[str, T]) def naive_generic_check(obj, tp): # Check if an instance conforms to the generic class if not hasattr(obj, '__orig_class__'): raise NotImplementedError return obj.__orig_class__ == tp class Node(Generic[T]): ... self.assertTrue(naive_generic_check(Node[int](), Node[int])) self.assertFalse(naive_generic_check(Node[str](), Node[int])) self.assertFalse(naive_generic_check(Node[str](), List)) with self.assertRaises(NotImplementedError): naive_generic_check([1, 2, 3], Node[int]) def naive_list_base_check(obj, tp): # Check if list conforms to a List subclass return all(isinstance(x, tp.__orig_bases__[0].__args__[0]) for x in obj) class C(List[int]): ... self.assertTrue(naive_list_base_check([1, 2, 3], C)) self.assertFalse(naive_list_base_check(['a', 'b'], C)) def test_multi_subscr_base(self): T = TypeVar('T') U = TypeVar('U') V = TypeVar('V') class C(List[T][U][V]): ... class D(C, List[T][U][V]): ... self.assertEqual(C.__parameters__, (V,)) self.assertEqual(D.__parameters__, (V,)) self.assertEqual(C[int].__parameters__, ()) self.assertEqual(D[int].__parameters__, ()) self.assertEqual(C[int].__args__, (int,)) self.assertEqual(D[int].__args__, (int,)) self.assertEqual(C.__bases__, (list, Generic)) self.assertEqual(D.__bases__, (C, list, Generic)) self.assertEqual(C.__orig_bases__, (List[T][U][V],)) self.assertEqual(D.__orig_bases__, (C, List[T][U][V])) def test_subscript_meta(self): T = TypeVar('T') class Meta(type): ... self.assertEqual(Type[Meta], Type[Meta]) self.assertEqual(Union[T, int][Meta], Union[Meta, int]) self.assertEqual(Callable[..., Meta].__args__, (Ellipsis, Meta)) def test_generic_hashes(self): class A(Generic[T]): ... class B(Generic[T]): class A(Generic[T]): ... self.assertEqual(A, A) self.assertEqual(mod_generics_cache.A[str], mod_generics_cache.A[str]) self.assertEqual(B.A, B.A) self.assertEqual(mod_generics_cache.B.A[B.A[str]], mod_generics_cache.B.A[B.A[str]]) self.assertNotEqual(A, B.A) self.assertNotEqual(A, mod_generics_cache.A) self.assertNotEqual(A, mod_generics_cache.B.A) self.assertNotEqual(B.A, mod_generics_cache.A) self.assertNotEqual(B.A, mod_generics_cache.B.A) self.assertNotEqual(A[str], B.A[str]) self.assertNotEqual(A[List[Any]], B.A[List[Any]]) self.assertNotEqual(A[str], mod_generics_cache.A[str]) self.assertNotEqual(A[str], mod_generics_cache.B.A[str]) self.assertNotEqual(B.A[int], mod_generics_cache.A[int]) self.assertNotEqual(B.A[List[Any]], mod_generics_cache.B.A[List[Any]]) self.assertNotEqual(Tuple[A[str]], Tuple[B.A[str]]) self.assertNotEqual(Tuple[A[List[Any]]], Tuple[B.A[List[Any]]]) self.assertNotEqual(Union[str, A[str]], Union[str, mod_generics_cache.A[str]]) self.assertNotEqual(Union[A[str], A[str]], Union[A[str], mod_generics_cache.A[str]]) self.assertNotEqual(typing.FrozenSet[A[str]], typing.FrozenSet[mod_generics_cache.B.A[str]]) self.assertTrue(repr(Tuple[A[str]]).endswith('.A[str]]')) self.assertTrue(repr(Tuple[B.A[str]]).endswith('.B.A[str]]')) self.assertTrue(repr(Tuple[mod_generics_cache.A[str]]) .endswith('mod_generics_cache.A[str]]')) self.assertTrue(repr(Tuple[mod_generics_cache.B.A[str]]) .endswith('mod_generics_cache.B.A[str]]')) def test_extended_generic_rules_eq(self): T = TypeVar('T') U = TypeVar('U') self.assertEqual(Tuple[T, T][int], Tuple[int, int]) self.assertEqual(typing.Iterable[Tuple[T, T]][T], typing.Iterable[Tuple[T, T]]) with self.assertRaises(TypeError): Tuple[T, int][()] self.assertEqual(Union[T, int][int], int) self.assertEqual(Union[T, U][int, Union[int, str]], Union[int, str]) class Base: ... class Derived(Base): ... self.assertEqual(Union[T, Base][Union[Base, Derived]], Union[Base, Derived]) self.assertEqual(Callable[[T], T][KT], Callable[[KT], KT]) self.assertEqual(Callable[..., List[T]][int], Callable[..., List[int]]) def test_extended_generic_rules_repr(self): T = TypeVar('T') self.assertEqual(repr(Union[Tuple, Callable]).replace('typing.', ''), 'Union[Tuple, Callable]') self.assertEqual(repr(Union[Tuple, Tuple[int]]).replace('typing.', ''), 'Union[Tuple, Tuple[int]]') self.assertEqual(repr(Callable[..., Optional[T]][int]).replace('typing.', ''), 'Callable[..., Optional[int]]') self.assertEqual(repr(Callable[[], List[T]][int]).replace('typing.', ''), 'Callable[[], List[int]]') def test_generic_forward_ref(self): def foobar(x: List[List['CC']]): ... def foobar2(x: list[list[ForwardRef('CC')]]): ... def foobar3(x: list[ForwardRef('CC | int')] | int): ... class CC: ... self.assertEqual( get_type_hints(foobar, globals(), locals()), {'x': List[List[CC]]} ) self.assertEqual( get_type_hints(foobar2, globals(), locals()), {'x': list[list[CC]]} ) self.assertEqual( get_type_hints(foobar3, globals(), locals()), {'x': list[CC | int] | int} ) T = TypeVar('T') AT = Tuple[T, ...] def barfoo(x: AT): ... self.assertIs(get_type_hints(barfoo, globals(), locals())['x'], AT) CT = Callable[..., List[T]] def barfoo2(x: CT): ... self.assertIs(get_type_hints(barfoo2, globals(), locals())['x'], CT) def test_generic_pep585_forward_ref(self): # See https://bugs.python.org/issue41370 class C1: a: list['C1'] self.assertEqual( get_type_hints(C1, globals(), locals()), {'a': list[C1]} ) class C2: a: dict['C1', list[List[list['C2']]]] self.assertEqual( get_type_hints(C2, globals(), locals()), {'a': dict[C1, list[List[list[C2]]]]} ) # Test stringified annotations scope = {} exec(textwrap.dedent(''' from __future__ import annotations class C3: a: List[list["C2"]] '''), scope) C3 = scope['C3'] self.assertEqual(C3.__annotations__['a'], "List[list['C2']]") self.assertEqual( get_type_hints(C3, globals(), locals()), {'a': List[list[C2]]} ) # Test recursive types X = list["X"] def f(x: X): ... self.assertEqual( get_type_hints(f, globals(), locals()), {'x': list[list[ForwardRef('X')]]} ) def test_extended_generic_rules_subclassing(self): class T1(Tuple[T, KT]): ... class T2(Tuple[T, ...]): ... class C1(typing.Container[T]): def __contains__(self, item): return False self.assertEqual(T1.__parameters__, (T, KT)) self.assertEqual(T1[int, str].__args__, (int, str)) self.assertEqual(T1[int, T].__origin__, T1) self.assertEqual(T2.__parameters__, (T,)) # These don't work because of tuple.__class_item__ ## with self.assertRaises(TypeError): ## T1[int] ## with self.assertRaises(TypeError): ## T2[int, str] self.assertEqual(repr(C1[int]).split('.')[-1], 'C1[int]') self.assertEqual(C1.__parameters__, (T,)) self.assertIsInstance(C1(), collections.abc.Container) self.assertIsSubclass(C1, collections.abc.Container) self.assertIsInstance(T1(), tuple) self.assertIsSubclass(T2, tuple) with self.assertRaises(TypeError): issubclass(Tuple[int, ...], typing.Sequence) with self.assertRaises(TypeError): issubclass(Tuple[int, ...], typing.Iterable) def test_fail_with_bare_union(self): with self.assertRaises(TypeError): List[Union] with self.assertRaises(TypeError): Tuple[Optional] with self.assertRaises(TypeError): ClassVar[ClassVar[int]] with self.assertRaises(TypeError): List[ClassVar[int]] def test_fail_with_bare_generic(self): T = TypeVar('T') with self.assertRaises(TypeError): List[Generic] with self.assertRaises(TypeError): Tuple[Generic[T]] with self.assertRaises(TypeError): List[typing.Protocol] def test_type_erasure_special(self): T = TypeVar('T') # this is the only test that checks type caching self.clear_caches() class MyTup(Tuple[T, T]): ... self.assertIs(MyTup[int]().__class__, MyTup) self.assertEqual(MyTup[int]().__orig_class__, MyTup[int]) class MyDict(typing.Dict[T, T]): ... self.assertIs(MyDict[int]().__class__, MyDict) self.assertEqual(MyDict[int]().__orig_class__, MyDict[int]) class MyDef(typing.DefaultDict[str, T]): ... self.assertIs(MyDef[int]().__class__, MyDef) self.assertEqual(MyDef[int]().__orig_class__, MyDef[int]) class MyChain(typing.ChainMap[str, T]): ... self.assertIs(MyChain[int]().__class__, MyChain) self.assertEqual(MyChain[int]().__orig_class__, MyChain[int]) def test_all_repr_eq_any(self): objs = (getattr(typing, el) for el in typing.__all__) for obj in objs: self.assertNotEqual(repr(obj), '') self.assertEqual(obj, obj) if (getattr(obj, '__parameters__', None) and not isinstance(obj, typing.TypeVar) and isinstance(obj.__parameters__, tuple) and len(obj.__parameters__) == 1): self.assertEqual(obj[Any].__args__, (Any,)) if isinstance(obj, type): for base in obj.__mro__: self.assertNotEqual(repr(base), '') self.assertEqual(base, base) def test_pickle(self): global C # pickle wants to reference the class by name T = TypeVar('T') class B(Generic[T]): pass class C(B[int]): pass c = C() c.foo = 42 c.bar = 'abc' for proto in range(pickle.HIGHEST_PROTOCOL + 1): z = pickle.dumps(c, proto) x = pickle.loads(z) self.assertEqual(x.foo, 42) self.assertEqual(x.bar, 'abc') self.assertEqual(x.__dict__, {'foo': 42, 'bar': 'abc'}) samples = [Any, Union, Tuple, Callable, ClassVar, Union[int, str], ClassVar[List], Tuple[int, ...], Tuple[()], Callable[[str], bytes], typing.DefaultDict, typing.FrozenSet[int]] for s in samples: for proto in range(pickle.HIGHEST_PROTOCOL + 1): z = pickle.dumps(s, proto) x = pickle.loads(z) self.assertEqual(s, x) more_samples = [List, typing.Iterable, typing.Type, List[int], typing.Type[typing.Mapping], typing.AbstractSet[Tuple[int, str]]] for s in more_samples: for proto in range(pickle.HIGHEST_PROTOCOL + 1): z = pickle.dumps(s, proto) x = pickle.loads(z) self.assertEqual(s, x) def test_copy_and_deepcopy(self): T = TypeVar('T') class Node(Generic[T]): ... things = [Union[T, int], Tuple[T, int], Tuple[()], Callable[..., T], Callable[[int], int], Tuple[Any, Any], Node[T], Node[int], Node[Any], typing.Iterable[T], typing.Iterable[Any], typing.Iterable[int], typing.Dict[int, str], typing.Dict[T, Any], ClassVar[int], ClassVar[List[T]], Tuple['T', 'T'], Union['T', int], List['T'], typing.Mapping['T', int]] for t in things + [Any]: self.assertEqual(t, copy(t)) self.assertEqual(t, deepcopy(t)) def test_immutability_by_copy_and_pickle(self): # Special forms like Union, Any, etc., generic aliases to containers like List, # Mapping, etc., and type variabcles are considered immutable by copy and pickle. global TP, TPB, TPV, PP # for pickle TP = TypeVar('TP') TPB = TypeVar('TPB', bound=int) TPV = TypeVar('TPV', bytes, str) PP = ParamSpec('PP') for X in [TP, TPB, TPV, PP, List, typing.Mapping, ClassVar, typing.Iterable, Union, Any, Tuple, Callable]: with self.subTest(thing=X): self.assertIs(copy(X), X) self.assertIs(deepcopy(X), X) for proto in range(pickle.HIGHEST_PROTOCOL + 1): self.assertIs(pickle.loads(pickle.dumps(X, proto)), X) del TP, TPB, TPV, PP # Check that local type variables are copyable. TL = TypeVar('TL') TLB = TypeVar('TLB', bound=int) TLV = TypeVar('TLV', bytes, str) PL = ParamSpec('PL') for X in [TL, TLB, TLV, PL]: with self.subTest(thing=X): self.assertIs(copy(X), X) self.assertIs(deepcopy(X), X) def test_copy_generic_instances(self): T = TypeVar('T') class C(Generic[T]): def __init__(self, attr: T) -> None: self.attr = attr c = C(42) self.assertEqual(copy(c).attr, 42) self.assertEqual(deepcopy(c).attr, 42) self.assertIsNot(copy(c), c) self.assertIsNot(deepcopy(c), c) c.attr = 1 self.assertEqual(copy(c).attr, 1) self.assertEqual(deepcopy(c).attr, 1) ci = C[int](42) self.assertEqual(copy(ci).attr, 42) self.assertEqual(deepcopy(ci).attr, 42) self.assertIsNot(copy(ci), ci) self.assertIsNot(deepcopy(ci), ci) ci.attr = 1 self.assertEqual(copy(ci).attr, 1) self.assertEqual(deepcopy(ci).attr, 1) self.assertEqual(ci.__orig_class__, C[int]) def test_weakref_all(self): T = TypeVar('T') things = [Any, Union[T, int], Callable[..., T], Tuple[Any, Any], Optional[List[int]], typing.Mapping[int, str], typing.Match[bytes], typing.Iterable['whatever']] for t in things: self.assertEqual(weakref.ref(t)(), t) def test_parameterized_slots(self): T = TypeVar('T') class C(Generic[T]): __slots__ = ('potato',) c = C() c_int = C[int]() c.potato = 0 c_int.potato = 0 with self.assertRaises(AttributeError): c.tomato = 0 with self.assertRaises(AttributeError): c_int.tomato = 0 def foo(x: C['C']): ... self.assertEqual(get_type_hints(foo, globals(), locals())['x'], C[C]) self.assertEqual(copy(C[int]), deepcopy(C[int])) def test_parameterized_slots_dict(self): T = TypeVar('T') class D(Generic[T]): __slots__ = {'banana': 42} d = D() d_int = D[int]() d.banana = 'yes' d_int.banana = 'yes' with self.assertRaises(AttributeError): d.foobar = 'no' with self.assertRaises(AttributeError): d_int.foobar = 'no' def test_errors(self): with self.assertRaises(TypeError): B = SimpleMapping[XK, Any] class C(Generic[B]): pass def test_repr_2(self): class C(Generic[T]): pass self.assertEqual(C.__module__, __name__) self.assertEqual(C.__qualname__, 'GenericTests.test_repr_2..C') X = C[int] self.assertEqual(X.__module__, __name__) self.assertEqual(repr(X).split('.')[-1], 'C[int]') class Y(C[int]): pass self.assertEqual(Y.__module__, __name__) self.assertEqual(Y.__qualname__, 'GenericTests.test_repr_2..Y') def test_repr_3(self): T = TypeVar('T') T1 = TypeVar('T1') P = ParamSpec('P') P2 = ParamSpec('P2') Ts = TypeVarTuple('Ts') class MyCallable(Generic[P, T]): pass class DoubleSpec(Generic[P, P2, T]): pass class TsP(Generic[*Ts, P]): pass object_to_expected_repr = { MyCallable[P, T]: "MyCallable[~P, ~T]", MyCallable[Concatenate[T1, P], T]: "MyCallable[typing.Concatenate[~T1, ~P], ~T]", MyCallable[[], bool]: "MyCallable[[], bool]", MyCallable[[int], bool]: "MyCallable[[int], bool]", MyCallable[[int, str], bool]: "MyCallable[[int, str], bool]", MyCallable[[int, list[int]], bool]: "MyCallable[[int, list[int]], bool]", MyCallable[Concatenate[*Ts, P], T]: "MyCallable[typing.Concatenate[typing.Unpack[Ts], ~P], ~T]", DoubleSpec[P2, P, T]: "DoubleSpec[~P2, ~P, ~T]", DoubleSpec[[int], [str], bool]: "DoubleSpec[[int], [str], bool]", DoubleSpec[[int, int], [str, str], bool]: "DoubleSpec[[int, int], [str, str], bool]", TsP[*Ts, P]: "TsP[typing.Unpack[Ts], ~P]", TsP[int, str, list[int], []]: "TsP[int, str, list[int], []]", TsP[int, [str, list[int]]]: "TsP[int, [str, list[int]]]", # These lines are just too long to fit: MyCallable[Concatenate[*Ts, P], int][int, str, [bool, float]]: "MyCallable[[int, str, bool, float], int]", } for obj, expected_repr in object_to_expected_repr.items(): with self.subTest(obj=obj, expected_repr=expected_repr): self.assertRegex( repr(obj), fr"^{re.escape(MyCallable.__module__)}.*\.{re.escape(expected_repr)}$", ) def test_eq_1(self): self.assertEqual(Generic, Generic) self.assertEqual(Generic[T], Generic[T]) self.assertNotEqual(Generic[KT], Generic[VT]) def test_eq_2(self): class A(Generic[T]): pass class B(Generic[T]): pass self.assertEqual(A, A) self.assertNotEqual(A, B) self.assertEqual(A[T], A[T]) self.assertNotEqual(A[T], B[T]) def test_multiple_inheritance(self): class A(Generic[T, VT]): pass class B(Generic[KT, T]): pass class C(A[T, VT], Generic[VT, T, KT], B[KT, T]): pass self.assertEqual(C.__parameters__, (VT, T, KT)) def test_multiple_inheritance_special(self): S = TypeVar('S') class B(Generic[S]): ... class C(List[int], B): ... self.assertEqual(C.__mro__, (C, list, B, Generic, object)) def test_init_subclass_super_called(self): class FinalException(Exception): pass class Final: def __init_subclass__(cls, **kwargs) -> None: for base in cls.__bases__: if base is not Final and issubclass(base, Final): raise FinalException(base) super().__init_subclass__(**kwargs) class Test(Generic[T], Final): pass with self.assertRaises(FinalException): class Subclass(Test): pass with self.assertRaises(FinalException): class Subclass2(Test[int]): pass def test_nested(self): G = Generic class Visitor(G[T]): a = None def set(self, a: T): self.a = a def get(self): return self.a def visit(self) -> T: return self.a V = Visitor[typing.List[int]] class IntListVisitor(V): def append(self, x: int): self.a.append(x) a = IntListVisitor() a.set([]) a.append(1) a.append(42) self.assertEqual(a.get(), [1, 42]) def test_type_erasure(self): T = TypeVar('T') class Node(Generic[T]): def __init__(self, label: T, left: 'Node[T]' = None, right: 'Node[T]' = None): self.label = label # type: T self.left = left # type: Optional[Node[T]] self.right = right # type: Optional[Node[T]] def foo(x: T): a = Node(x) b = Node[T](x) c = Node[Any](x) self.assertIs(type(a), Node) self.assertIs(type(b), Node) self.assertIs(type(c), Node) self.assertEqual(a.label, x) self.assertEqual(b.label, x) self.assertEqual(c.label, x) foo(42) def test_implicit_any(self): T = TypeVar('T') class C(Generic[T]): pass class D(C): pass self.assertEqual(D.__parameters__, ()) with self.assertRaises(TypeError): D[int] with self.assertRaises(TypeError): D[Any] with self.assertRaises(TypeError): D[T] def test_new_with_args(self): class A(Generic[T]): pass class B: def __new__(cls, arg): # call object obj = super().__new__(cls) obj.arg = arg return obj # mro: C, A, Generic, B, object class C(A, B): pass c = C('foo') self.assertEqual(c.arg, 'foo') def test_new_with_args2(self): class A: def __init__(self, arg): self.from_a = arg # call object super().__init__() # mro: C, Generic, A, object class C(Generic[T], A): def __init__(self, arg): self.from_c = arg # call Generic super().__init__(arg) c = C('foo') self.assertEqual(c.from_a, 'foo') self.assertEqual(c.from_c, 'foo') def test_new_no_args(self): class A(Generic[T]): pass with self.assertRaises(TypeError): A('foo') class B: def __new__(cls): # call object obj = super().__new__(cls) obj.from_b = 'b' return obj # mro: C, A, Generic, B, object class C(A, B): def __init__(self, arg): self.arg = arg def __new__(cls, arg): # call A obj = super().