"""Thread module emulating a subset of Java's threading model.""" import sys as _sys try: import thread except ImportError: del _sys.modules[__name__] raise from time import time as _time, sleep as _sleep from traceback import format_exc as _format_exc from collections import deque # Rename some stuff so "from threading import *" is safe __all__ = ['activeCount', 'Condition', 'currentThread', 'enumerate', 'Event', 'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Thread', 'Timer', 'setprofile', 'settrace', 'local'] _start_new_thread = thread.start_new_thread _allocate_lock = thread.allocate_lock _get_ident = thread.get_ident ThreadError = thread.error del thread # Debug support (adapted from ihooks.py). # All the major classes here derive from _Verbose. We force that to # be a new-style class so that all the major classes here are new-style. # This helps debugging (type(instance) is more revealing for instances # of new-style classes). _VERBOSE = False if __debug__: class _Verbose(object): def __init__(self, verbose=None): if verbose is None: verbose = _VERBOSE self.__verbose = verbose def _note(self, format, *args): if self.__verbose: format = format % args format = "%s: %s\n" % ( currentThread().getName(), format) _sys.stderr.write(format) else: # Disable this when using "python -O" class _Verbose(object): def __init__(self, verbose=None): pass def _note(self, *args): pass # Support for profile and trace hooks _profile_hook = None _trace_hook = None def setprofile(func): global _profile_hook _profile_hook = func def settrace(func): global _trace_hook _trace_hook = func # Synchronization classes Lock = _allocate_lock def RLock(*args, **kwargs): return _RLock(*args, **kwargs) class _RLock(_Verbose): def __init__(self, verbose=None): _Verbose.__init__(self, verbose) self.__block = _allocate_lock() self.__owner = None self.__count = 0 def __repr__(self): return "<%s(%s, %d)>" % ( self.__class__.__name__, self.__owner and self.__owner.getName(), self.__count) def acquire(self, blocking=1): me = currentThread() if self.__owner is me: self.__count = self.__count + 1 if __debug__: self._note("%s.acquire(%s): recursive success", self, blocking) return 1 rc = self.__block.acquire(blocking) if rc: self.__owner = me self.__count = 1 if __debug__: self._note("%s.acquire(%s): initial succes", self, blocking) else: if __debug__: self._note("%s.acquire(%s): failure", self, blocking) return rc def release(self): me = currentThread() assert self.__owner is me, "release() of un-acquire()d lock" self.__count = count = self.__count - 1 if not count: self.__owner = None self.__block.release() if __debug__: self._note("%s.release(): final release", self) else: if __debug__: self._note("%s.release(): non-final release", self) # Internal methods used by condition variables def _acquire_restore(self, (count, owner)): self.__block.acquire() self.__count = count self.__owner = owner if __debug__: self._note("%s._acquire_restore()", self) def _release_save(self): if __debug__: self._note("%s._release_save()", self) count = self.__count self.__count = 0 owner = self.__owner self.__owner = None self.__block.release() return (count, owner) def _is_owned(self): return self.__owner is currentThread() def Condition(*args, **kwargs): return _Condition(*args, **kwargs) class _Condition(_Verbose): def __init__(self, lock=None, verbose=None): _Verbose.__init__(self, verbose) if lock is None: lock = RLock() self.__lock = lock # Export the lock's acquire() and release() methods self.acquire = lock.acquire self.release = lock.release # If the lock defines _release_save() and/or _acquire_restore(), # these override the default implementations (which just call # release() and acquire() on the lock). Ditto for _is_owned(). try: self._release_save = lock._release_save except AttributeError: pass try: self._acquire_restore = lock._acquire_restore except AttributeError: pass try: self._is_owned = lock._is_owned except AttributeError: pass self.__waiters = [] def __repr__(self): return "" % (self.__lock, len(self.__waiters)) def _release_save(self): self.__lock.release() # No state to save def _acquire_restore(self, x): self.__lock.acquire() # Ignore saved state def _is_owned(self): # Return True if lock is owned by currentThread. # This method is called only if __lock doesn't have _is_owned(). if self.__lock.acquire(0): self.__lock.release() return False else: return True def wait(self, timeout=None): assert self._is_owned(), "wait() of un-acquire()d lock" waiter = _allocate_lock() waiter.acquire() self.