__new__(cls) obj.from_c = 'c' return obj c = C('foo') self.assertEqual(c.arg, 'foo') self.assertEqual(c.from_b, 'b') self.assertEqual(c.from_c, 'c') def test_subclass_special_form(self): for obj in ( ClassVar[int], Final[int], Union[int, float], Optional[int], Literal[1, 2], Concatenate[int, ParamSpec("P")], TypeGuard[int], ): with self.subTest(msg=obj): with self.assertRaisesRegex( TypeError, f'^{re.escape(f"Cannot subclass {obj!r}")}$' ): class Foo(obj): pass def test_complex_subclasses(self): T_co = TypeVar("T_co", covariant=True) class Base(Generic[T_co]): ... T = TypeVar("T") # see gh-94607: this fails in that bug class Sub(Base, Generic[T]): ... def test_parameter_detection(self): self.assertEqual(List[T].__parameters__, (T,)) self.assertEqual(List[List[T]].__parameters__, (T,)) class A: __parameters__ = (T,) # Bare classes should be skipped for a in (List, list): for b in (A, int, TypeVar, TypeVarTuple, ParamSpec, types.GenericAlias, types.UnionType): with self.subTest(generic=a, sub=b): with self.assertRaisesRegex(TypeError, '.* is not a generic class'): a[b][str] # Duck-typing anything that looks like it has __parameters__. # These tests are optional and failure is okay. self.assertEqual(List[A()].__parameters__, (T,)) # C version of GenericAlias self.assertEqual(list[A()].__parameters__, (T,)) def test_non_generic_subscript(self): T = TypeVar('T') class G(Generic[T]): pass class A: __parameters__ = (T,) for s in (int, G, A, List, list, TypeVar, TypeVarTuple, ParamSpec, types.GenericAlias, types.UnionType): for t in Tuple, tuple: with self.subTest(tuple=t, sub=s): self.assertEqual(t[s, T][int], t[s, int]) self.assertEqual(t[T, s][int], t[int, s]) a = t[s] with self.assertRaises(TypeError): a[int] for c in Callable, collections.abc.Callable: with self.subTest(callable=c, sub=s): self.assertEqual(c[[s], T][int], c[[s], int]) self.assertEqual(c[[T], s][int], c[[int], s]) a = c[[s], s] with self.assertRaises(TypeError): a[int] class ClassVarTests(BaseTestCase): def test_basics(self): with self.assertRaises(TypeError): ClassVar[int, str] with self.assertRaises(TypeError): ClassVar[int][str] def test_repr(self): self.assertEqual(repr(ClassVar), 'typing.ClassVar') cv = ClassVar[int] self.assertEqual(repr(cv), 'typing.ClassVar[int]') cv = ClassVar[Employee] self.assertEqual(repr(cv), 'typing.ClassVar[%s.Employee]' % __name__) def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class C(type(ClassVar)): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class D(type(ClassVar[int])): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.ClassVar'): class E(ClassVar): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.ClassVar\[int\]'): class F(ClassVar[int]): pass def test_cannot_init(self): with self.assertRaises(TypeError): ClassVar() with self.assertRaises(TypeError): type(ClassVar)() with self.assertRaises(TypeError): type(ClassVar[Optional[int]])() def test_no_isinstance(self): with self.assertRaises(TypeError): isinstance(1, ClassVar[int]) with self.assertRaises(TypeError): issubclass(int, ClassVar) class FinalTests(BaseTestCase): def test_basics(self): Final[int] # OK with self.assertRaises(TypeError): Final[int, str] with self.assertRaises(TypeError): Final[int][str] with self.assertRaises(TypeError): Optional[Final[int]] def test_repr(self): self.assertEqual(repr(Final), 'typing.Final') cv = Final[int] self.assertEqual(repr(cv), 'typing.Final[int]') cv = Final[Employee] self.assertEqual(repr(cv), 'typing.Final[%s.Employee]' % __name__) cv = Final[tuple[int]] self.assertEqual(repr(cv), 'typing.Final[tuple[int]]') def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class C(type(Final)): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class D(type(Final[int])): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.Final'): class E(Final): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.Final\[int\]'): class F(Final[int]): pass def test_cannot_init(self): with self.assertRaises(TypeError): Final() with self.assertRaises(TypeError): type(Final)() with self.assertRaises(TypeError): type(Final[Optional[int]])() def test_no_isinstance(self): with self.assertRaises(TypeError): isinstance(1, Final[int]) with self.assertRaises(TypeError): issubclass(int, Final) class FinalDecoratorTests(BaseTestCase): def test_final_unmodified(self): def func(x): ... self.assertIs(func, final(func)) def test_dunder_final(self): @final def func(): ... @final class Cls: ... self.assertIs(True, func.__final__) self.assertIs(True, Cls.__final__) class Wrapper: __slots__ = ("func",) def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): return self.func(*args, **kwargs) # Check that no error is thrown if the attribute # is not writable. @final @Wrapper def wrapped(): ... self.assertIsInstance(wrapped, Wrapper) self.assertIs(False, hasattr(wrapped, "__final__")) class Meta(type): @property def __final__(self): return "can't set me" @final class WithMeta(metaclass=Meta): ... self.assertEqual(WithMeta.__final__, "can't set me") # Builtin classes throw TypeError if you try to set an # attribute. final(int) self.assertIs(False, hasattr(int, "__final__")) # Make sure it works with common builtin decorators class Methods: @final @classmethod def clsmethod(cls): ... @final @staticmethod def stmethod(): ... # The other order doesn't work because property objects # don't allow attribute assignment. @property @final def prop(self): ... @final @lru_cache() def cached(self): ... # Use getattr_static because the descriptor returns the # underlying function, which doesn't have __final__. self.assertIs( True, inspect.getattr_static(Methods, "clsmethod").__final__ ) self.assertIs( True, inspect.getattr_static(Methods, "stmethod").__final__ ) self.assertIs(True, Methods.prop.fget.__final__) self.assertIs(True, Methods.cached.__final__) class OverrideDecoratorTests(BaseTestCase): def test_override(self): class Base: def normal_method(self): ... @classmethod def class_method_good_order(cls): ... @classmethod def class_method_bad_order(cls): ... @staticmethod def static_method_good_order(): ... @staticmethod def static_method_bad_order(): ... class Derived(Base): @override def normal_method(self): return 42 @classmethod @override def class_method_good_order(cls): return 42 @override @classmethod def class_method_bad_order(cls): return 42 @staticmethod @override def static_method_good_order(): return 42 @override @staticmethod def static_method_bad_order(): return 42 self.assertIsSubclass(Derived, Base) instance = Derived() self.assertEqual(instance.normal_method(), 42) self.assertIs(True, Derived.normal_method.__override__) self.assertIs(True, instance.normal_method.__override__) self.assertEqual(Derived.class_method_good_order(), 42) self.assertIs(True, Derived.class_method_good_order.__override__) self.assertEqual(Derived.class_method_bad_order(), 42) self.assertIs(False, hasattr(Derived.class_method_bad_order, "__override__")) self.assertEqual(Derived.static_method_good_order(), 42) self.assertIs(True, Derived.static_method_good_order.__override__) self.assertEqual(Derived.static_method_bad_order(), 42) self.assertIs(False, hasattr(Derived.static_method_bad_order, "__override__")) # Base object is not changed: self.assertIs(False, hasattr(Base.normal_method, "__override__")) self.assertIs(False, hasattr(Base.class_method_good_order, "__override__")) self.assertIs(False, hasattr(Base.class_method_bad_order, "__override__")) self.assertIs(False, hasattr(Base.static_method_good_order, "__override__")) self.assertIs(False, hasattr(Base.static_method_bad_order, "__override__")) def test_property(self): class Base: @property def correct(self) -> int: return 1 @property def wrong(self) -> int: return 1 class Child(Base): @property @override def correct(self) -> int: return 2 @override @property def wrong(self) -> int: return 2 instance = Child() self.assertEqual(instance.correct, 2) self.assertTrue(Child.correct.fget.__override__) self.assertEqual(instance.wrong, 2) self.assertFalse(hasattr(Child.wrong, "__override__")) self.assertFalse(hasattr(Child.wrong.fset, "__override__")) def test_silent_failure(self): class CustomProp: __slots__ = ('fget',) def __init__(self, fget): self.fget = fget def __get__(self, obj, objtype=None): return self.fget(obj) class WithOverride: @override # must not fail on object with `__slots__` @CustomProp def some(self): return 1 self.assertEqual(WithOverride.some, 1) self.assertFalse(hasattr(WithOverride.some, "__override__")) def test_multiple_decorators(self): import functools def with_wraps(f): # similar to `lru_cache` definition @functools.wraps(f) def wrapper(*args, **kwargs): return f(*args, **kwargs) return wrapper class WithOverride: @override @with_wraps def on_top(self, a: int) -> int: return a + 1 @with_wraps @override def on_bottom(self, a: int) -> int: return a + 2 instance = WithOverride() self.assertEqual(instance.on_top(1), 2) self.assertTrue(instance.on_top.__override__) self.assertEqual(instance.on_bottom(1), 3) self.assertTrue(instance.on_bottom.__override__) class CastTests(BaseTestCase): def test_basics(self): self.assertEqual(cast(int, 42), 42) self.assertEqual(cast(float, 42), 42) self.assertIs(type(cast(float, 42)), int) self.assertEqual(cast(Any, 42), 42) self.assertEqual(cast(list, 42), 42) self.assertEqual(cast(Union[str, float], 42), 42) self.assertEqual(cast(AnyStr, 42), 42) self.assertEqual(cast(None, 42), 42) def test_errors(self): # Bogus calls are not expected to fail. cast(42, 42) cast('hello', 42) class AssertTypeTests(BaseTestCase): def test_basics(self): arg = 42 self.assertIs(assert_type(arg, int), arg) self.assertIs(assert_type(arg, str | float), arg) self.assertIs(assert_type(arg, AnyStr), arg) self.assertIs(assert_type(arg, None), arg) def test_errors(self): # Bogus calls are not expected to fail. arg = 42 self.assertIs(assert_type(arg, 42), arg) self.assertIs(assert_type(arg, 'hello'), arg) # We need this to make sure that `@no_type_check` respects `__module__` attr: from test.typinganndata import ann_module8 @no_type_check class NoTypeCheck_Outer: Inner = ann_module8.NoTypeCheck_Outer.Inner @no_type_check class NoTypeCheck_WithFunction: NoTypeCheck_function = ann_module8.NoTypeCheck_function class ForwardRefTests(BaseTestCase): def test_basics(self): class Node(Generic[T]): def __init__(self, label: T): self.label = label self.left = self.right = None def add_both(self, left: 'Optional[Node[T]]', right: 'Node[T]' = None, stuff: int = None, blah=None): self.left = left self.right = right def add_left(self, node: Optional['Node[T]']): self.add_both(node, None) def add_right(self, node: 'Node[T]' = None): self.add_both(None, node) t = Node[int] both_hints = get_type_hints(t.add_both, globals(), locals()) self.assertEqual(both_hints['left'], Optional[Node[T]]) self.assertEqual(both_hints['right'], Node[T]) self.assertEqual(both_hints['stuff'], int) self.assertNotIn('blah', both_hints) left_hints = get_type_hints(t.add_left, globals(), locals()) self.assertEqual(left_hints['node'], Optional[Node[T]]) right_hints = get_type_hints(t.add_right, globals(), locals()) self.assertEqual(right_hints['node'], Node[T]) def test_forwardref_instance_type_error(self): fr = typing.ForwardRef('int') with self.assertRaises(TypeError): isinstance(42, fr) def test_forwardref_subclass_type_error(self): fr = typing.ForwardRef('int') with self.assertRaises(TypeError): issubclass(int, fr) def test_forwardref_only_str_arg(self): with self.assertRaises(TypeError): typing.ForwardRef(1) # only `str` type is allowed def test_forward_equality(self): fr = typing.ForwardRef('int') self.assertEqual(fr, typing.ForwardRef('int')) self.assertNotEqual(List['int'], List[int]) self.assertNotEqual(fr, typing.ForwardRef('int', module=__name__)) frm = typing.ForwardRef('int', module=__name__) self.assertEqual(frm, typing.ForwardRef('int', module=__name__)) self.assertNotEqual(frm, typing.ForwardRef('int', module='__other_name__')) def test_forward_equality_gth(self): c1 = typing.ForwardRef('C') c1_gth = typing.ForwardRef('C') c2 = typing.ForwardRef('C') c2_gth = typing.ForwardRef('C') class C: pass def foo(a: c1_gth, b: c2_gth): pass self.assertEqual(get_type_hints(foo, globals(), locals()), {'a': C, 'b': C}) self.assertEqual(c1, c2) self.assertEqual(c1, c1_gth) self.assertEqual(c1_gth, c2_gth) self.assertEqual(List[c1], List[c1_gth]) self.assertNotEqual(List[c1], List[C]) self.assertNotEqual(List[c1_gth], List[C]) self.assertEqual(Union[c1, c1_gth], Union[c1]) self.assertEqual(Union[c1, c1_gth, int], Union[c1, int]) def test_forward_equality_hash(self): c1 = typing.ForwardRef('int') c1_gth = typing.ForwardRef('int') c2 = typing.ForwardRef('int') c2_gth = typing.ForwardRef('int') def foo(a: c1_gth, b: c2_gth): pass get_type_hints(foo, globals(), locals()) self.assertEqual(hash(c1), hash(c2)) self.assertEqual(hash(c1_gth), hash(c2_gth)) self.assertEqual(hash(c1), hash(c1_gth)) c3 = typing.ForwardRef('int', module=__name__) c4 = typing.ForwardRef('int', module='__other_name__') self.assertNotEqual(hash(c3), hash(c1)) self.assertNotEqual(hash(c3), hash(c1_gth)) self.assertNotEqual(hash(c3), hash(c4)) self.assertEqual(hash(c3), hash(typing.ForwardRef('int', module=__name__))) def test_forward_equality_namespace(self): class A: pass def namespace1(): a = typing.ForwardRef('A') def fun(x: a): pass get_type_hints(fun, globals(), locals()) return a def namespace2(): a = typing.ForwardRef('A') class A: pass def fun(x: a): pass get_type_hints(fun, globals(), locals()) return a self.assertEqual(namespace1(), namespace1()) self.assertNotEqual(namespace1(), namespace2()) def test_forward_repr(self): self.assertEqual(repr(List['int']), "typing.List[ForwardRef('int')]") self.assertEqual(repr(List[ForwardRef('int', module='mod')]), "typing.List[ForwardRef('int', module='mod')]") def test_union_forward(self): def foo(a: Union['T']): pass self.assertEqual(get_type_hints(foo, globals(), locals()), {'a': Union[T]}) def foo(a: tuple[ForwardRef('T')] | int): pass self.assertEqual(get_type_hints(foo, globals(), locals()), {'a': tuple[T] | int}) def test_tuple_forward(self): def foo(a: Tuple['T']): pass self.assertEqual(get_type_hints(foo, globals(), locals()), {'a': Tuple[T]}) def foo(a: tuple[ForwardRef('T')]): pass self.assertEqual(get_type_hints(foo, globals(), locals()), {'a': tuple[T]}) def test_double_forward(self): def foo(a: 'List[\'int\']'): pass self.assertEqual(get_type_hints(foo, globals(), locals()), {'a': List[int]}) def test_forward_recursion_actually(self): def namespace1(): a = typing.ForwardRef('A') A = a def fun(x: a): pass ret = get_type_hints(fun, globals(), locals()) return a def namespace2(): a = typing.ForwardRef('A') A = a def fun(x: a): pass ret = get_type_hints(fun, globals(), locals()) return a def cmp(o1, o2): return o1 == o2 with infinite_recursion(25): # magic number, small but reasonable r1 = namespace1() r2 = namespace2() self.assertIsNot(r1, r2) self.assertRaises(RecursionError, cmp, r1, r2) def test_union_forward_recursion(self): ValueList = List['Value'] Value = Union[str, ValueList] class C: foo: List[Value] class D: foo: Union[Value, ValueList] class E: foo: Union[List[Value], ValueList] class F: foo: Union[Value, List[Value], ValueList] self.assertEqual(get_type_hints(C, globals(), locals()), get_type_hints(C, globals(), locals())) self.assertEqual(get_type_hints(C, globals(), locals()), {'foo': List[Union[str, List[Union[str, List['Value']]]]]}) self.assertEqual(get_type_hints(D, globals(), locals()), {'foo': Union[str, List[Union[str, List['Value']]]]}) self.assertEqual(get_type_hints(E, globals(), locals()), {'foo': Union[ List[Union[str, List[Union[str, List['Value']]]]], List[Union[str, List['Value']]] ] }) self.assertEqual(get_type_hints(F, globals(), locals()), {'foo': Union[ str, List[Union[str, List['Value']]], List[Union[str, List[Union[str, List['Value']]]]] ] }) def test_callable_forward(self): def foo(a: Callable[['T'], 'T']): pass self.assertEqual(get_type_hints(foo, globals(), locals()), {'a': Callable[[T], T]}) def test_callable_with_ellipsis_forward(self): def foo(a: 'Callable[..., T]'): pass self.assertEqual(get_type_hints(foo, globals(), locals()), {'a': Callable[..., T]}) def test_special_forms_forward(self): class C: a: Annotated['ClassVar[int]', (3, 5)] = 4 b: Annotated['Final[int]', "const"] = 4 x: 'ClassVar' = 4 y: 'Final' = 4 class CF: b: List['Final[int]'] = 4 self.assertEqual(get_type_hints(C, globals())['a'], ClassVar[int]) self.assertEqual(get_type_hints(C, globals())['b'], Final[int]) self.assertEqual(get_type_hints(C, globals())['x'], ClassVar) self.assertEqual(get_type_hints(C, globals())['y'], Final) with self.assertRaises(TypeError): get_type_hints(CF, globals()), def test_syntax_error(self): with self.assertRaises(SyntaxError): Generic['/T'] def test_delayed_syntax_error(self): def foo(a: 'Node[T'): pass with self.assertRaises(SyntaxError): get_type_hints(foo) def test_name_error(self): def foo(a: 'Noode[T]'): pass with self.assertRaises(NameError): get_type_hints(foo, locals()) def test_no_type_check(self): @no_type_check def foo(a: 'whatevers') -> {}: pass th = get_type_hints(foo) self.assertEqual(th, {}) def test_no_type_check_class(self): @no_type_check class C: def foo(a: 'whatevers') -> {}: pass cth = get_type_hints(C.foo) self.assertEqual(cth, {}) ith = get_type_hints(C().foo) self.assertEqual(ith, {}) def test_no_type_check_no_bases(self): class C: def meth(self, x: int): ... @no_type_check class D(C): c = C # verify that @no_type_check never affects bases self.assertEqual(get_type_hints(C.meth), {'x': int}) # and never child classes: class Child(D): def foo(self, x: int): ... self.assertEqual(get_type_hints(Child.foo), {'x': int}) def test_no_type_check_nested_types(self): # See https://bugs.python.org/issue46571 class Other: o: int class B: # Has the same `__name__`` as `A.B` and different `__qualname__` o: int @no_type_check class A: a: int class B: b: int class C: c: int class D: d: int Other = Other for klass in [A, A.B, A.B.C, A.D]: with self.subTest(klass=klass): self.assertTrue(klass.__no_type_check__) self.assertEqual(get_type_hints(klass), {}) for not_modified in [Other, B]: with self.subTest(not_modified=not_modified): with self.assertRaises(AttributeError): not_modified.__no_type_check__ self.assertNotEqual(get_type_hints(not_modified), {}) def test_no_type_check_class_and_static_methods(self): @no_type_check class Some: @staticmethod def st(x: int) -> int: ... @classmethod def cl(cls, y: int) -> int: ... self.assertTrue(Some.st.__no_type_check__) self.assertEqual(get_type_hints(Some.st), {}) self.assertTrue(Some.cl.__no_type_check__) self.assertEqual(get_type_hints(Some.cl), {}) def test_no_type_check_other_module(self): self.assertTrue(NoTypeCheck_Outer.__no_type_check__) with self.assertRaises(AttributeError): ann_module8.NoTypeCheck_Outer.__no_type_check__ with self.assertRaises(AttributeError): ann_module8.NoTypeCheck_Outer.Inner.__no_type_check__ self.assertTrue(NoTypeCheck_WithFunction.__no_type_check__) with self.assertRaises(AttributeError): ann_module8.NoTypeCheck_function.__no_type_check__ def test_no_type_check_foreign_functions(self): # We should not modify this function: def some(*args: int) -> int: ... @no_type_check class A: some_alias = some some_class = classmethod(some) some_static = staticmethod(some) with self.assertRaises(AttributeError): some.__no_type_check__ self.assertEqual(get_type_hints(some), {'args': int, 'return': int}) def test_no_type_check_lambda(self): @no_type_check class A: # Corner case: `lambda` is both an assignment and a function: bar: Callable[[int], int] = lambda arg: arg self.assertTrue(A.bar.__no_type_check__) self.assertEqual(get_type_hints(A.bar), {}) def test_no_type_check_TypeError(self): # This simply should not fail with # `TypeError: can't set attributes of built-in/extension type 'dict'` no_type_check(dict) def test_no_type_check_forward_ref_as_string(self): class C: foo: typing.ClassVar[int] = 7 class D: foo: ClassVar[int] = 7 class E: foo: 'typing.ClassVar[int]' = 7 class F: foo: 'ClassVar[int]' = 7 expected_result = {'foo': typing.ClassVar[int]} for clazz in [C, D, E, F]: self.assertEqual(get_type_hints(clazz), expected_result) def test_nested_classvar_fails_forward_ref_check(self): class E: foo: 'typing.ClassVar[typing.ClassVar[int]]' = 7 class F: foo: ClassVar['ClassVar[int]'] = 7 for clazz in [E, F]: with self.assertRaises(TypeError): get_type_hints(clazz) def test_meta_no_type_check(self): depr_msg = ( "'typing.no_type_check_decorator' is deprecated " "and slated for removal in Python 3.15" ) with self.assertWarnsRegex(DeprecationWarning, depr_msg): @no_type_check_decorator def magic_decorator(func): return func self.assertEqual(magic_decorator.__name__, 'magic_decorator') @magic_decorator def foo(a: 'whatevers') -> {}: pass @magic_decorator class C: def foo(a: 'whatevers') -> {}: pass self.assertEqual(foo.__name__, 'foo') th = get_type_hints(foo) self.assertEqual(th, {}) cth = get_type_hints(C.foo) self.assertEqual(cth, {}) ith = get_type_hints(C().foo) self.assertEqual(ith, {}) def test_default_globals(self): code = ("class C:\n" " def foo(self, a: 'C') -> 'D': pass\n" "class D:\n" " def bar(self, b: 'D') -> C: pass\n" ) ns = {} exec(code, ns) hints = get_type_hints(ns['C'].foo) self.assertEqual(hints, {'a': ns['C'], 'return': ns['D']}) def test_final_forward_ref(self): self.assertEqual(gth(Loop, globals())['attr'], Final[Loop]) self.assertNotEqual(gth(Loop, globals())['attr'], Final[int]) self.assertNotEqual(gth(Loop, globals())['attr'], Final) def test_or(self): X = ForwardRef('X') # __or__/__ror__ itself self.assertEqual(X | "x", Union[X, "x"]) self.assertEqual("x" | X, Union["x", X]) @lru_cache() def cached_func(x, y): return 3 * x + y class MethodHolder: @classmethod def clsmethod(cls): ... @staticmethod def stmethod(): ... def method(self): ... class OverloadTests(BaseTestCase): def test_overload_fails(self): with self.assertRaises(NotImplementedError): @overload def blah(): pass blah() def test_overload_succeeds(self): @overload def blah(): pass def blah(): pass blah() @cpython_only # gh-98713 def test_overload_on_compiled_functions(self): with patch("typing._overload_registry", defaultdict(lambda: defaultdict(dict))): # The registry starts out empty: self.assertEqual(typing._overload_registry, {}) # This should just not fail: overload(sum) overload(print) # No overloads are recorded (but, it still has a side-effect): self.assertEqual(typing.get_overloads(sum), []) self.assertEqual(typing.get_overloads(print), []) def set_up_overloads(self): def blah(): pass overload1 = blah overload(blah) def blah(): pass overload2 = blah overload(blah) def blah(): pass return blah, [overload1, overload2] # Make sure we don't clear the global overload registry @patch("typing._overload_registry", defaultdict(lambda: defaultdict(dict))) def test_overload_registry(self): # The registry starts out empty self.assertEqual(typing._overload_registry, {}) impl, overloads = self.set_up_overloads() self.assertNotEqual(typing._overload_registry, {}) self.assertEqual(list(get_overloads(impl)), overloads) def some_other_func(): pass overload(some_other_func) other_overload = some_other_func def some_other_func(): pass self.assertEqual(list(get_overloads(some_other_func)), [other_overload]) # Unrelated function still has no overloads: def not_overloaded(): pass self.assertEqual(list(get_overloads(not_overloaded)), []) # Make sure that after we clear all overloads, the registry is # completely empty. clear_overloads() self.assertEqual(typing._overload_registry, {}) self.assertEqual(get_overloads(impl), []) # Querying a function with no overloads shouldn't change the registry. def the_only_one(): pass self.assertEqual(get_overloads(the_only_one), []) self.assertEqual(typing._overload_registry, {}) def test_overload_registry_repeated(self): for _ in range(2): impl, overloads = self.set_up_overloads() self.assertEqual(list(get_overloads(impl)), overloads) # Definitions needed for features introduced in Python 3.6 from test.typinganndata import ( ann_module, ann_module2, ann_module3, ann_module5, ann_module6, ) T_a = TypeVar('T_a') class AwaitableWrapper(typing.Awaitable[T_a]): def __init__(self, value): self.value = value def __await__(self) -> typing.Iterator[T_a]: yield return self.value class AsyncIteratorWrapper(typing.AsyncIterator[T_a]): def __init__(self, value: typing.Iterable[T_a]): self.value = value def __aiter__(self) -> typing.AsyncIterator[T_a]: return self async def __anext__(self) -> T_a: data = await self.value if data: return data else: raise StopAsyncIteration class ACM: async def __aenter__(self) -> int: return 42 async def __aexit__(self, etype, eval, tb): return None class A: y: float class B(A): x: ClassVar[Optional['B']] = None y: int b: int class CSub(B): z: ClassVar['CSub'] = B() class G(Generic[T]): lst: ClassVar[List[T]] = [] class Loop: attr: Final['Loop'] class NoneAndForward: parent: 'NoneAndForward' meaning: None class CoolEmployee(NamedTuple): name: str cool: int class CoolEmployeeWithDefault(NamedTuple): name: str cool: int = 0 class XMeth(NamedTuple): x: int def double(self): return 2 * self.x class XRepr(NamedTuple): x: int y: int = 1 def __str__(self): return f'{self.x} -> {self.y}' def __add__(self, other): return 0 Label = TypedDict('Label', [('label', str)]) class Point2D(TypedDict): x: int y: int class Point2DGeneric(Generic[T], TypedDict): a: T b: T class Bar(_typed_dict_helper.Foo, total=False): b: int class BarGeneric(_typed_dict_helper.FooGeneric[T], total=False): b: int class LabelPoint2D(Point2D, Label): ... class Options(TypedDict, total=False): log_level: int log_path: str class TotalMovie(TypedDict): title: str year: NotRequired[int] class NontotalMovie(TypedDict, total=False): title: Required[str] year: int class ParentNontotalMovie(TypedDict, total=False): title: Required[str] class ChildTotalMovie(ParentNontotalMovie): year: NotRequired[int] class ParentDeeplyAnnotatedMovie(TypedDict): title: Annotated[Annotated[Required[str], "foobar"], "another level"] class ChildDeeplyAnnotatedMovie(ParentDeeplyAnnotatedMovie): year: NotRequired[Annotated[int, 2000]] class AnnotatedMovie(TypedDict): title: Annotated[Required[str], "foobar"] year: NotRequired[Annotated[int, 2000]] class DeeplyAnnotatedMovie(TypedDict): title: Annotated[Annotated[Required[str], "foobar"], "another level"] year: NotRequired[Annotated[int, 2000]] class WeirdlyQuotedMovie(TypedDict): title: Annotated['Annotated[Required[str], "foobar"]', "another level"] year: NotRequired['Annotated[int, 2000]'] class HasForeignBaseClass(mod_generics_cache.A): some_xrepr: 'XRepr' other_a: 'mod_generics_cache.A' async def g_with(am: typing.AsyncContextManager[int]): x: int async with am as x: return x try: g_with(ACM()).send(None) except StopIteration as e: assert e.args[0] == 42 gth = get_type_hints class ForRefExample: @ann_module.dec def func(self: 'ForRefExample'): pass @ann_module.dec @ann_module.dec def nested(self: 'ForRefExample'): pass class GetTypeHintTests(BaseTestCase): def test_get_type_hints_from_various_objects(self): # For invalid objects should fail with TypeError (not AttributeError etc). with self.assertRaises(TypeError): gth(123) with self.assertRaises(TypeError): gth('abc') with self.assertRaises(TypeError): gth(None) def test_get_type_hints_modules(self): ann_module_type_hints = {1: 2, 'f': Tuple[int, int], 'x': int, 'y': str, 'u': int | float} self.assertEqual(gth(ann_module), ann_module_type_hints) self.assertEqual(gth(ann_module2), {}) self.assertEqual(gth(ann_module3), {}) @skip("known bug") def test_get_type_hints_modules_forwardref(self): # FIXME: This currently exposes a bug in typing. Cached forward references # don't account for the case where there are multiple types of the same # name coming from different modules in the same program. mgc_hints = {'default_a': Optional[mod_generics_cache.A], 'default_b': Optional[mod_generics_cache.B]} self.assertEqual(gth(mod_generics_cache), mgc_hints) def test_get_type_hints_classes(self): self.assertEqual(gth(ann_module.C), # gth will find the right globalns {'y': Optional[ann_module.C]}) self.assertIsInstance(gth(ann_module.j_class), dict) self.assertEqual(gth(ann_module.M), {'123': 123, 'o': type}) self.assertEqual(gth(ann_module.D), {'j': str, 'k': str, 'y': Optional[ann_module.C]}) self.assertEqual(gth(ann_module.Y), {'z': int}) self.assertEqual(gth(ann_module.h_class), {'y': Optional[ann_module.C]}) self.assertEqual(gth(ann_module.S), {'x': str, 'y': str}) self.assertEqual(gth(ann_module.foo), {'x': int}) self.assertEqual(gth(NoneAndForward), {'parent': NoneAndForward, 'meaning': type(None)}) self.assertEqual(gth(HasForeignBaseClass), {'some_xrepr': XRepr, 'other_a': mod_generics_cache.A, 'some_b': mod_generics_cache.B}) self.assertEqual(gth(XRepr.__new__), {'x': int, 'y': int}) self.assertEqual(gth(mod_generics_cache.B), {'my_inner_a1': mod_generics_cache.B.A, 'my_inner_a2': mod_generics_cache.B.A, 'my_outer_a': mod_generics_cache.A}) def test_get_type_hints_classes_no_implicit_optional(self): class WithNoneDefault: field: int = None # most type-checkers won't be happy with it self.assertEqual(gth(WithNoneDefault), {'field': int}) def test_respect_no_type_check(self): @no_type_check class NoTpCheck: class Inn: def __init__(self, x: 'not a type'): ... self.assertTrue(NoTpCheck.__no_type_check__) self.assertTrue(NoTpCheck.Inn.__init__.__no_type_check__) self.assertEqual(gth(ann_module2.NTC.meth), {}) class ABase(Generic[T]): def meth(x: int): ... @no_type_check class Der(ABase): ... self.assertEqual(gth(ABase.meth), {'x': int}) def test_get_type_hints_for_builtins(self): # Should not fail for built-in classes and functions. self.assertEqual(gth(int), {}) self.assertEqual(gth(type), {}) self.assertEqual(gth(dir), {}) self.assertEqual(gth(len), {}) self.assertEqual(gth(object.__str__), {}) self.assertEqual(gth(object().__str__), {}) self.assertEqual(gth(str.join), {}) def test_previous_behavior(self): def testf(x, y): ... testf.__annotations__['x'] = 'int' self.assertEqual(gth(testf), {'x': int}) def testg(x: None): ... self.assertEqual(gth(testg), {'x': type(None)}) def test_get_type_hints_for_object_with_annotations(self): class A: ... class B: ... b = B() b.__annotations__ = {'x': 'A'} self.assertEqual(gth(b, locals()), {'x': A}) def test_get_type_hints_ClassVar(self): self.assertEqual(gth(ann_module2.CV, ann_module2.__dict__), {'var': typing.ClassVar[ann_module2.CV]}) self.assertEqual(gth(B, globals()), {'y': int, 'x': ClassVar[Optional[B]], 'b': int}) self.assertEqual(gth(CSub, globals()), {'z': ClassVar[CSub], 'y': int, 'b': int, 'x': ClassVar[Optional[B]]}) self.assertEqual(gth(G), {'lst': ClassVar[List[T]]}) def test_get_type_hints_wrapped_decoratored_func(self): expects = {'self': ForRefExample} self.assertEqual(gth(ForRefExample.func), expects) self.assertEqual(gth(ForRefExample.nested), expects) def test_get_type_hints_annotated(self): def foobar(x: List['X']): ... X = Annotated[int, (1, 10)] self.assertEqual( get_type_hints(foobar, globals(), locals()), {'x': List[int]} ) self.assertEqual( get_type_hints(foobar, globals(), locals(), include_extras=True), {'x': List[Annotated[int, (1, 10)]]} ) def foobar(x: list[ForwardRef('X')]): ... X = Annotated[int, (1, 10)] self.assertEqual( get_type_hints(foobar, globals(), locals()), {'x': list[int]} ) self.assertEqual( get_type_hints(foobar, globals(), locals(), include_extras=True), {'x': list[Annotated[int, (1, 10)]]} ) BA = Tuple[Annotated[T, (1, 0)], ...] def barfoo(x: BA): ... self.assertEqual(get_type_hints(barfoo, globals(), locals())['x'], Tuple[T, ...]) self.assertEqual( get_type_hints(barfoo, globals(), locals(), include_extras=True)['x'], BA ) BA = tuple[Annotated[T, (1, 0)], ...] def barfoo(x: BA): ... self.assertEqual(get_type_hints(barfoo, globals(), locals())['x'], tuple[T, ...]) self.assertEqual( get_type_hints(barfoo, globals(), locals(), include_extras=True)['x'], BA ) def barfoo2(x: typing.Callable[..., Annotated[List[T], "const"]], y: typing.Union[int, Annotated[T, "mutable"]]): ... self.assertEqual( get_type_hints(barfoo2, globals(), locals()), {'x': typing.Callable[..., List[T]], 'y': typing.Union[int, T]} ) BA2 = typing.Callable[..., List[T]] def barfoo3(x: BA2): ... self.assertIs( get_type_hints(barfoo3, globals(), locals(), include_extras=True)["x"], BA2 ) BA3 = typing.Annotated[int | float, "const"] def barfoo4(x: BA3): ... self.assertEqual( get_type_hints(barfoo4, globals(), locals()), {"x": int | float} ) self.assertEqual( get_type_hints(barfoo4, globals(), locals(), include_extras=True), {"x": typing.Annotated[int | float, "const"]} ) def test_get_type_hints_annotated_in_union(self): # bpo-46603 def with_union(x: int | list[Annotated[str, 'meta']]): ... self.assertEqual(get_type_hints(with_union), {'x': int | list[str]}) self.assertEqual( get_type_hints(with_union, include_extras=True), {'x': int | list[Annotated[str, 'meta']]}, ) def test_get_type_hints_annotated_refs(self): Const = Annotated[T, "Const"] class MySet(Generic[T]): def __ior__(self, other: "Const[MySet[T]]") -> "MySet[T]": ... def __iand__(self, other: Const["MySet[T]"]) -> "MySet[T]": ... self.assertEqual( get_type_hints(MySet.__iand__, globals(), locals()), {'other': MySet[T], 'return': MySet[T]} ) self.assertEqual( get_type_hints(MySet.__iand__, globals(), locals(), include_extras=True), {'other': Const[MySet[T]], 'return': MySet[T]} ) self.assertEqual( get_type_hints(MySet.__ior__, globals(), locals()), {'other': MySet[T], 'return': MySet[T]} ) def test_get_type_hints_annotated_with_none_default(self): # See: https://bugs.python.org/issue46195 def annotated_with_none_default(x: Annotated[int, 'data'] = None): ... self.assertEqual( get_type_hints(annotated_with_none_default), {'x': int}, ) self.assertEqual( get_type_hints(annotated_with_none_default, include_extras=True), {'x': Annotated[int, 'data']}, ) def test_get_type_hints_classes_str_annotations(self): class Foo: y = str x: 'y' # This previously raised an error under PEP 563. self.assertEqual(get_type_hints(Foo), {'x': str}) def test_get_type_hints_bad_module(self): # bpo-41515 class BadModule: pass BadModule.__module__ = 'bad' # Something not in sys.modules self.assertNotIn('bad', sys.modules) self.assertEqual(get_type_hints(BadModule), {}) def test_get_type_hints_annotated_bad_module(self): # See https://bugs.python.org/issue44468 class BadBase: foo: tuple class BadType(BadBase): bar: list BadType.__module__ = BadBase.__module__ = 'bad' self.assertNotIn('bad', sys.modules) self.assertEqual(get_type_hints(BadType), {'foo': tuple, 'bar': list}) def test_forward_ref_and_final(self): # https://bugs.python.org/issue45166 hints = get_type_hints(ann_module5) self.assertEqual(hints, {'name': Final[str]}) hints = get_type_hints(ann_module5.MyClass) self.assertEqual(hints, {'value': Final}) def test_top_level_class_var(self): # https://bugs.python.org/issue45166 with self.assertRaisesRegex( TypeError, r'typing.ClassVar\[int\] is not valid as type argument', ): get_type_hints(ann_module6) def test_get_type_hints_typeddict(self): self.assertEqual(get_type_hints(TotalMovie), {'title': str, 'year': int}) self.assertEqual(get_type_hints(TotalMovie, include_extras=True), { 'title': str, 'year': NotRequired[int], }) self.assertEqual(get_type_hints(AnnotatedMovie), {'title': str, 'year': int}) self.assertEqual(get_type_hints(AnnotatedMovie, include_extras=True), { 'title': Annotated[Required[str], "foobar"], 'year': NotRequired[Annotated[int, 2000]], }) self.assertEqual(get_type_hints(DeeplyAnnotatedMovie), {'title': str, 'year': int}) self.assertEqual(get_type_hints(DeeplyAnnotatedMovie, include_extras=True), { 'title': Annotated[Required[str], "foobar", "another level"], 'year': NotRequired[Annotated[int, 2000]], }) self.assertEqual(get_type_hints(WeirdlyQuotedMovie), {'title': str, 'year': int}) self.assertEqual(get_type_hints(WeirdlyQuotedMovie, include_extras=True), { 'title': Annotated[Required[str], "foobar", "another level"], 'year': NotRequired[Annotated[int, 2000]], }) self.assertEqual(get_type_hints(_typed_dict_helper.VeryAnnotated), {'a': int}) self.assertEqual(get_type_hints(_typed_dict_helper.VeryAnnotated, include_extras=True), { 'a': Annotated[Required[int], "a", "b", "c"] }) self.assertEqual(get_type_hints(ChildTotalMovie), {"title": str, "year": int}) self.assertEqual(get_type_hints(ChildTotalMovie, include_extras=True), { "title": Required[str], "year": NotRequired[int] }) self.assertEqual(get_type_hints(ChildDeeplyAnnotatedMovie), {"title": str, "year": int}) self.assertEqual(get_type_hints(ChildDeeplyAnnotatedMovie, include_extras=True), { "title": Annotated[Required[str], "foobar", "another level"], "year": NotRequired[Annotated[int, 2000]] }) def test_get_type_hints_collections_abc_callable(self): # https://github.com/python/cpython/issues/91621 P = ParamSpec('P') def f(x: collections.abc.Callable[[int], int]): ... def g(x: collections.abc.Callable[..., int]): ... def h(x: collections.abc.Callable[P, int]): ... self.assertEqual(get_type_hints(f), {'x': collections.abc.Callable[[int], int]}) self.assertEqual(get_type_hints(g), {'x': collections.abc.Callable[..., int]}) self.assertEqual(get_type_hints(h), {'x': collections.abc.Callable[P, int]}) class GetUtilitiesTestCase(TestCase): def test_get_origin(self): T = TypeVar('T') Ts = TypeVarTuple('Ts') P = ParamSpec('P') class C(Generic[T]): pass self.assertIs(get_origin(C[int]), C) self.assertIs(get_origin(C[T]), C) self.assertIs(get_origin(int), None) self.assertIs(get_origin(ClassVar[int]), ClassVar) self.assertIs(get_origin(Union[int, str]), Union) self.assertIs(get_origin(Literal[42, 43]), Literal) self.assertIs(get_origin(Final[List[int]]), Final) self.assertIs(get_origin(Generic), Generic) self.assertIs(get_origin(Generic[T]), Generic) self.assertIs(get_origin(List[Tuple[T, T]][int]), list) self.assertIs(get_origin(Annotated[T, 'thing']), Annotated) self.assertIs(get_origin(List), list) self.assertIs(get_origin(Tuple), tuple) self.assertIs(get_origin(Callable), collections.abc.Callable) self.assertIs(get_origin(list[int]), list) self.assertIs(get_origin(list), None) self.assertIs(get_origin(list | str), types.UnionType) self.assertIs(get_origin(P.args), P) self.assertIs(get_origin(P.kwargs), P) self.assertIs(get_origin(Required[int]), Required) self.assertIs(get_origin(NotRequired[int]), NotRequired) self.assertIs(get_origin((*Ts,)[0]), Unpack) self.assertIs(get_origin(Unpack[Ts]), Unpack) self.assertIs(get_origin((*tuple[*Ts],)[0]), tuple) self.assertIs(get_origin(Unpack[Tuple[Unpack[Ts]]]), Unpack) def test_get_args(self): T = TypeVar('T') class C(Generic[T]): pass self.assertEqual(get_args(C[int]), (int,)) self.assertEqual(get_args(C[T]), (T,)) self.assertEqual(get_args(typing.SupportsAbs[int]), (int,)) # Protocol self.assertEqual(get_args(typing.SupportsAbs[T]), (T,)) self.assertEqual(get_args(Point2DGeneric[int]), (int,)) # TypedDict self.assertEqual(get_args(Point2DGeneric[T]), (T,)) self.assertEqual(get_args(T), ()) self.assertEqual(get_args(int), ()) self.assertEqual(get_args(Any), ()) self.assertEqual(get_args(Self), ()) self.assertEqual(get_args(LiteralString), ()) self.assertEqual(get_args(ClassVar[int]), (int,)) self.assertEqual(get_args(Union[int, str]), (int, str)) self.assertEqual(get_args(Literal[42, 43]), (42, 43)) self.assertEqual(get_args(Final[List[int]]), (List[int],)) self.assertEqual(get_args(Optional[int]), (int, type(None))) self.assertEqual(get_args(Union[int, None]), (int, type(None))) self.assertEqual(get_args(Union[int, Tuple[T, int]][str]), (int, Tuple[str, int])) self.assertEqual(get_args(typing.Dict[int, Tuple[T, T]][Optional[int]]), (int, Tuple[Optional[int], Optional[int]])) self.assertEqual(get_args(Callable[[], T][int]), ([], int)) self.assertEqual(get_args(Callable[..., int]), (..., int)) self.assertEqual(get_args(Callable[[int], str]), ([int], str)) self.assertEqual(get_args(Union[int, Callable[[Tuple[T, ...]], str]]), (int, Callable[[Tuple[T, ...]], str])) self.assertEqual(get_args(Tuple[int, ...]), (int, ...)) self.assertEqual(get_args(Tuple[()]), ()) self.assertEqual(get_args(Annotated[T, 'one', 2, ['three']]), (T, 'one', 2, ['three'])) self.assertEqual(get_args(List), ()) self.assertEqual(get_args(Tuple), ()) self.assertEqual(get_args(Callable), ()) self.assertEqual(get_args(list[int]), (int,)) self.assertEqual(get_args(list), ()) self.assertEqual(get_args(collections.abc.Callable[[int], str]), ([int], str)) self.assertEqual(get_args(collections.abc.Callable[..., str]), (..., str)) self.assertEqual(get_args(collections.abc.Callable[[], str]), ([], str)) self.assertEqual(get_args(collections.abc.Callable[[int], str]), get_args(Callable[[int], str])) P = ParamSpec('P') self.assertEqual(get_args(P), ()) self.assertEqual(get_args(P.args), ()) self.assertEqual(get_args(P.kwargs), ()) self.assertEqual(get_args(Callable[P, int]), (P, int)) self.assertEqual(get_args(collections.abc.Callable[P, int]), (P, int)) self.assertEqual(get_args(Callable[Concatenate[int, P], int]), (Concatenate[int, P], int)) self.assertEqual(get_args(collections.abc.Callable[Concatenate[int, P], int]), (Concatenate[int, P], int)) self.assertEqual(get_args(Concatenate[int, str, P]), (int, str, P)) self.assertEqual(get_args(list | str), (list, str)) self.assertEqual(get_args(Required[int]), (int,)) self.assertEqual(get_args(NotRequired[int]), (int,)) self.assertEqual(get_args(TypeAlias), ()) self.assertEqual(get_args(TypeGuard[int]), (int,)) Ts = TypeVarTuple('Ts') self.assertEqual(get_args(Ts), ()) self.assertEqual(get_args((*Ts,)[0]), (Ts,)) self.assertEqual(get_args(Unpack[Ts]), (Ts,)) self.assertEqual(get_args(tuple[*Ts]), (*Ts,)) self.assertEqual(get_args(tuple[Unpack[Ts]]), (Unpack[Ts],)) self.assertEqual(get_args((*tuple[*Ts],)[0]), (*Ts,)) self.assertEqual(get_args(Unpack[tuple[Unpack[Ts]]]), (tuple[Unpack[Ts]],)) class CollectionsAbcTests(BaseTestCase): def test_hashable(self): self.assertIsInstance(42, typing.Hashable) self.assertNotIsInstance([], typing.Hashable) def test_iterable(self): self.assertIsInstance([], typing.Iterable) # Due to ABC caching, the second time takes a separate code # path and could fail. So call this a few times. self.assertIsInstance([], typing.Iterable) self.assertIsInstance([], typing.Iterable) self.assertNotIsInstance(42, typing.Iterable) # Just in case, also test issubclass() a few times. self.assertIsSubclass(list, typing.Iterable) self.assertIsSubclass(list, typing.Iterable) def test_iterator(self): it = iter([]) self.assertIsInstance(it, typing.Iterator) self.assertNotIsInstance(42, typing.Iterator) def test_awaitable(self): ns = {} exec( "async def foo() -> typing.Awaitable[int]:\n" " return await AwaitableWrapper(42)\n", globals(), ns) foo = ns['foo'] g = foo() self.assertIsInstance(g, typing.Awaitable) self.assertNotIsInstance(foo, typing.Awaitable) g.send(None) # Run foo() till completion, to avoid warning. def test_coroutine(self): ns = {} exec( "async def foo():\n" " return\n", globals(), ns) foo = ns['foo'] g = foo() self.assertIsInstance(g, typing.Coroutine) with self.assertRaises(TypeError): isinstance(g, typing.Coroutine[int]) self.assertNotIsInstance(foo, typing.Coroutine) try: g.send(None) except StopIteration: pass def test_async_iterable(self): base_it = range(10) # type: Iterator[int] it = AsyncIteratorWrapper(base_it) self.assertIsInstance(it, typing.AsyncIterable) self.assertIsInstance(it, typing.AsyncIterable) self.assertNotIsInstance(42, typing.AsyncIterable) def test_async_iterator(self): base_it = range(10) # type: Iterator[int] it = AsyncIteratorWrapper(base_it) self.assertIsInstance(it, typing.AsyncIterator) self.assertNotIsInstance(42, typing.AsyncIterator) def test_sized(self): self.assertIsInstance([], typing.Sized) self.assertNotIsInstance(42, typing.Sized) def test_container(self): self.assertIsInstance([], typing.Container) self.assertNotIsInstance(42, typing.Container) def test_collection(self): self.assertIsInstance(tuple(), typing.Collection) self.assertIsInstance(frozenset(), typing.Collection) self.assertIsSubclass(dict, typing.Collection) self.assertNotIsInstance(42, typing.Collection) def test_abstractset(self): self.assertIsInstance(set(), typing.AbstractSet) self.assertNotIsInstance(42, typing.AbstractSet) def test_mutableset(self): self.assertIsInstance(set(), typing.MutableSet) self.assertNotIsInstance(frozenset(), typing.MutableSet) def test_mapping(self): self.assertIsInstance({}, typing.Mapping) self.assertNotIsInstance(42, typing.Mapping) def test_mutablemapping(self): self.assertIsInstance({}, typing.MutableMapping) self.assertNotIsInstance(42, typing.MutableMapping) def test_sequence(self): self.assertIsInstance([], typing.Sequence) self.assertNotIsInstance(42, typing.Sequence) def test_mutablesequence(self): self.assertIsInstance([], typing.MutableSequence) self.assertNotIsInstance((), typing.MutableSequence) def test_bytestring(self): with self.assertWarns(DeprecationWarning): self.assertIsInstance(b'', typing.ByteString) with self.assertWarns(DeprecationWarning): self.assertIsInstance(bytearray(b''), typing.ByteString) with self.assertWarns(DeprecationWarning): class Foo(typing.ByteString): ... with self.assertWarns(DeprecationWarning): class Bar(typing.ByteString, typing.Awaitable): ... def test_list(self): self.assertIsSubclass(list, typing.List) def test_deque(self): self.assertIsSubclass(collections.deque, typing.Deque) class MyDeque(typing.Deque[int]): ... self.assertIsInstance(MyDeque(), collections.deque) def test_counter(self): self.assertIsSubclass(collections.Counter, typing.Counter) def test_set(self): self.assertIsSubclass(set, typing.Set) self.assertNotIsSubclass(frozenset, typing.Set) def test_frozenset(self): self.assertIsSubclass(frozenset, typing.FrozenSet) self.assertNotIsSubclass(set, typing.FrozenSet) def test_dict(self): self.assertIsSubclass(dict, typing.Dict) def test_dict_subscribe(self): K = TypeVar('K') V = TypeVar('V') self.assertEqual(Dict[K, V][str, int], Dict[str, int]) self.assertEqual(Dict[K, int][str], Dict[str, int]) self.assertEqual(Dict[str, V][int], Dict[str, int]) self.assertEqual(Dict[K, List[V]][str, int], Dict[str, List[int]]) self.assertEqual(Dict[K, List[int]][str], Dict[str, List[int]]) self.assertEqual(Dict[K, list[V]][str, int], Dict[str, list[int]]) self.assertEqual(Dict[K, list[int]][str], Dict[str, list[int]]) def test_no_list_instantiation(self): with self.assertRaises(TypeError): typing.List() with self.assertRaises(TypeError): typing.List[T]() with self.assertRaises(TypeError): typing.List[int]() def test_list_subclass(self): class MyList(typing.List[int]): pass a = MyList() self.assertIsInstance(a, MyList) self.assertIsInstance(a, typing.Sequence) self.assertIsSubclass(MyList, list) self.assertNotIsSubclass(list, MyList) def test_no_dict_instantiation(self): with self.assertRaises(TypeError): typing.Dict() with self.assertRaises(TypeError): typing.Dict[KT, VT]() with self.assertRaises(TypeError): typing.Dict[str, int]() def test_dict_subclass(self): class MyDict(typing.Dict[str, int]): pass d = MyDict() self.assertIsInstance(d, MyDict) self.assertIsInstance(d, typing.MutableMapping) self.assertIsSubclass(MyDict, dict) self.assertNotIsSubclass(dict, MyDict) def test_defaultdict_instantiation(self): self.assertIs(type(typing.DefaultDict()), collections.defaultdict) self.assertIs(type(typing.DefaultDict[KT, VT]()), collections.defaultdict) self.assertIs(type(typing.DefaultDict[str, int]()), collections.defaultdict) def test_defaultdict_subclass(self): class MyDefDict(typing.DefaultDict[str, int]): pass dd = MyDefDict() self.assertIsInstance(dd, MyDefDict) self.assertIsSubclass(MyDefDict, collections.defaultdict) self.assertNotIsSubclass(collections.defaultdict, MyDefDict) def test_ordereddict_instantiation(self): self.assertIs(type(typing.OrderedDict()), collections.OrderedDict) self.assertIs(type(typing.OrderedDict[KT, VT]()), collections.OrderedDict) self.assertIs(type(typing.OrderedDict[str, int]()), collections.OrderedDict) def test_ordereddict_subclass(self): class MyOrdDict(typing.OrderedDict[str, int]): pass od = MyOrdDict() self.assertIsInstance(od, MyOrdDict) self.assertIsSubclass(MyOrdDict, collections.OrderedDict) self.assertNotIsSubclass(collections.OrderedDict, MyOrdDict) def test_chainmap_instantiation(self): self.assertIs(type(typing.ChainMap()), collections.ChainMap) self.assertIs(type(typing.ChainMap[KT, VT]()), collections.ChainMap) self.assertIs(type(typing.ChainMap[str, int]()), collections.ChainMap) class CM(typing.ChainMap[KT, VT]): ... self.assertIs(type(CM[int, str]()), CM) def test_chainmap_subclass(self): class MyChainMap(typing.ChainMap[str, int]): pass cm = MyChainMap() self.assertIsInstance(cm, MyChainMap) self.assertIsSubclass(MyChainMap, collections.ChainMap) self.assertNotIsSubclass(collections.ChainMap, MyChainMap) def test_deque_instantiation(self): self.assertIs(type(typing.Deque()), collections.deque) self.assertIs(type(typing.Deque[T]()), collections.deque) self.assertIs(type(typing.Deque[int]()), collections.deque) class D(typing.Deque[T]): ... self.assertIs(type(D[int]()), D) def test_counter_instantiation(self): self.assertIs(type(typing.Counter()), collections.Counter) self.assertIs(type(typing.Counter[T]()), collections.Counter) self.assertIs(type(typing.Counter[int]()), collections.Counter) class C(typing.Counter[T]): ... self.assertIs(type(C[int]()), C) def test_counter_subclass_instantiation(self): class MyCounter(typing.Counter[int]): pass d = MyCounter() self.assertIsInstance(d, MyCounter) self.assertIsInstance(d, typing.Counter) self.assertIsInstance(d, collections.Counter) def test_no_set_instantiation(self): with self.assertRaises(TypeError): typing.Set() with self.assertRaises(TypeError): typing.Set[T]() with self.assertRaises(TypeError): typing.Set[int]() def test_set_subclass_instantiation(self): class MySet(typing.Set[int]): pass d = MySet() self.assertIsInstance(d, MySet) def test_no_frozenset_instantiation(self): with self.assertRaises(TypeError): typing.FrozenSet() with self.assertRaises(TypeError): typing.FrozenSet[T]() with self.assertRaises(TypeError): typing.FrozenSet[int]() def test_frozenset_subclass_instantiation(self): class MyFrozenSet(typing.FrozenSet[int]): pass d = MyFrozenSet() self.assertIsInstance(d, MyFrozenSet) def test_no_tuple_instantiation(self): with self.assertRaises(TypeError): Tuple() with self.assertRaises(TypeError): Tuple[T]() with self.assertRaises(TypeError): Tuple[int]() def test_generator(self): def foo(): yield 42 g = foo() self.assertIsSubclass(type(g), typing.Generator) def test_no_generator_instantiation(self): with self.assertRaises(TypeError): typing.Generator() with self.assertRaises(TypeError): typing.Generator[T, T, T]() with self.assertRaises(TypeError): typing.Generator[int, int, int]() def test_async_generator(self): ns = {} exec("async def f():\n" " yield 42\n", globals(), ns) g = ns['f']() self.assertIsSubclass(type(g), typing.AsyncGenerator) def test_no_async_generator_instantiation(self): with self.assertRaises(TypeError): typing.AsyncGenerator() with self.assertRaises(TypeError): typing.AsyncGenerator[T, T]() with self.assertRaises(TypeError): typing.AsyncGenerator[int, int]() def test_subclassing(self): class MMA(typing.MutableMapping): pass with self.assertRaises(TypeError): # It's abstract MMA() class MMC(MMA): def __getitem__(self, k): return None def __setitem__(self, k, v): pass def __delitem__(self, k): pass def __iter__(self): return iter(()) def __len__(self): return 0 self.assertEqual(len(MMC()), 0) self.assertTrue(callable(MMC.update)) self.assertIsInstance(MMC(), typing.Mapping) class MMB(typing.MutableMapping[KT, VT]): def __getitem__(self, k): return None def __setitem__(self, k, v): pass def __delitem__(self, k): pass def __iter__(self): return iter(()) def __len__(self): return 0 self.assertEqual(len(MMB()), 0) self.assertEqual(len(MMB[str, str]()), 0) self.assertEqual(len(MMB[KT, VT]()), 0) self.assertNotIsSubclass(dict, MMA) self.assertNotIsSubclass(dict, MMB) self.assertIsSubclass(MMA, typing.Mapping) self.assertIsSubclass(MMB, typing.Mapping) self.assertIsSubclass(MMC, typing.Mapping) self.assertIsInstance(MMB[KT, VT](), typing.Mapping) self.assertIsInstance(MMB[KT, VT](), collections.abc.Mapping) self.assertIsSubclass(MMA, collections.abc.Mapping) self.assertIsSubclass(MMB, collections.abc.Mapping) self.assertIsSubclass(MMC, collections.abc.Mapping) with self.assertRaises(TypeError): issubclass(MMB[str, str], typing.Mapping) self.assertIsSubclass(MMC, MMA) class I(typing.Iterable): ... self.assertNotIsSubclass(list, I) class G(typing.Generator[int, int, int]): ... def g(): yield 0 self.assertIsSubclass(G, typing.Generator) self.assertIsSubclass(G, typing.Iterable) self.assertIsSubclass(G, collections.abc.Generator) self.assertIsSubclass(G, collections.abc.Iterable) self.assertNotIsSubclass(type(g), G) def test_subclassing_async_generator(self): class G(typing.AsyncGenerator[int, int]): def asend(self, value): pass def athrow(self, typ, val=None, tb=None): pass ns = {} exec('async def g(): yield 0', globals(), ns) g = ns['g'] self.assertIsSubclass(G, typing.AsyncGenerator) self.assertIsSubclass(G, typing.AsyncIterable) self.assertIsSubclass(G, collections.abc.AsyncGenerator) self.assertIsSubclass(G, collections.abc.AsyncIterable) self.assertNotIsSubclass(type(g), G) instance = G() self.assertIsInstance(instance, typing.AsyncGenerator) self.assertIsInstance(instance, typing.AsyncIterable) self.assertIsInstance(instance, collections.abc.AsyncGenerator) self.assertIsInstance(instance, collections.abc.AsyncIterable) self.assertNotIsInstance(type(g), G) self.assertNotIsInstance(g, G) def test_subclassing_subclasshook(self): class Base(typing.Iterable): @classmethod def __subclasshook__(cls, other): if other.__name__ == 'Foo': return True else: return False class C(Base): ... class Foo: ... class Bar: ... self.assertIsSubclass(Foo, Base) self.assertIsSubclass(Foo, C) self.assertNotIsSubclass(Bar, C) def test_subclassing_register(self): class A(typing.Container): ... class B(A): ... class C: ... A.register(C) self.assertIsSubclass(C, A) self.assertNotIsSubclass(C, B) class D: ... B.register(D) self.assertIsSubclass(D, A) self.assertIsSubclass(D, B) class M(): ... collections.abc.MutableMapping.register(M) self.assertIsSubclass(M, typing.Mapping) def test_collections_as_base(self): class M(collections.abc.Mapping): ... self.assertIsSubclass(M, typing.Mapping) self.assertIsSubclass(M, typing.Iterable) class S(collections.abc.MutableSequence): ... self.assertIsSubclass(S, typing.MutableSequence) self.assertIsSubclass(S, typing.Iterable) class I(collections.abc.Iterable): ... self.assertIsSubclass(I, typing.Iterable) class A(collections.abc.Mapping, metaclass=abc.ABCMeta): ... class B: ... A.register(B) self.assertIsSubclass(B, typing.Mapping) def test_or_and_ror(self): self.assertEqual(typing.Sized | typing.Awaitable, Union[typing.Sized, typing.Awaitable]) self.assertEqual(typing.Coroutine | typing.Hashable, Union[typing.Coroutine, typing.Hashable]) class OtherABCTests(BaseTestCase): def test_contextmanager(self): @contextlib.contextmanager def manager(): yield 42 cm = manager() self.assertIsInstance(cm, typing.ContextManager) self.assertNotIsInstance(42, typing.ContextManager) def test_async_contextmanager(self): class NotACM: pass self.assertIsInstance(ACM(), typing.AsyncContextManager) self.assertNotIsInstance(NotACM(), typing.AsyncContextManager) @contextlib.contextmanager def manager(): yield 42 cm = manager() self.assertNotIsInstance(cm, typing.AsyncContextManager) self.assertEqual(typing.AsyncContextManager[int].__args__, (int,)) with self.assertRaises(TypeError): isinstance(42, typing.AsyncContextManager[int]) with self.assertRaises(TypeError): typing.AsyncContextManager[int, str] class TypeTests(BaseTestCase): def test_type_basic(self): class User: pass class BasicUser(User): pass class ProUser(User): pass def new_user(user_class: Type[User]) -> User: return user_class() new_user(BasicUser) def test_type_typevar(self): class User: pass class BasicUser(User): pass class ProUser(User): pass U = TypeVar('U', bound=User) def new_user(user_class: Type[U]) -> U: return user_class() new_user(BasicUser) def test_type_optional(self): A = Optional[Type[BaseException]] def foo(a: A) -> Optional[BaseException]: if a is None: return None else: return a() self.assertIsInstance(foo(KeyboardInterrupt), KeyboardInterrupt) self.assertIsNone(foo(None)) class TestModules(TestCase): func_names = ['_idfunc'] def test_c_functions(self): for fname in self.func_names: self.assertEqual(getattr(typing, fname).__module__, '_typing') class NewTypeTests(BaseTestCase): @classmethod def setUpClass(cls): global UserId UserId = typing.NewType('UserId', int) cls.UserName = typing.NewType(cls.__qualname__ + '.UserName', str) @classmethod def tearDownClass(cls): global UserId del UserId del cls.UserName def test_basic(self): self.assertIsInstance(UserId(5), int) self.assertIsInstance(self.UserName('Joe'), str) self.assertEqual(UserId(5) + 1, 6) def test_errors(self): with self.assertRaises(TypeError): issubclass(UserId, int) with self.assertRaises(TypeError): class D(UserId): pass def test_or(self): for cls in (int, self.UserName): with self.subTest(cls=cls): self.assertEqual(UserId | cls, typing.Union[UserId, cls]) self.assertEqual(cls | UserId, typing.Union[cls, UserId]) self.assertEqual(typing.get_args(UserId | cls), (UserId, cls)) self.assertEqual(typing.get_args(cls | UserId), (cls, UserId)) def test_special_attrs(self): self.assertEqual(UserId.__name__, 'UserId') self.assertEqual(UserId.__qualname__, 'UserId') self.assertEqual(UserId.__module__, __name__) self.assertEqual(UserId.__supertype__, int) UserName = self.UserName self.assertEqual(UserName.__name__, 'UserName') self.assertEqual(UserName.__qualname__, self.__class__.__qualname__ + '.UserName') self.assertEqual(UserName.__module__, __name__) self.assertEqual(UserName.__supertype__, str) def test_repr(self): self.assertEqual(repr(UserId), f'{__name__}.UserId') self.assertEqual(repr(self.UserName), f'{__name__}.{self.__class__.__qualname__}.UserName') def test_pickle(self): UserAge = typing.NewType('UserAge', float) for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(proto=proto): pickled = pickle.dumps(UserId, proto) loaded = pickle.loads(pickled) self.assertIs(loaded, UserId) pickled = pickle.dumps(self.UserName, proto) loaded = pickle.loads(pickled) self.assertIs(loaded, self.UserName) with self.assertRaises(pickle.PicklingError): pickle.dumps(UserAge, proto) def test_missing__name__(self): code = ("import typing\n" "NT = typing.NewType('NT', int)\n" ) exec(code, {}) def test_error_message_when_subclassing(self): with self.assertRaisesRegex( TypeError, re.escape( "Cannot subclass an instance of NewType. Perhaps you were looking for: " "`ProUserId = NewType('ProUserId', UserId)`" ) ): class ProUserId(UserId): ... class NamedTupleTests(BaseTestCase): class NestedEmployee(NamedTuple): name: str cool: int def test_basics(self): Emp = NamedTuple('Emp', [('name', str), ('id', int)]) self.assertIsSubclass(Emp, tuple) joe = Emp('Joe', 42) jim = Emp(name='Jim', id=1) self.assertIsInstance(joe, Emp) self.assertIsInstance(joe, tuple) self.assertEqual(joe.name, 'Joe') self.assertEqual(joe.id, 42) self.assertEqual(jim.name, 'Jim') self.assertEqual(jim.id, 1) self.assertEqual(Emp.__name__, 'Emp') self.assertEqual(Emp._fields, ('name', 'id')) self.assertEqual(Emp.__annotations__, collections.OrderedDict([('name', str), ('id', int)])) def test_annotation_usage(self): tim = CoolEmployee('Tim', 9000) self.assertIsInstance(tim, CoolEmployee) self.assertIsInstance(tim, tuple) self.assertEqual(tim.name, 'Tim') self.assertEqual(tim.cool, 9000) self.assertEqual(CoolEmployee.__name__, 'CoolEmployee') self.assertEqual(CoolEmployee._fields, ('name', 'cool')) self.assertEqual(CoolEmployee.__annotations__, collections.OrderedDict(name=str, cool=int)) def test_annotation_usage_with_default(self): jelle = CoolEmployeeWithDefault('Jelle') self.assertIsInstance(jelle, CoolEmployeeWithDefault) self.assertIsInstance(jelle, tuple) self.assertEqual(jelle.name, 'Jelle') self.assertEqual(jelle.cool, 0) cooler_employee = CoolEmployeeWithDefault('Sjoerd', 1) self.assertEqual(cooler_employee.cool, 1) self.assertEqual(CoolEmployeeWithDefault.__name__, 'CoolEmployeeWithDefault') self.assertEqual(CoolEmployeeWithDefault._fields, ('name', 'cool')) self.assertEqual(CoolEmployeeWithDefault.__annotations__, dict(name=str, cool=int)) self.assertEqual(CoolEmployeeWithDefault._field_defaults, dict(cool=0)) with self.assertRaises(TypeError): class NonDefaultAfterDefault(NamedTuple): x: int = 3 y: int def test_annotation_usage_with_methods(self): self.assertEqual(XMeth(1).double(), 2) self.assertEqual(XMeth(42).x, XMeth(42)[0]) self.assertEqual(str(XRepr(42)), '42 -> 1') self.assertEqual(XRepr(1, 2) + XRepr(3), 0) with self.assertRaises(AttributeError): class XMethBad(NamedTuple): x: int def _fields(self): return 'no chance for this' with self.assertRaises(AttributeError): class XMethBad2(NamedTuple): x: int def _source(self): return 'no chance for this as well' def test_multiple_inheritance(self): class A: pass with self.assertRaises(TypeError): class X(NamedTuple, A): x: int with self.assertRaises(TypeError): class Y(NamedTuple, tuple): x: int with self.assertRaises(TypeError): class Z(NamedTuple, NamedTuple): x: int class B(NamedTuple): x: int with self.assertRaises(TypeError): class C(NamedTuple, B): y: str def test_generic(self): class X(NamedTuple, Generic[T]): x: T self.assertEqual(X.__bases__, (tuple, Generic)) self.assertEqual(X.__orig_bases__, (NamedTuple, Generic[T])) self.assertEqual(X.__mro__, (X, tuple, Generic, object)) class Y(Generic[T], NamedTuple): x: T self.assertEqual(Y.__bases__, (Generic, tuple)) self.assertEqual(Y.__orig_bases__, (Generic[T], NamedTuple)) self.assertEqual(Y.__mro__, (Y, Generic, tuple, object)) for G in X, Y: with self.subTest(type=G): self.assertEqual(G.__parameters__, (T,)) self.assertEqual(G[T].__args__, (T,)) self.assertEqual(get_args(G[T]), (T,)) A = G[int] self.assertIs(A.__origin__, G) self.assertEqual(A.__args__, (int,)) self.assertEqual(get_args(A), (int,)) self.assertEqual(A.__parameters__, ()) a = A(3) self.assertIs(type(a), G) self.assertEqual(a.x, 3) with self.assertRaises(TypeError): G[int, str] def test_generic_pep695(self): class X[T](NamedTuple): x: T T, = X.__type_params__ self.assertIsInstance(T, TypeVar) self.assertEqual(T.__name__, 'T') self.assertEqual(X.__bases__, (tuple, Generic)) self.assertEqual(X.__orig_bases__, (NamedTuple, Generic[T])) self.assertEqual(X.__mro__, (X, tuple, Generic, object)) self.assertEqual(X.__parameters__, (T,)) self.assertEqual(X[str].__args__, (str,)) self.assertEqual(X[str].__parameters__, ()) def test_non_generic_subscript(self): # For backward compatibility, subscription works # on arbitrary NamedTuple types. class Group(NamedTuple): key: T group: list[T] A = Group[int] self.assertEqual(A.__origin__, Group) self.assertEqual(A.__parameters__, ()) self.assertEqual(A.__args__, (int,)) a = A(1, [2]) self.assertIs(type(a), Group) self.assertEqual(a, (1, [2])) def test_namedtuple_keyword_usage(self): with self.assertWarnsRegex( DeprecationWarning, "Creating NamedTuple classes using keyword arguments is deprecated" ): LocalEmployee = NamedTuple("LocalEmployee", name=str, age=int) nick = LocalEmployee('Nick', 25) self.assertIsInstance(nick, tuple) self.assertEqual(nick.name, 'Nick') self.assertEqual(LocalEmployee.__name__, 'LocalEmployee') self.assertEqual(LocalEmployee._fields, ('name', 'age')) self.assertEqual(LocalEmployee.__annotations__, dict(name=str, age=int)) with self.assertRaisesRegex( TypeError, "Either list of fields or keywords can be provided to NamedTuple, not both" ): NamedTuple('Name', [('x', int)], y=str) with self.assertRaisesRegex( TypeError, "Either list of fields or keywords can be provided to NamedTuple, not both" ): NamedTuple('Name', [], y=str) with self.assertRaisesRegex( TypeError, ( r"Cannot pass `None` as the 'fields' parameter " r"and also specify fields using keyword arguments" ) ): NamedTuple('Name', None, x=int) def test_namedtuple_special_keyword_names(self): with self.assertWarnsRegex( DeprecationWarning, "Creating NamedTuple classes using keyword arguments is deprecated" ): NT = NamedTuple("NT", cls=type, self=object, typename=str, fields=list) self.assertEqual(NT.__name__, 'NT') self.assertEqual(NT._fields, ('cls', 'self', 'typename', 'fields')) a = NT(cls=str, self=42, typename='foo', fields=[('bar', tuple)]) self.assertEqual(a.cls, str) self.assertEqual(a.self, 42) self.assertEqual(a.typename, 'foo') self.assertEqual(a.fields, [('bar', tuple)]) def test_empty_namedtuple(self): expected_warning = re.escape( "Failing to pass a value for the 'fields' parameter is deprecated " "and will be disallowed in Python 3.15. " "To create a NamedTuple class with 0 fields " "using the functional syntax, " "pass an empty list, e.g. `NT1 = NamedTuple('NT1', [])`." ) with self.assertWarnsRegex(DeprecationWarning, fr"^{expected_warning}$"): NT1 = NamedTuple('NT1') expected_warning = re.escape( "Passing `None` as the 'fields' parameter is deprecated " "and will be disallowed in Python 3.15. " "To create a NamedTuple class with 0 fields " "using the functional syntax, " "pass an empty list, e.g. `NT2 = NamedTuple('NT2', [])`." ) with self.assertWarnsRegex(DeprecationWarning, fr"^{expected_warning}$"): NT2 = NamedTuple('NT2', None) NT3 = NamedTuple('NT2', []) class CNT(NamedTuple): pass # empty body for struct in NT1, NT2, NT3, CNT: with self.subTest(struct=struct): self.assertEqual(struct._fields, ()) self.assertEqual(struct._field_defaults, {}) self.assertEqual(struct.__annotations__, {}) self.assertIsInstance(struct(), struct) def test_namedtuple_errors(self): with self.assertRaises(TypeError): NamedTuple.__new__() with self.assertRaisesRegex( TypeError, "missing 1 required positional argument" ): NamedTuple() with self.assertRaisesRegex( TypeError, "takes from 1 to 2 positional arguments but 3 were given" ): NamedTuple('Emp', [('name', str)], None) with self.assertRaisesRegex( ValueError, "Field names cannot start with an underscore" ): NamedTuple('Emp', [('_name', str)]) with self.assertRaisesRegex( TypeError, "missing 1 required positional argument: 'typename'" ): NamedTuple(typename='Emp', name=str, id=int) def test_copy_and_pickle(self): global Emp # pickle wants to reference the class by name Emp = NamedTuple('Emp', [('name', str), ('cool', int)]) for cls in Emp, CoolEmployee, self.NestedEmployee: with self.subTest(cls=cls): jane = cls('jane', 37) for proto in range(pickle.HIGHEST_PROTOCOL + 1): z = pickle.dumps(jane, proto) jane2 = pickle.loads(z) self.assertEqual(jane2, jane) self.assertIsInstance(jane2, cls) jane2 = copy(jane) self.assertEqual(jane2, jane) self.assertIsInstance(jane2, cls) jane2 = deepcopy(jane) self.assertEqual(jane2, jane) self.assertIsInstance(jane2, cls) def test_orig_bases(self): T = TypeVar('T') class SimpleNamedTuple(NamedTuple): pass class GenericNamedTuple(NamedTuple, Generic[T]): pass self.assertEqual(SimpleNamedTuple.__orig_bases__, (NamedTuple,)) self.assertEqual(GenericNamedTuple.__orig_bases__, (NamedTuple, Generic[T])) CallNamedTuple = NamedTuple('CallNamedTuple', []) self.assertEqual(CallNamedTuple.__orig_bases__, (NamedTuple,)) class TypedDictTests(BaseTestCase): def test_basics_functional_syntax(self): Emp = TypedDict('Emp', {'name': str, 'id': int}) self.assertIsSubclass(Emp, dict) self.assertIsSubclass(Emp, typing.MutableMapping) self.assertNotIsSubclass(Emp, collections.abc.Sequence) jim = Emp(name='Jim', id=1) self.assertIs(type(jim), dict) self.assertEqual(jim['name'], 'Jim') self.assertEqual(jim['id'], 1) self.assertEqual(Emp.__name__, 'Emp') self.assertEqual(Emp.__module__, __name__) self.assertEqual(Emp.__bases__, (dict,)) self.assertEqual(Emp.__annotations__, {'name': str, 'id': int}) self.assertEqual(Emp.__total__, True) self.assertEqual(Emp.__required_keys__, {'name', 'id'}) self.assertIsInstance(Emp.__required_keys__, frozenset) self.assertEqual(Emp.__optional_keys__, set()) self.assertIsInstance(Emp.__optional_keys__, frozenset) def test_typeddict_create_errors(self): with self.assertRaises(TypeError): TypedDict.__new__() with self.assertRaises(TypeError): TypedDict() with self.assertRaises(TypeError): TypedDict('Emp', [('name', str)], None) with self.assertRaises(TypeError): TypedDict(_typename='Emp') with self.assertRaises(TypeError): TypedDict('Emp', name=str, id=int) def test_typeddict_errors(self): Emp = TypedDict('Emp', {'name': str, 'id': int}) self.assertEqual(TypedDict.__module__, 'typing') jim = Emp(name='Jim', id=1) with self.assertRaises(TypeError): isinstance({}, Emp) with self.assertRaises(TypeError): isinstance(jim, Emp) with self.assertRaises(TypeError): issubclass(dict, Emp) with self.assertRaises(TypeError): TypedDict('Hi', [('x', int)], y=int) def test_py36_class_syntax_usage(self): self.assertEqual(LabelPoint2D.__name__, 'LabelPoint2D') self.assertEqual(LabelPoint2D.__module__, __name__) self.assertEqual(LabelPoint2D.__annotations__, {'x': int, 'y': int, 'label': str}) self.assertEqual(LabelPoint2D.__bases__, (dict,)) self.assertEqual(LabelPoint2D.__total__, True) self.assertNotIsSubclass(LabelPoint2D, typing.Sequence) not_origin = Point2D(x=0, y=1) self.assertEqual(not_origin['x'], 0) self.assertEqual(not_origin['y'], 1) other = LabelPoint2D(x=0, y=1, label='hi') self.assertEqual(other['label'], 'hi') def test_pickle(self): global EmpD # pickle wants to reference the class by name EmpD = TypedDict('EmpD', {'name': str, 'id': int}) jane = EmpD({'name': 'jane', 'id': 37}) for proto in range(pickle.HIGHEST_PROTOCOL + 1): z = pickle.dumps(jane, proto) jane2 = pickle.loads(z) self.assertEqual(jane2, jane) self.assertEqual(jane2, {'name': 'jane', 'id': 37}) ZZ = pickle.dumps(EmpD, proto) EmpDnew = pickle.loads(ZZ) self.assertEqual(EmpDnew({'name': 'jane', 'id': 37}), jane) def test_pickle_generic(self): point = Point2DGeneric(a=5.0, b=3.0) for proto in range(pickle.HIGHEST_PROTOCOL + 1): z = pickle.dumps(point, proto) point2 = pickle.loads(z) self.assertEqual(point2, point) self.assertEqual(point2, {'a': 5.0, 'b': 3.0}) ZZ = pickle.dumps(Point2DGeneric, proto) Point2DGenericNew = pickle.loads(ZZ) self.assertEqual(Point2DGenericNew({'a': 5.0, 'b': 3.0}), point) def test_optional(self): EmpD = TypedDict('EmpD', {'name': str, 'id': int}) self.assertEqual(typing.Optional[EmpD], typing.Union[None, EmpD]) self.assertNotEqual(typing.List[EmpD], typing.Tuple[EmpD]) def test_total(self): D = TypedDict('D', {'x': int}, total=False) self.assertEqual(D(), {}) self.assertEqual(D(x=1), {'x': 1}) self.assertEqual(D.__total__, False) self.assertEqual(D.__required_keys__, frozenset()) self.assertIsInstance(D.__required_keys__, frozenset) self.assertEqual(D.__optional_keys__, {'x'}) self.assertIsInstance(D.__optional_keys__, frozenset) self.assertEqual(Options(), {}) self.assertEqual(Options(log_level=2), {'log_level': 2}) self.assertEqual(Options.__total__, False) self.assertEqual(Options.__required_keys__, frozenset()) self.assertEqual(Options.__optional_keys__, {'log_level', 'log_path'}) def test_total_inherits_non_total(self): class TD1(TypedDict, total=False): a: int self.assertIs(TD1.__total__, False) class TD2(TD1): b: str self.assertIs(TD2.__total__, True) def test_optional_keys(self): class Point2Dor3D(Point2D, total=False): z: int self.assertEqual(Point2Dor3D.__required_keys__, frozenset(['x', 'y'])) self.assertIsInstance(Point2Dor3D.__required_keys__, frozenset) self.assertEqual(Point2Dor3D.__optional_keys__, frozenset(['z'])) self.assertIsInstance(Point2Dor3D.__optional_keys__, frozenset) def test_keys_inheritance(self): class BaseAnimal(TypedDict): name: str class Animal(BaseAnimal, total=False): voice: str tail: bool class Cat(Animal): fur_color: str self.assertEqual(BaseAnimal.__required_keys__, frozenset(['name'])) self.assertEqual(BaseAnimal.__optional_keys__, frozenset([])) self.assertEqual(BaseAnimal.__annotations__, {'name': str}) self.assertEqual(Animal.__required_keys__, frozenset(['name'])) self.assertEqual(Animal.__optional_keys__, frozenset(['tail', 'voice'])) self.assertEqual(Animal.__annotations__, { 'name': str, 'tail': bool, 'voice': str, }) self.assertEqual(Cat.__required_keys__, frozenset(['name', 'fur_color'])) self.assertEqual(Cat.__optional_keys__, frozenset(['tail', 'voice'])) self.assertEqual(Cat.__annotations__, { 'fur_color': str, 'name': str, 'tail': bool, 'voice': str, }) def test_required_notrequired_keys(self): self.assertEqual(NontotalMovie.__required_keys__, frozenset({"title"})) self.assertEqual(NontotalMovie.__optional_keys__, frozenset({"year"})) self.assertEqual(TotalMovie.__required_keys__, frozenset({"title"})) self.assertEqual(TotalMovie.__optional_keys__, frozenset({"year"})) self.assertEqual(_typed_dict_helper.VeryAnnotated.__required_keys__, frozenset()) self.assertEqual(_typed_dict_helper.VeryAnnotated.__optional_keys__, frozenset({"a"})) self.assertEqual(AnnotatedMovie.__required_keys__, frozenset({"title"})) self.assertEqual(AnnotatedMovie.__optional_keys__, frozenset({"year"})) self.assertEqual(WeirdlyQuotedMovie.__required_keys__, frozenset({"title"})) self.assertEqual(WeirdlyQuotedMovie.__optional_keys__, frozenset({"year"})) self.assertEqual(ChildTotalMovie.__required_keys__, frozenset({"title"})) self.assertEqual(ChildTotalMovie.__optional_keys__, frozenset({"year"})) self.assertEqual(ChildDeeplyAnnotatedMovie.__required_keys__, frozenset({"title"})) self.assertEqual(ChildDeeplyAnnotatedMovie.__optional_keys__, frozenset({"year"})) def test_multiple_inheritance(self): class One(TypedDict): one: int class Two(TypedDict): two: str class Untotal(TypedDict, total=False): untotal: str Inline = TypedDict('Inline', {'inline': bool}) class Regular: pass class Child(One, Two): child: bool self.assertEqual( Child.__required_keys__, frozenset(['one', 'two', 'child']), ) self.assertEqual( Child.__optional_keys__, frozenset([]), ) self.assertEqual( Child.__annotations__, {'one': int, 'two': str, 'child': bool}, ) class ChildWithOptional(One, Untotal): child: bool self.assertEqual( ChildWithOptional.__required_keys__, frozenset(['one', 'child']), ) self.assertEqual( ChildWithOptional.__optional_keys__, frozenset(['untotal']), ) self.assertEqual( ChildWithOptional.__annotations__, {'one': int, 'untotal': str, 'child': bool}, ) class ChildWithTotalFalse(One, Untotal, total=False): child: bool self.assertEqual( ChildWithTotalFalse.__required_keys__, frozenset(['one']), ) self.assertEqual( ChildWithTotalFalse.__optional_keys__, frozenset(['untotal', 'child']), ) self.assertEqual( ChildWithTotalFalse.__annotations__, {'one': int, 'untotal': str, 'child': bool}, ) class ChildWithInlineAndOptional(Untotal, Inline): child: bool self.assertEqual( ChildWithInlineAndOptional.__required_keys__, frozenset(['inline', 'child']), ) self.assertEqual( ChildWithInlineAndOptional.__optional_keys__, frozenset(['untotal']), ) self.assertEqual( ChildWithInlineAndOptional.__annotations__, {'inline': bool, 'untotal': str, 'child': bool}, ) wrong_bases = [ (One, Regular), (Regular, One), (One, Two, Regular), (Inline, Regular), (Untotal, Regular), ] for bases in wrong_bases: with self.subTest(bases=bases): with self.assertRaisesRegex( TypeError, 'cannot inherit from both a TypedDict type and a non-TypedDict', ): class Wrong(*bases): pass def test_is_typeddict(self): self.assertIs(is_typeddict(Point2D), True) self.assertIs(is_typeddict(Union[str, int]), False) # classes, not instances self.assertIs(is_typeddict(Point2D()), False) call_based = TypedDict('call_based', {'a': int}) self.assertIs(is_typeddict(call_based), True) self.assertIs(is_typeddict(call_based()), False) T = TypeVar("T") class BarGeneric(TypedDict, Generic[T]): a: T self.assertIs(is_typeddict(BarGeneric), True) self.assertIs(is_typeddict(BarGeneric[int]), False) self.assertIs(is_typeddict(BarGeneric()), False) class NewGeneric[T](TypedDict): a: T self.assertIs(is_typeddict(NewGeneric), True) self.assertIs(is_typeddict(NewGeneric[int]), False) self.assertIs(is_typeddict(NewGeneric()), False) # The TypedDict constructor is not itself a TypedDict self.assertIs(is_typeddict(TypedDict), False) def test_get_type_hints(self): self.assertEqual( get_type_hints(Bar), {'a': typing.Optional[int], 'b': int} ) def test_get_type_hints_generic(self): self.assertEqual( get_type_hints(BarGeneric), {'a': typing.Optional[T], 'b': int} ) class FooBarGeneric(BarGeneric[int]): c: str self.assertEqual( get_type_hints(FooBarGeneric), {'a': typing.Optional[T], 'b': int, 'c': str} ) def test_pep695_generic_typeddict(self): class A[T](TypedDict): a: T T, = A.__type_params__ self.assertIsInstance(T, TypeVar) self.assertEqual(T.__name__, 'T') self.assertEqual(A.__bases__, (Generic, dict)) self.assertEqual(A.__orig_bases__, (TypedDict, Generic[T])) self.assertEqual(A.__mro__, (A, Generic, dict, object)) self.assertEqual(A.__parameters__, (T,)) self.assertEqual(A[str].__parameters__, ()) self.assertEqual(A[str].__args__, (str,)) def test_generic_inheritance(self): class A(TypedDict, Generic[T]): a: T self.assertEqual(A.__bases__, (Generic, dict)) self.assertEqual(A.__orig_bases__, (TypedDict, Generic[T])) self.assertEqual(A.__mro__, (A, Generic, dict, object)) self.assertEqual(A.__parameters__, (T,)) self.assertEqual(A[str].__parameters__, ()) self.assertEqual(A[str].__args__, (str,)) class A2(Generic[T], TypedDict): a: T self.assertEqual(A2.__bases__, (Generic, dict)) self.assertEqual(A2.__orig_bases__, (Generic[T], TypedDict)) self.assertEqual(A2.__mro__, (A2, Generic, dict, object)) self.assertEqual(A2.__parameters__, (T,)) self.assertEqual(A2[str].__parameters__, ()) self.assertEqual(A2[str].__args__, (str,)) class B(A[KT], total=False): b: KT self.assertEqual(B.__bases__, (Generic, dict)) self.assertEqual(B.__orig_bases__, (A[KT],)) self.assertEqual(B.__mro__, (B, Generic, dict, object)) self.assertEqual(B.__parameters__, (KT,)) self.assertEqual(B.__total__, False) self.assertEqual(B.__optional_keys__, frozenset(['b'])) self.assertEqual(B.__required_keys__, frozenset(['a'])) self.assertEqual(B[str].__parameters__, ()) self.assertEqual(B[str].__args__, (str,)) self.assertEqual(B[str].__origin__, B) class C(B[int]): c: int self.assertEqual(C.__bases__, (Generic, dict)) self.assertEqual(C.__orig_bases__, (B[int],)) self.assertEqual(C.__mro__, (C, Generic, dict, object)) self.assertEqual(C.__parameters__, ()) self.assertEqual(C.__total__, True) self.assertEqual(C.__optional_keys__, frozenset(['b'])) self.assertEqual(C.__required_keys__, frozenset(['a', 'c'])) self.assertEqual(C.__annotations__, { 'a': T, 'b': KT, 'c': int, }) with self.assertRaises(TypeError): C[str] class Point3D(Point2DGeneric[T], Generic[T, KT]): c: KT self.assertEqual(Point3D.__bases__, (Generic, dict)) self.assertEqual(Point3D.__orig_bases__, (Point2DGeneric[T], Generic[T, KT])) self.assertEqual(Point3D.__mro__, (Point3D, Generic, dict, object)) self.assertEqual(Point3D.__parameters__, (T, KT)) self.assertEqual(Point3D.__total__, True) self.assertEqual(Point3D.__optional_keys__, frozenset()) self.assertEqual(Point3D.__required_keys__, frozenset(['a', 'b', 'c'])) self.assertEqual(Point3D.__annotations__, { 'a': T, 'b': T, 'c': KT, }) self.assertEqual(Point3D[int, str].__origin__, Point3D) with self.assertRaises(TypeError): Point3D[int] with self.assertRaises(TypeError): class Point3D(Point2DGeneric[T], Generic[KT]): c: KT def test_implicit_any_inheritance(self): class A(TypedDict, Generic[T]): a: T class B(A[KT], total=False): b: KT class WithImplicitAny(B): c: int self.assertEqual(WithImplicitAny.__bases__, (Generic, dict,)) self.assertEqual(WithImplicitAny.__mro__, (WithImplicitAny, Generic, dict, object)) # Consistent with GenericTests.test_implicit_any self.assertEqual(WithImplicitAny.__parameters__, ()) self.assertEqual(WithImplicitAny.__total__, True) self.assertEqual(WithImplicitAny.__optional_keys__, frozenset(['b'])) self.assertEqual(WithImplicitAny.__required_keys__, frozenset(['a', 'c'])) self.assertEqual(WithImplicitAny.__annotations__, { 'a': T, 'b': KT, 'c': int, }) with self.assertRaises(TypeError): WithImplicitAny[str] def test_non_generic_subscript(self): # For backward compatibility, subscription works # on arbitrary TypedDict types. class TD(TypedDict): a: T A = TD[int] self.assertEqual(A.__origin__, TD) self.assertEqual(A.__parameters__, ()) self.assertEqual(A.__args__, (int,)) a = A(a = 1) self.assertIs(type(a), dict) self.assertEqual(a, {'a': 1}) def test_orig_bases(self): T = TypeVar('T') class Parent(TypedDict): pass class Child(Parent): pass class OtherChild(Parent): pass class MixedChild(Child, OtherChild, Parent): pass class GenericParent(TypedDict, Generic[T]): pass class GenericChild(GenericParent[int]): pass class OtherGenericChild(GenericParent[str]): pass class MixedGenericChild(GenericChild, OtherGenericChild, GenericParent[float]): pass class MultipleGenericBases(GenericParent[int], GenericParent[float]): pass CallTypedDict = TypedDict('CallTypedDict', {}) self.assertEqual(Parent.__orig_bases__, (TypedDict,)) self.assertEqual(Child.__orig_bases__, (Parent,)) self.assertEqual(OtherChild.__orig_bases__, (Parent,)) self.assertEqual(MixedChild.__orig_bases__, (Child, OtherChild, Parent,)) self.assertEqual(GenericParent.__orig_bases__, (TypedDict, Generic[T])) self.assertEqual(GenericChild.__orig_bases__, (GenericParent[int],)) self.assertEqual(OtherGenericChild.__orig_bases__, (GenericParent[str],)) self.assertEqual(MixedGenericChild.__orig_bases__, (GenericChild, OtherGenericChild, GenericParent[float])) self.assertEqual(MultipleGenericBases.__orig_bases__, (GenericParent[int], GenericParent[float])) self.assertEqual(CallTypedDict.__orig_bases__, (TypedDict,)) def test_zero_fields_typeddicts(self): T1 = TypedDict("T1", {}) class T2(TypedDict): pass class T3[tvar](TypedDict): pass S = TypeVar("S") class T4(TypedDict, Generic[S]): pass expected_warning = re.escape( "Failing to pass a value for the 'fields' parameter is deprecated " "and will be disallowed in Python 3.15. " "To create a TypedDict class with 0 fields " "using the functional syntax, " "pass an empty dictionary, e.g. `T5 = TypedDict('T5', {})`." ) with self.assertWarnsRegex(DeprecationWarning, fr"^{expected_warning}$"): T5 = TypedDict('T5') expected_warning = re.escape( "Passing `None` as the 'fields' parameter is deprecated " "and will be disallowed in Python 3.15. " "To create a TypedDict class with 0 fields " "using the functional syntax, " "pass an empty dictionary, e.g. `T6 = TypedDict('T6', {})`." ) with self.assertWarnsRegex(DeprecationWarning, fr"^{expected_warning}$"): T6 = TypedDict('T6', None) for klass in T1, T2, T3, T4, T5, T6: with self.subTest(klass=klass.__name__): self.assertEqual(klass.__annotations__, {}) self.assertEqual(klass.__required_keys__, set()) self.assertEqual(klass.__optional_keys__, set()) self.assertIsInstance(klass(), dict) class RequiredTests(BaseTestCase): def test_basics(self): with self.assertRaises(TypeError): Required[NotRequired] with self.assertRaises(TypeError): Required[int, str] with self.assertRaises(TypeError): Required[int][str] def test_repr(self): self.assertEqual(repr(Required), 'typing.Required') cv = Required[int] self.assertEqual(repr(cv), 'typing.Required[int]') cv = Required[Employee] self.assertEqual(repr(cv), f'typing.Required[{__name__}.Employee]') def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class C(type(Required)): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class D(type(Required[int])): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.Required'): class E(Required): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.Required\[int\]'): class F(Required[int]): pass def test_cannot_init(self): with self.assertRaises(TypeError): Required() with self.assertRaises(TypeError): type(Required)() with self.assertRaises(TypeError): type(Required[Optional[int]])() def test_no_isinstance(self): with self.assertRaises(TypeError): isinstance(1, Required[int]) with self.assertRaises(TypeError): issubclass(int, Required) class NotRequiredTests(BaseTestCase): def test_basics(self): with self.assertRaises(TypeError): NotRequired[Required] with self.assertRaises(TypeError): NotRequired[int, str] with self.assertRaises(TypeError): NotRequired[int][str] def test_repr(self): self.assertEqual(repr(NotRequired), 'typing.NotRequired') cv = NotRequired[int] self.assertEqual(repr(cv), 'typing.NotRequired[int]') cv = NotRequired[Employee] self.assertEqual(repr(cv), f'typing.NotRequired[{__name__}.Employee]') def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class C(type(NotRequired)): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class D(type(NotRequired[int])): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.NotRequired'): class E(NotRequired): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.NotRequired\[int\]'): class F(NotRequired[int]): pass def test_cannot_init(self): with self.assertRaises(TypeError): NotRequired() with self.assertRaises(TypeError): type(NotRequired)() with self.assertRaises(TypeError): type(NotRequired[Optional[int]])() def test_no_isinstance(self): with self.assertRaises(TypeError): isinstance(1, NotRequired[int]) with self.assertRaises(TypeError): issubclass(int, NotRequired) class IOTests(BaseTestCase): def test_io(self): def stuff(a: IO) -> AnyStr: return a.readline() a = stuff.__annotations__['a'] self.assertEqual(a.__parameters__, (AnyStr,)) def test_textio(self): def stuff(a: TextIO) -> str: return a.readline() a = stuff.__annotations__['a'] self.assertEqual(a.__parameters__, ()) def test_binaryio(self): def stuff(a: BinaryIO) -> bytes: return a.readline() a = stuff.__annotations__['a'] self.assertEqual(a.__parameters__, ()) class RETests(BaseTestCase): # Much of this is really testing _TypeAlias. def test_basics(self): pat = re.compile('[a-z]+', re.I) self.assertIsSubclass(pat.__class__, Pattern) self.assertIsSubclass(type(pat), Pattern) self.assertIsInstance(pat, Pattern) mat = pat.search('12345abcde.....') self.assertIsSubclass(mat.__class__, Match) self.assertIsSubclass(type(mat), Match) self.assertIsInstance(mat, Match) # these should just work Pattern[Union[str, bytes]] Match[Union[bytes, str]] def test_alias_equality(self): self.assertEqual(Pattern[str], Pattern[str]) self.assertNotEqual(Pattern[str], Pattern[bytes]) self.assertNotEqual(Pattern[str], Match[str]) self.assertNotEqual(Pattern[str], str) def test_errors(self): m = Match[Union[str, bytes]] with self.assertRaises(TypeError): m[str] with self.assertRaises(TypeError): # We don't support isinstance(). isinstance(42, Pattern[str]) with self.assertRaises(TypeError): # We don't support issubclass(). issubclass(Pattern[bytes], Pattern[str]) def test_repr(self): self.assertEqual(repr(Pattern), 'typing.Pattern') self.assertEqual(repr(Pattern[str]), 'typing.Pattern[str]') self.assertEqual(repr(Pattern[bytes]), 'typing.Pattern[bytes]') self.assertEqual(repr(Match), 'typing.Match') self.assertEqual(repr(Match[str]), 'typing.Match[str]') self.assertEqual(repr(Match[bytes]), 'typing.Match[bytes]') def test_cannot_subclass(self): with self.assertRaisesRegex( TypeError, r"type 're\.Match' is not an acceptable base type", ): class A(typing.Match): pass with self.assertRaisesRegex( TypeError, r"type 're\.Pattern' is not an acceptable base type", ): class B(typing.Pattern): pass class AnnotatedTests(BaseTestCase): def test_new(self): with self.assertRaisesRegex( TypeError, 'Cannot instantiate typing.Annotated', ): Annotated() def test_repr(self): self.assertEqual( repr(Annotated[int, 4, 5]), "typing.Annotated[int, 4, 5]" ) self.assertEqual( repr(Annotated[List[int], 4, 5]), "typing.Annotated[typing.List[int], 4, 5]" ) def test_dir(self): dir_items = set(dir(Annotated[int, 4])) for required_item in [ '__args__', '__parameters__', '__origin__', '__metadata__', ]: with self.subTest(required_item=required_item): self.assertIn(required_item, dir_items) def test_flatten(self): A = Annotated[Annotated[int, 4], 5] self.assertEqual(A, Annotated[int, 4, 5]) self.assertEqual(A.__metadata__, (4, 5)) self.assertEqual(A.__origin__, int) def test_specialize(self): L = Annotated[List[T], "my decoration"] LI = Annotated[List[int], "my decoration"] self.assertEqual(L[int], Annotated[List[int], "my decoration"]) self.assertEqual(L[int].__metadata__, ("my decoration",)) self.assertEqual(L[int].__origin__, List[int]) with self.assertRaises(TypeError): LI[int] with self.assertRaises(TypeError): L[int, float] def test_hash_eq(self): self.assertEqual(len({Annotated[int, 4, 5], Annotated[int, 4, 5]}), 1) self.assertNotEqual(Annotated[int, 4, 5], Annotated[int, 5, 4]) self.assertNotEqual(Annotated[int, 4, 5], Annotated[str, 4, 5]) self.assertNotEqual(Annotated[int, 4], Annotated[int, 4, 4]) self.assertEqual( {Annotated[int, 4, 5], Annotated[int, 4, 5], Annotated[T, 4, 5]}, {Annotated[int, 4, 5], Annotated[T, 4, 5]} ) def test_instantiate(self): class C: classvar = 4 def __init__(self, x): self.x = x def __eq__(self, other): if not isinstance(other, C): return NotImplemented return other.x == self.x A = Annotated[C, "a decoration"] a = A(5) c = C(5) self.assertEqual(a, c) self.assertEqual(a.x, c.x) self.assertEqual(a.classvar, c.classvar) def test_instantiate_generic(self): MyCount = Annotated[typing.Counter[T], "my decoration"] self.assertEqual(MyCount([4, 4, 5]), {4: 2, 5: 1}) self.assertEqual(MyCount[int]([4, 4, 5]), {4: 2, 5: 1}) def test_cannot_instantiate_forward(self): A = Annotated["int", (5, 6)] with self.assertRaises(TypeError): A(5) def test_cannot_instantiate_type_var(self): A = Annotated[T, (5, 6)] with self.assertRaises(TypeError): A(5) def test_cannot_getattr_typevar(self): with self.assertRaises(AttributeError): Annotated[T, (5, 7)].x def test_attr_passthrough(self): class C: classvar = 4 A = Annotated[C, "a decoration"] self.assertEqual(A.classvar, 4) A.x = 5 self.assertEqual(C.x, 5) def test_special_form_containment(self): class C: classvar: Annotated[ClassVar[int], "a decoration"] = 4 const: Annotated[Final[int], "Const"] = 4 self.assertEqual(get_type_hints(C, globals())['classvar'], ClassVar[int]) self.assertEqual(get_type_hints(C, globals())['const'], Final[int]) def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, "Cannot subclass .*Annotated"): class C(Annotated): pass def test_cannot_check_instance(self): with self.assertRaises(TypeError): isinstance(5, Annotated[int, "positive"]) def test_cannot_check_subclass(self): with self.assertRaises(TypeError): issubclass(int, Annotated[int, "positive"]) def test_too_few_type_args(self): with self.assertRaisesRegex(TypeError, 'at least two arguments'): Annotated[int] def test_pickle(self): samples = [typing.Any, typing.Union[int, str], typing.Optional[str], Tuple[int, ...], typing.Callable[[str], bytes]] for t in samples: x = Annotated[t, "a"] for prot in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(protocol=prot, type=t): pickled = pickle.dumps(x, prot) restored = pickle.loads(pickled) self.assertEqual(x, restored) global _Annotated_test_G class _Annotated_test_G(Generic[T]): x = 1 G = Annotated[_Annotated_test_G[int], "A decoration"] G.foo = 42 G.bar = 'abc' for proto in range(pickle.HIGHEST_PROTOCOL + 1): z = pickle.dumps(G, proto) x = pickle.loads(z) self.assertEqual(x.foo, 42) self.assertEqual(x.bar, 'abc') self.assertEqual(x.x, 1) def test_subst(self): dec = "a decoration" dec2 = "another decoration" S = Annotated[T, dec2] self.assertEqual(S[int], Annotated[int, dec2]) self.assertEqual(S[Annotated[int, dec]], Annotated[int, dec, dec2]) L = Annotated[List[T], dec] self.assertEqual(L[int], Annotated[List[int], dec]) with self.assertRaises(TypeError): L[int, int] self.assertEqual(S[L[int]], Annotated[List[int], dec, dec2]) D = Annotated[typing.Dict[KT, VT], dec] self.assertEqual(D[str, int], Annotated[typing.Dict[str, int], dec]) with self.assertRaises(TypeError): D[int] It = Annotated[int, dec] with self.assertRaises(TypeError): It[None] LI = L[int] with self.assertRaises(TypeError): LI[None] def test_typevar_subst(self): dec = "a decoration" Ts = TypeVarTuple('Ts') T = TypeVar('T') T1 = TypeVar('T1') T2 = TypeVar('T2') A = Annotated[tuple[*Ts], dec] self.assertEqual(A[int], Annotated[tuple[int], dec]) self.assertEqual(A[str, int], Annotated[tuple[str, int], dec]) with self.assertRaises(TypeError): Annotated[*Ts, dec] B = Annotated[Tuple[Unpack[Ts]], dec] self.assertEqual(B[int], Annotated[Tuple[int], dec]) self.assertEqual(B[str, int], Annotated[Tuple[str, int], dec]) with self.assertRaises(TypeError): Annotated[Unpack[Ts], dec] C = Annotated[tuple[T, *Ts], dec] self.assertEqual(C[int], Annotated[tuple[int], dec]) self.assertEqual(C[int, str], Annotated[tuple[int, str], dec]) self.assertEqual( C[int, str, float], Annotated[tuple[int, str, float], dec] ) with self.assertRaises(TypeError): C[()] D = Annotated[Tuple[T, Unpack[Ts]], dec] self.assertEqual(D[int], Annotated[Tuple[int], dec]) self.assertEqual(D[int, str], Annotated[Tuple[int, str], dec]) self.assertEqual( D[int, str, float], Annotated[Tuple[int, str, float], dec] ) with self.assertRaises(TypeError): D[()] E = Annotated[tuple[*Ts, T], dec] self.assertEqual(E[int], Annotated[tuple[int], dec]) self.assertEqual(E[int, str], Annotated[tuple[int, str], dec]) self.assertEqual( E[int, str, float], Annotated[tuple[int, str, float], dec] ) with self.assertRaises(TypeError): E[()] F = Annotated[Tuple[Unpack[Ts], T], dec] self.assertEqual(F[int], Annotated[Tuple[int], dec]) self.assertEqual(F[int, str], Annotated[Tuple[int, str], dec]) self.assertEqual( F[int, str, float], Annotated[Tuple[int, str, float], dec] ) with self.assertRaises(TypeError): F[()] G = Annotated[tuple[T1, *Ts, T2], dec] self.assertEqual(G[int, str], Annotated[tuple[int, str], dec]) self.assertEqual( G[int, str, float], Annotated[tuple[int, str, float], dec] ) self.assertEqual( G[int, str, bool, float], Annotated[tuple[int, str, bool, float], dec] ) with self.assertRaises(TypeError): G[int] H = Annotated[Tuple[T1, Unpack[Ts], T2], dec] self.assertEqual(H[int, str], Annotated[Tuple[int, str], dec]) self.assertEqual( H[int, str, float], Annotated[Tuple[int, str, float], dec] ) self.assertEqual( H[int, str, bool, float], Annotated[Tuple[int, str, bool, float], dec] ) with self.assertRaises(TypeError): H[int] # Now let's try creating an alias from an alias. Ts2 = TypeVarTuple('Ts2') T3 = TypeVar('T3') T4 = TypeVar('T4') # G is Annotated[tuple[T1, *Ts, T2], dec]. I = G[T3, *Ts2, T4] J = G[T3, Unpack[Ts2], T4] for x, y in [ (I, Annotated[tuple[T3, *Ts2, T4], dec]), (J, Annotated[tuple[T3, Unpack[Ts2], T4], dec]), (I[int, str], Annotated[tuple[int, str], dec]), (J[int, str], Annotated[tuple[int, str], dec]), (I[int, str, float], Annotated[tuple[int, str, float], dec]), (J[int, str, float], Annotated[tuple[int, str, float], dec]), (I[int, str, bool, float], Annotated[tuple[int, str, bool, float], dec]), (J[int, str, bool, float], Annotated[tuple[int, str, bool, float], dec]), ]: self.assertEqual(x, y) with self.assertRaises(TypeError): I[int] with self.assertRaises(TypeError): J[int] def test_annotated_in_other_types(self): X = List[Annotated[T, 5]] self.assertEqual(X[int], List[Annotated[int, 5]]) def test_annotated_mro(self): class X(Annotated[int, (1, 10)]): ... self.assertEqual(X.__mro__, (X, int, object), "Annotated should be transparent.") class TypeAliasTests(BaseTestCase): def test_canonical_usage_with_variable_annotation(self): Alias: TypeAlias = Employee def test_canonical_usage_with_type_comment(self): Alias = Employee # type: TypeAlias def test_cannot_instantiate(self): with self.assertRaises(TypeError): TypeAlias() def test_no_isinstance(self): with self.assertRaises(TypeError): isinstance(42, TypeAlias) def test_stringized_usage(self): class A: a: "TypeAlias" self.assertEqual(get_type_hints(A), {'a': TypeAlias}) def test_no_issubclass(self): with self.assertRaises(TypeError): issubclass(Employee, TypeAlias) with self.assertRaises(TypeError): issubclass(TypeAlias, Employee) def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.TypeAlias'): class C(TypeAlias): pass with self.assertRaises(TypeError): class D(type(TypeAlias)): pass def test_repr(self): self.assertEqual(repr(TypeAlias), 'typing.TypeAlias') def test_cannot_subscript(self): with self.assertRaises(TypeError): TypeAlias[int] class ParamSpecTests(BaseTestCase): def test_basic_plain(self): P = ParamSpec('P') self.assertEqual(P, P) self.assertIsInstance(P, ParamSpec) self.assertEqual(P.__name__, 'P') self.assertEqual(P.__module__, __name__) def test_basic_with_exec(self): ns = {} exec('from typing import ParamSpec; P = ParamSpec("P")', ns, ns) P = ns['P'] self.assertIsInstance(P, ParamSpec) self.assertEqual(P.__name__, 'P') self.assertIs(P.__module__, None) def test_valid_uses(self): P = ParamSpec('P') T = TypeVar('T') C1 = Callable[P, int] self.assertEqual(C1.__args__, (P, int)) self.assertEqual(C1.__parameters__, (P,)) C2 = Callable[P, T] self.assertEqual(C2.__args__, (P, T)) self.assertEqual(C2.__parameters__, (P, T)) # Test collections.abc.Callable too. C3 = collections.abc.Callable[P, int] self.assertEqual(C3.__args__, (P, int)) self.assertEqual(C3.__parameters__, (P,)) C4 = collections.abc.Callable[P, T] self.assertEqual(C4.__args__, (P, T)) self.assertEqual(C4.__parameters__, (P, T)) def test_args_kwargs(self): P = ParamSpec('P') P_2 = ParamSpec('P_2') self.assertIn('args', dir(P)) self.assertIn('kwargs', dir(P)) self.assertIsInstance(P.args, ParamSpecArgs) self.assertIsInstance(P.kwargs, ParamSpecKwargs) self.assertIs(P.args.__origin__, P) self.assertIs(P.kwargs.__origin__, P) self.assertEqual(P.args, P.args) self.assertEqual(P.kwargs, P.kwargs) self.assertNotEqual(P.args, P_2.args) self.assertNotEqual(P.kwargs, P_2.kwargs) self.assertNotEqual(P.args, P.kwargs) self.assertNotEqual(P.kwargs, P.args) self.assertNotEqual(P.args, P_2.kwargs) self.assertEqual(repr(P.args), "P.args") self.assertEqual(repr(P.kwargs), "P.kwargs") def test_stringized(self): P = ParamSpec('P') class C(Generic[P]): func: Callable["P", int] def foo(self, *args: "P.args", **kwargs: "P.kwargs"): pass self.assertEqual(gth(C, globals(), locals()), {"func": Callable[P, int]}) self.assertEqual( gth(C.foo, globals(), locals()), {"args": P.args, "kwargs": P.kwargs} ) def test_user_generics(self): T = TypeVar("T") P = ParamSpec("P") P_2 = ParamSpec("P_2") class X(Generic[T, P]): f: Callable[P, int] x: T G1 = X[int, P_2] self.assertEqual(G1.__args__, (int, P_2)) self.assertEqual(G1.__parameters__, (P_2,)) with self.assertRaisesRegex(TypeError, "few arguments for"): X[int] with self.assertRaisesRegex(TypeError, "many arguments for"): X[int, P_2, str] G2 = X[int, Concatenate[int, P_2]] self.assertEqual(G2.__args__, (int, Concatenate[int, P_2])) self.assertEqual(G2.__parameters__, (P_2,)) G3 = X[int, [int, bool]] self.assertEqual(G3.__args__, (int, (int, bool))) self.assertEqual(G3.__parameters__, ()) G4 = X[int, ...] self.assertEqual(G4.__args__, (int, Ellipsis)) self.assertEqual(G4.__parameters__, ()) class Z(Generic[P]): f: Callable[P, int] G5 = Z[[int, str, bool]] self.assertEqual(G5.__args__, ((int, str, bool),)) self.assertEqual(G5.__parameters__, ()) G6 = Z[int, str, bool] self.assertEqual(G6.__args__, ((int, str, bool),)) self.assertEqual(G6.__parameters__, ()) # G5 and G6 should be equivalent according to the PEP self.assertEqual(G5.__args__, G6.__args__) self.assertEqual(G5.__origin__, G6.__origin__) self.assertEqual(G5.__parameters__, G6.__parameters__) self.assertEqual(G5, G6) G7 = Z[int] self.assertEqual(G7.__args__, ((int,),)) self.assertEqual(G7.__parameters__, ()) with self.assertRaisesRegex(TypeError, "many arguments for"): Z[[int, str], bool] with self.assertRaisesRegex(TypeError, "many arguments for"): Z[P_2, bool] def test_multiple_paramspecs_in_user_generics(self): P = ParamSpec("P") P2 = ParamSpec("P2") class X(Generic[P, P2]): f: Callable[P, int] g: Callable[P2, str] G1 = X[[int, str], [bytes]] G2 = X[[int], [str, bytes]] self.assertNotEqual(G1, G2) self.assertEqual(G1.__args__, ((int, str), (bytes,))) self.assertEqual(G2.__args__, ((int,), (str, bytes))) def test_typevartuple_and_paramspecs_in_user_generics(self): Ts = TypeVarTuple("Ts") P = ParamSpec("P") class X(Generic[*Ts, P]): f: Callable[P, int] g: Tuple[*Ts] G1 = X[int, [bytes]] self.assertEqual(G1.__args__, (int, (bytes,))) G2 = X[int, str, [bytes]] self.assertEqual(G2.__args__, (int, str, (bytes,))) G3 = X[[bytes]] self.assertEqual(G3.__args__, ((bytes,),)) G4 = X[[]] self.assertEqual(G4.__args__, ((),)) with self.assertRaises(TypeError): X[()] class Y(Generic[P, *Ts]): f: Callable[P, int] g: Tuple[*Ts] G1 = Y[[bytes], int] self.assertEqual(G1.__args__, ((bytes,), int)) G2 = Y[[bytes], int, str] self.assertEqual(G2.__args__, ((bytes,), int, str)) G3 = Y[[bytes]] self.assertEqual(G3.__args__, ((bytes,),)) G4 = Y[[]] self.assertEqual(G4.__args__, ((),)) with self.assertRaises(TypeError): Y[()] def test_typevartuple_and_paramspecs_in_generic_aliases(self): P = ParamSpec('P') T = TypeVar('T') Ts = TypeVarTuple('Ts') for C in Callable, collections.abc.Callable: with self.subTest(generic=C): A = C[P, Tuple[*Ts]] B = A[[int, str], bytes, float] self.assertEqual(B.__args__, (int, str, Tuple[bytes, float])) class X(Generic[T, P]): pass A = X[Tuple[*Ts], P] B = A[bytes, float, [int, str]] self.assertEqual(B.__args__, (Tuple[bytes, float], (int, str,))) class Y(Generic[P, T]): pass A = Y[P, Tuple[*Ts]] B = A[[int, str], bytes, float] self.assertEqual(B.__args__, ((int, str,), Tuple[bytes, float])) def test_var_substitution(self): P = ParamSpec("P") subst = P.__typing_subst__ self.assertEqual(subst((int, str)), (int, str)) self.assertEqual(subst([int, str]), (int, str)) self.assertEqual(subst([None]), (type(None),)) self.assertIs(subst(...), ...) self.assertIs(subst(P), P) self.assertEqual(subst(Concatenate[int, P]), Concatenate[int, P]) def test_bad_var_substitution(self): T = TypeVar('T') P = ParamSpec('P') bad_args = (42, int, None, T, int|str, Union[int, str]) for arg in bad_args: with self.subTest(arg=arg): with self.assertRaises(TypeError): P.__typing_subst__(arg) with self.assertRaises(TypeError): typing.Callable[P, T][arg, str] with self.assertRaises(TypeError): collections.abc.Callable[P, T][arg, str] def test_type_var_subst_for_other_type_vars(self): T = TypeVar('T') T2 = TypeVar('T2') P = ParamSpec('P') P2 = ParamSpec('P2') Ts = TypeVarTuple('Ts') class Base(Generic[P]): pass A1 = Base[T] self.assertEqual(A1.__parameters__, (T,)) self.assertEqual(A1.__args__, ((T,),)) self.assertEqual(A1[int], Base[int]) A2 = Base[[T]] self.assertEqual(A2.__parameters__, (T,)) self.assertEqual(A2.__args__, ((T,),)) self.assertEqual(A2[int], Base[int]) A3 = Base[[int, T]] self.assertEqual(A3.__parameters__, (T,)) self.assertEqual(A3.__args__, ((int, T),)) self.assertEqual(A3[str], Base[[int, str]]) A4 = Base[[T, int, T2]] self.assertEqual(A4.__parameters__, (T, T2)) self.assertEqual(A4.__args__, ((T, int, T2),)) self.assertEqual(A4[str, bool], Base[[str, int, bool]]) A5 = Base[[*Ts, int]] self.assertEqual(A5.__parameters__, (Ts,)) self.assertEqual(A5.__args__, ((*Ts, int),)) self.assertEqual(A5[str, bool], Base[[str, bool, int]]) A5_2 = Base[[int, *Ts]] self.assertEqual(A5_2.__parameters__, (Ts,)) self.assertEqual(A5_2.__args__, ((int, *Ts),)) self.assertEqual(A5_2[str, bool], Base[[int, str, bool]]) A6 = Base[[T, *Ts]] self.assertEqual(A6.__parameters__, (T, Ts)) self.assertEqual(A6.__args__, ((T, *Ts),)) self.assertEqual(A6[int, str, bool], Base[[int, str, bool]]) A7 = Base[[T, T]] self.assertEqual(A7.__parameters__, (T,)) self.assertEqual(A7.__args__, ((T, T),)) self.assertEqual(A7[int], Base[[int, int]]) A8 = Base[[T, list[T]]] self.assertEqual(A8.__parameters__, (T,)) self.assertEqual(A8.__args__, ((T, list[T]),)) self.assertEqual(A8[int], Base[[int, list[int]]]) A9 = Base[[Tuple[*Ts], *Ts]] self.assertEqual(A9.__parameters__, (Ts,)) self.assertEqual(A9.__args__, ((Tuple[*Ts], *Ts),)) self.assertEqual(A9[int, str], Base[Tuple[int, str], int, str]) A10 = Base[P2] self.assertEqual(A10.__parameters__, (P2,)) self.assertEqual(A10.__args__, (P2,)) self.assertEqual(A10[[int, str]], Base[[int, str]]) class DoubleP(Generic[P, P2]): pass B1 = DoubleP[P, P2] self.assertEqual(B1.__parameters__, (P, P2)) self.assertEqual(B1.__args__, (P, P2)) self.assertEqual(B1[[int, str], [bool]], DoubleP[[int, str], [bool]]) self.assertEqual(B1[[], []], DoubleP[[], []]) B2 = DoubleP[[int, str], P2] self.assertEqual(B2.__parameters__, (P2,)) self.assertEqual(B2.__args__, ((int, str), P2)) self.assertEqual(B2[[bool, bool]], DoubleP[[int, str], [bool, bool]]) self.assertEqual(B2[[]], DoubleP[[int, str], []]) B3 = DoubleP[P, [bool, bool]] self.assertEqual(B3.__parameters__, (P,)) self.assertEqual(B3.__args__, (P, (bool, bool))) self.assertEqual(B3[[int, str]], DoubleP[[int, str], [bool, bool]]) self.assertEqual(B3[[]], DoubleP[[], [bool, bool]]) B4 = DoubleP[[T, int], [bool, T2]] self.assertEqual(B4.__parameters__, (T, T2)) self.assertEqual(B4.__args__, ((T, int), (bool, T2))) self.assertEqual(B4[str, float], DoubleP[[str, int], [bool, float]]) B5 = DoubleP[[*Ts, int], [bool, T2]] self.assertEqual(B5.__parameters__, (Ts, T2)) self.assertEqual(B5.__args__, ((*Ts, int), (bool, T2))) self.assertEqual(B5[str, bytes, float], DoubleP[[str, bytes, int], [bool, float]]) B6 = DoubleP[[T, int], [bool, *Ts]] self.assertEqual(B6.__parameters__, (T, Ts)) self.assertEqual(B6.__args__, ((T, int), (bool, *Ts))) self.assertEqual(B6[str, bytes, float], DoubleP[[str, int], [bool, bytes, float]]) class PandT(Generic[P, T]): pass C1 = PandT[P, T] self.assertEqual(C1.__parameters__, (P, T)) self.assertEqual(C1.__args__, (P, T)) self.assertEqual(C1[[int, str], bool], PandT[[int, str], bool]) C2 = PandT[[int, T], T] self.assertEqual(C2.__parameters__, (T,)) self.assertEqual(C2.__args__, ((int, T), T)) self.assertEqual(C2[str], PandT[[int, str], str]) C3 = PandT[[int, *Ts], T] self.assertEqual(C3.__parameters__, (Ts, T)) self.assertEqual(C3.__args__, ((int, *Ts), T)) self.assertEqual(C3[str, bool, bytes], PandT[[int, str, bool], bytes]) def test_paramspec_in_nested_generics(self): # Although ParamSpec should not be found in __parameters__ of most # generics, they probably should be found when nested in # a valid location. T = TypeVar("T") P = ParamSpec("P") C1 = Callable[P, T] G1 = List[C1] G2 = list[C1] G3 = list[C1] | int self.assertEqual(G1.__parameters__, (P, T)) self.assertEqual(G2.__parameters__, (P, T)) self.assertEqual(G3.__parameters__, (P, T)) C = Callable[[int, str], float] self.assertEqual(G1[[int, str], float], List[C]) self.assertEqual(G2[[int, str], float], list[C]) self.assertEqual(G3[[int, str], float], list[C] | int) def test_paramspec_gets_copied(self): # bpo-46581 P = ParamSpec('P') P2 = ParamSpec('P2') C1 = Callable[P, int] self.assertEqual(C1.__parameters__, (P,)) self.assertEqual(C1[P2].__parameters__, (P2,)) self.assertEqual(C1[str].__parameters__, ()) self.assertEqual(C1[str, T].__parameters__, (T,)) self.assertEqual(C1[Concatenate[str, P2]].__parameters__, (P2,)) self.assertEqual(C1[Concatenate[T, P2]].__parameters__, (T, P2)) self.assertEqual(C1[...].__parameters__, ()) C2 = Callable[Concatenate[str, P], int] self.assertEqual(C2.__parameters__, (P,)) self.assertEqual(C2[P2].__parameters__, (P2,)) self.assertEqual(C2[str].__parameters__, ()) self.assertEqual(C2[str, T].__parameters__, (T,)) self.assertEqual(C2[Concatenate[str, P2]].__parameters__, (P2,)) self.assertEqual(C2[Concatenate[T, P2]].__parameters__, (T, P2)) def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, NOT_A_BASE_TYPE % 'ParamSpec'): class C(ParamSpec): pass with self.assertRaisesRegex(TypeError, NOT_A_BASE_TYPE % 'ParamSpecArgs'): class D(ParamSpecArgs): pass with self.assertRaisesRegex(TypeError, NOT_A_BASE_TYPE % 'ParamSpecKwargs'): class E(ParamSpecKwargs): pass P = ParamSpec('P') with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_INSTANCE % 'ParamSpec'): class F(P): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_INSTANCE % 'ParamSpecArgs'): class G(P.args): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_INSTANCE % 'ParamSpecKwargs'): class H(P.kwargs): pass class ConcatenateTests(BaseTestCase): def test_basics(self): P = ParamSpec('P') class MyClass: ... c = Concatenate[MyClass, P] self.assertNotEqual(c, Concatenate) def test_dir(self): P = ParamSpec('P') dir_items = set(dir(Concatenate[int, P])) for required_item in [ '__args__', '__parameters__', '__origin__', ]: with self.subTest(required_item=required_item): self.assertIn(required_item, dir_items) def test_valid_uses(self): P = ParamSpec('P') T = TypeVar('T') C1 = Callable[Concatenate[int, P], int] self.assertEqual(C1.__args__, (Concatenate[int, P], int)) self.assertEqual(C1.__parameters__, (P,)) C2 = Callable[Concatenate[int, T, P], T] self.assertEqual(C2.__args__, (Concatenate[int, T, P], T)) self.assertEqual(C2.__parameters__, (T, P)) # Test collections.abc.Callable too. C3 = collections.abc.Callable[Concatenate[int, P], int] self.assertEqual(C3.__args__, (Concatenate[int, P], int)) self.assertEqual(C3.__parameters__, (P,)) C4 = collections.abc.Callable[Concatenate[int, T, P], T] self.assertEqual(C4.__args__, (Concatenate[int, T, P], T)) self.assertEqual(C4.__parameters__, (T, P)) def test_var_substitution(self): T = TypeVar('T') P = ParamSpec('P') P2 = ParamSpec('P2') C = Concatenate[T, P] self.assertEqual(C[int, P2], Concatenate[int, P2]) self.assertEqual(C[int, [str, float]], (int, str, float)) self.assertEqual(C[int, []], (int,)) self.assertEqual(C[int, Concatenate[str, P2]], Concatenate[int, str, P2]) self.assertEqual(C[int, ...], Concatenate[int, ...]) C = Concatenate[int, P] self.assertEqual(C[P2], Concatenate[int, P2]) self.assertEqual(C[[str, float]], (int, str, float)) self.assertEqual(C[str, float], (int, str, float)) self.assertEqual(C[[]], (int,)) self.assertEqual(C[Concatenate[str, P2]], Concatenate[int, str, P2]) self.assertEqual(C[...], Concatenate[int, ...]) class TypeGuardTests(BaseTestCase): def test_basics(self): TypeGuard[int] # OK def foo(arg) -> TypeGuard[int]: ... self.assertEqual(gth(foo), {'return': TypeGuard[int]}) with self.assertRaises(TypeError): TypeGuard[int, str] def test_repr(self): self.assertEqual(repr(TypeGuard), 'typing.TypeGuard') cv = TypeGuard[int] self.assertEqual(repr(cv), 'typing.TypeGuard[int]') cv = TypeGuard[Employee] self.assertEqual(repr(cv), 'typing.TypeGuard[%s.Employee]' % __name__) cv = TypeGuard[tuple[int]] self.assertEqual(repr(cv), 'typing.TypeGuard[tuple[int]]') def test_cannot_subclass(self): with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class C(type(TypeGuard)): pass with self.assertRaisesRegex(TypeError, CANNOT_SUBCLASS_TYPE): class D(type(TypeGuard[int])): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.TypeGuard'): class E(TypeGuard): pass with self.assertRaisesRegex(TypeError, r'Cannot subclass typing\.TypeGuard\[int\]'): class F(TypeGuard[int]): pass def test_cannot_init(self): with self.assertRaises(TypeError): TypeGuard() with self.assertRaises(TypeError): type(TypeGuard)() with self.assertRaises(TypeError): type(TypeGuard[Optional[int]])() def test_no_isinstance(self): with self.assertRaises(TypeError): isinstance(1, TypeGuard[int]) with self.assertRaises(TypeError): issubclass(int, TypeGuard) SpecialAttrsP = typing.ParamSpec('SpecialAttrsP') SpecialAttrsT = typing.TypeVar('SpecialAttrsT', int, float, complex) class SpecialAttrsTests(BaseTestCase): def test_special_attrs(self): cls_to_check = { # ABC classes typing.AbstractSet: 'AbstractSet', typing.AsyncContextManager: 'AsyncContextManager', typing.AsyncGenerator: 'AsyncGenerator', typing.AsyncIterable: 'AsyncIterable', typing.AsyncIterator: 'AsyncIterator', typing.Awaitable: 'Awaitable', typing.ByteString: 'ByteString', typing.Callable: 'Callable', typing.ChainMap: 'ChainMap', typing.Collection: 'Collection', typing.Container: 'Container', typing.ContextManager: 'ContextManager', typing.Coroutine: 'Coroutine', typing.Counter: 'Counter', typing.DefaultDict: 'DefaultDict', typing.Deque: 'Deque', typing.Dict: 'Dict', typing.FrozenSet: 'FrozenSet', typing.Generator: 'Generator', typing.Hashable: 'Hashable', typing.ItemsView: 'ItemsView', typing.Iterable: 'Iterable', typing.Iterator: 'Iterator', typing.KeysView: 'KeysView', typing.List: 'List', typing.Mapping: 'Mapping', typing.MappingView: 'MappingView', typing.MutableMapping: 'MutableMapping', typing.MutableSequence: 'MutableSequence', typing.MutableSet: 'MutableSet', typing.OrderedDict: 'OrderedDict', typing.Reversible: 'Reversible', typing.Sequence: 'Sequence', typing.Set: 'Set', typing.Sized: 'Sized', typing.Tuple: 'Tuple', typing.Type: 'Type', typing.ValuesView: 'ValuesView', # Subscribed ABC classes typing.AbstractSet[Any]: 'AbstractSet', typing.AsyncContextManager[Any]: 'AsyncContextManager', typing.AsyncGenerator[Any, Any]: 'AsyncGenerator', typing.AsyncIterable[Any]: 'AsyncIterable', typing.AsyncIterator[Any]: 'AsyncIterator', typing.Awaitable[Any]: 'Awaitable', typing.Callable[[], Any]: 'Callable', typing.Callable[..., Any]: 'Callable', typing.ChainMap[Any, Any]: 'ChainMap', typing.Collection[Any]: 'Collection', typing.Container[Any]: 'Container', typing.ContextManager[Any]: 'ContextManager', typing.Coroutine[Any, Any, Any]: 'Coroutine', typing.Counter[Any]: 'Counter', typing.DefaultDict[Any, Any]: 'DefaultDict', typing.Deque[Any]: 'Deque', typing.Dict[Any, Any]: 'Dict', typing.FrozenSet[Any]: 'FrozenSet', typing.Generator[Any, Any, Any]: 'Generator', typing.ItemsView[Any, Any]: 'ItemsView', typing.Iterable[Any]: 'Iterable', typing.Iterator[Any]: 'Iterator', typing.KeysView[Any]: 'KeysView', typing.List[Any]: 'List', typing.Mapping[Any, Any]: 'Mapping', typing.MappingView[Any]: 'MappingView', typing.MutableMapping[Any, Any]: 'MutableMapping', typing.MutableSequence[Any]: 'MutableSequence', typing.MutableSet[Any]: 'MutableSet', typing.OrderedDict[Any, Any]: 'OrderedDict', typing.Reversible[Any]: 'Reversible', typing.Sequence[Any]: 'Sequence', typing.Set[Any]: 'Set', typing.Tuple[Any]: 'Tuple', typing.Tuple[Any, ...]: 'Tuple', typing.Type[Any]: 'Type', typing.ValuesView[Any]: 'ValuesView', # Special Forms typing.Annotated: 'Annotated', typing.Any: 'Any', typing.ClassVar: 'ClassVar', typing.Concatenate: 'Concatenate', typing.Final: 'Final', typing.ForwardRef: 'ForwardRef', typing.Literal: 'Literal', typing.NewType: 'NewType', typing.NoReturn: 'NoReturn', typing.Never: 'Never', typing.Optional: 'Optional', typing.TypeAlias: 'TypeAlias', typing.TypeGuard: 'TypeGuard', typing.TypeVar: 'TypeVar', typing.Union: 'Union', typing.Self: 'Self', # Subscribed special forms typing.Annotated[Any, "Annotation"]: 'Annotated', typing.Annotated[int, 'Annotation']: 'Annotated', typing.ClassVar[Any]: 'ClassVar', typing.Concatenate[Any, SpecialAttrsP]: 'Concatenate', typing.Final[Any]: 'Final', typing.Literal[Any]: 'Literal', typing.Literal[1, 2]: 'Literal', typing.Literal[True, 2]: 'Literal', typing.Optional[Any]: 'Optional', typing.TypeGuard[Any]: 'TypeGuard', typing.Union[Any]: 'Any', typing.Union[int, float]: 'Union', # Incompatible special forms (tested in test_special_attrs2) # - typing.ForwardRef('set[Any]') # - typing.NewType('TypeName', Any) # - typing.ParamSpec('SpecialAttrsP') # - typing.TypeVar('T') } for cls, name in cls_to_check.items(): with self.subTest(cls=cls): self.assertEqual(cls.__name__, name, str(cls)) self.assertEqual(cls.__qualname__, name, str(cls)) self.assertEqual(cls.__module__, 'typing', str(cls)) for proto in range(pickle.HIGHEST_PROTOCOL + 1): s = pickle.dumps(cls, proto) loaded = pickle.loads(s) self.assertIs(cls, loaded) TypeName = typing.NewType('SpecialAttrsTests.TypeName', Any) def test_special_attrs2(self): # Forward refs provide a different introspection API. __name__ and # __qualname__ make little sense for forward refs as they can store # complex typing expressions. fr = typing.ForwardRef('set[Any]') self.assertFalse(hasattr(fr, '__name__')) self.assertFalse(hasattr(fr, '__qualname__')) self.assertEqual(fr.__module__, 'typing') # Forward refs are currently unpicklable. for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.assertRaises(TypeError): pickle.dumps(fr, proto) self.assertEqual(SpecialAttrsTests.TypeName.__name__, 'TypeName') self.assertEqual( SpecialAttrsTests.TypeName.__qualname__, 'SpecialAttrsTests.TypeName', ) self.assertEqual( SpecialAttrsTests.TypeName.__module__, __name__, ) # NewTypes are picklable assuming correct qualname information. for proto in range(pickle.HIGHEST_PROTOCOL + 1): s = pickle.dumps(SpecialAttrsTests.TypeName, proto) loaded = pickle.loads(s) self.assertIs(SpecialAttrsTests.TypeName, loaded) # Type variables don't support non-global instantiation per PEP 484 # restriction that "The argument to TypeVar() must be a string equal # to the variable name to which it is assigned". Thus, providing # __qualname__ is unnecessary. self.assertEqual(SpecialAttrsT.__name__, 'SpecialAttrsT') self.assertFalse(hasattr(SpecialAttrsT, '__qualname__')) self.assertEqual(SpecialAttrsT.__module__, __name__) # Module-level type variables are picklable. for proto in range(pickle.HIGHEST_PROTOCOL + 1): s = pickle.dumps(SpecialAttrsT, proto) loaded = pickle.loads(s) self.assertIs(SpecialAttrsT, loaded) self.assertEqual(SpecialAttrsP.__name__, 'SpecialAttrsP') self.assertFalse(hasattr(SpecialAttrsP, '__qualname__')) self.assertEqual(SpecialAttrsP.__module__, __name__) # Module-level ParamSpecs are picklable. for proto in range(pickle.HIGHEST_PROTOCOL + 1): s = pickle.dumps(SpecialAttrsP, proto) loaded = pickle.loads(s) self.assertIs(SpecialAttrsP, loaded) def test_genericalias_dir(self): class Foo(Generic[T]): def bar(self): pass baz = 3 __magic__ = 4 # The class attributes of the original class should be visible even # in dir() of the GenericAlias. See bpo-45755. dir_items = set(dir(Foo[int])) for required_item in [ 'bar', 'baz', '__args__', '__parameters__', '__origin__', ]: with self.subTest(required_item=required_item): self.assertIn(required_item, dir_items) self.assertNotIn('__magic__', dir_items) class RevealTypeTests(BaseTestCase): def test_reveal_type(self): obj = object() with captured_stderr() as stderr: self.assertIs(obj, reveal_type(obj)) self.assertEqual(stderr.getvalue(), "Runtime type is 'object'\n") class DataclassTransformTests(BaseTestCase): def test_decorator(self): def create_model(*, frozen: bool = False, kw_only: bool = True): return lambda cls: cls decorated = dataclass_transform(kw_only_default=True, order_default=False)(create_model) class CustomerModel: id: int self.assertIs(decorated, create_model) self.assertEqual( decorated.__dataclass_transform__, { "eq_default": True, "order_default": False, "kw_only_default": True, "frozen_default": False, "field_specifiers": (), "kwargs": {}, } ) self.assertIs( decorated(frozen=True, kw_only=False)(CustomerModel), CustomerModel ) def test_base_class(self): class ModelBase: def __init_subclass__(cls, *, frozen: bool = False): ... Decorated = dataclass_transform( eq_default=True, order_default=True, # Arbitrary unrecognized kwargs are accepted at runtime. make_everything_awesome=True, )(ModelBase) class CustomerModel(Decorated, frozen=True): id: int self.assertIs(Decorated, ModelBase) self.assertEqual( Decorated.__dataclass_transform__, { "eq_default": True, "order_default": True, "kw_only_default": False, "frozen_default": False, "field_specifiers": (), "kwargs": {"make_everything_awesome": True}, } ) self.assertIsSubclass(CustomerModel, Decorated) def test_metaclass(self): class Field: ... class ModelMeta(type): def __new__( cls, name, bases, namespace, *, init: bool = True, ): return super().__new__(cls, name, bases, namespace) Decorated = dataclass_transform( order_default=True, frozen_default=True, field_specifiers=(Field,) )(ModelMeta) class ModelBase(metaclass=Decorated): ... class CustomerModel(ModelBase, init=False): id: int self.assertIs(Decorated, ModelMeta) self.assertEqual( Decorated.__dataclass_transform__, { "eq_default": True, "order_default": True, "kw_only_default": False, "frozen_default": True, "field_specifiers": (Field,), "kwargs": {}, } ) self.assertIsInstance(CustomerModel, Decorated) class AllTests(BaseTestCase): """Tests for __all__.""" def test_all(self): from typing import __all__ as a # Just spot-check the first and last of every category. self.assertIn('AbstractSet', a) self.assertIn('ValuesView', a) self.assertIn('cast', a) self.assertIn('overload', a) # Context managers. self.assertIn('ContextManager', a) self.assertIn('AsyncContextManager', a) # Check that former namespaces io and re are not exported. self.assertNotIn('io', a) self.assertNotIn('re', a) # Spot-check that stdlib modules aren't exported. self.assertNotIn('os', a) self.assertNotIn('sys', a) # Check that Text is defined. self.assertIn('Text', a) # Check previously missing classes. self.assertIn('SupportsBytes', a) self.assertIn('SupportsComplex', a) def test_all_exported_names(self): # ensure all dynamically created objects are actualised for name in typing.__all__: getattr(typing, name) actual_all = set(typing.__all__) computed_all = { k for k, v in vars(typing).items() # explicitly exported, not a thing with __module__ if k in actual_all or ( # avoid private names not k.startswith('_') and # there's a few types and metaclasses that aren't exported not k.endswith(('Meta', '_contra', '_co')) and not k.upper() == k and # but export all things that have __module__ == 'typing' getattr(v, '__module__', None) == typing.__name__ ) } self.assertSetEqual(computed_all, actual_all) class TypeIterationTests(BaseTestCase): _UNITERABLE_TYPES = ( Any, Union, Union[str, int], Union[str, T], List, Tuple, Callable, Callable[..., T], Callable[[T], str], Annotated, Annotated[T, ''], ) def test_cannot_iterate(self): expected_error_regex = "object is not iterable" for test_type in self._UNITERABLE_TYPES: with self.subTest(type=test_type): with self.assertRaisesRegex(TypeError, expected_error_regex): iter(test_type) with self.assertRaisesRegex(TypeError, expected_error_regex): list(test_type) with self.assertRaisesRegex(TypeError, expected_error_regex): for _ in test_type: pass def test_is_not_instance_of_iterable(self): for type_to_test in self._UNITERABLE_TYPES: self.assertNotIsInstance(type_to_test, collections.abc.Iterable) if __name__ == '__main__': main()