__waiters.append(waiter) saved_state = self._release_save() try: # restore state no matter what (e.g., KeyboardInterrupt) if timeout is None: waiter.acquire() if __debug__: self._note("%s.wait(): got it", self) else: # Balancing act: We can't afford a pure busy loop, so we # have to sleep; but if we sleep the whole timeout time, # we'll be unresponsive. The scheme here sleeps very # little at first, longer as time goes on, but never longer # than 20 times per second (or the timeout time remaining). endtime = _time() + timeout delay = 0.0005 # 500 us -> initial delay of 1 ms while True: gotit = waiter.acquire(0) if gotit: break remaining = endtime - _time() if remaining <= 0: break delay = min(delay * 2, remaining, .05) _sleep(delay) if not gotit: if __debug__: self._note("%s.wait(%s): timed out", self, timeout) try: self.__waiters.remove(waiter) except ValueError: pass else: if __debug__: self._note("%s.wait(%s): got it", self, timeout) finally: self._acquire_restore(saved_state) def notify(self, n=1): assert self._is_owned(), "notify() of un-acquire()d lock" __waiters = self.__waiters waiters = __waiters[:n] if not waiters: if __debug__: self._note("%s.notify(): no waiters", self) return self._note("%s.notify(): notifying %d waiter%s", self, n, n!=1 and "s" or "") for waiter in waiters: waiter.release() try: __waiters.remove(waiter) except ValueError: pass def notifyAll(self): self.notify(len(self.__waiters)) def Semaphore(*args, **kwargs): return _Semaphore(*args, **kwargs) class _Semaphore(_Verbose): # After Tim Peters' semaphore class, but not quite the same (no maximum) def __init__(self, value=1, verbose=None): assert value >= 0, "Semaphore initial value must be >= 0" _Verbose.__init__(self, verbose) self.__cond = Condition(Lock()) self.__value = value def acquire(self, blocking=1): rc = False self.__cond.acquire() while self.__value == 0: if not blocking: break if __debug__: self._note("%s.acquire(%s): blocked waiting, value=%s", self, blocking, self.__value) self.__cond.wait() else: self.__value = self.__value - 1 if __debug__: self._note("%s.acquire: success, value=%s", self, self.__value) rc = True self.__cond.release() return rc def release(self): self.__cond.acquire() self.__value = self.__value + 1 if __debug__: self._note("%s.release: success, value=%s", self, self.__value) self.__cond.notify() self.__cond.release() def BoundedSemaphore(*args, **kwargs): return _BoundedSemaphore(*args, **kwargs) class _BoundedSemaphore(_Semaphore): """Semaphore that checks that # releases is <= # acquires""" def __init__(self, value=1, verbose=None): _Semaphore.__init__(self, value, verbose) self._initial_value = value def release(self): if self._Semaphore__value >= self._initial_value: raise ValueError, "Semaphore released too many times" return _Semaphore.release(self) def Event(*args, **kwargs): return _Event(*args, **kwargs) class _Event(_Verbose): # After Tim Peters' event class (without is_posted()) def __init__(self, verbose=None): _Verbose.__init__(self, verbose) self.__cond = Condition(Lock()) self.__flag = False def isSet(self): return self.__flag def set(self): self.__cond.acquire() try: self.__flag = True self.__cond.notifyAll() finally: self.__cond.release() def clear(self): self.__cond.acquire() try: self.__flag = False finally: self.__cond.release() def wait(self, timeout=None): self.__cond.acquire() try: if not self.__flag: self.__cond.wait(timeout) finally: self.__cond.release() # Helper to generate new thread names _counter = 0 def _newname(template="Thread-%d"): global _counter _counter = _counter + 1 return template % _counter # Active thread administration _active_limbo_lock = _allocate_lock() _active = {} _limbo = {} # Main class for threads class Thread(_Verbose): __initialized = False # Need to store a reference to sys.exc_info for printing # out exceptions when a thread tries to use a global var. during interp. # shutdown and thus raises an exception about trying to perform some # operation on/with a NoneType __exc_info = _sys.exc_info def __init__(self, group=None, target=None, name=None, args=(), kwargs={}, verbose=None): assert group is None, "group argument must be None for now" _Verbose.__init__(self, verbose) self.__target = target self.__name = str(name or _newname()) self.__args = args self.__kwargs = kwargs self.__daemonic = self._set_daemon() self.__started = False self.__stopped = False self.__block = Condition(Lock()) self.__initialized = True # sys.stderr is not stored in the class like # sys.exc_info since it can be changed between instances self.__stderr = _sys.stderr def _set_daemon(self): # Overridden in _MainThread and _DummyThread return currentThread().isDaemon() def __repr__(self): assert self.__initialized, "Thread.__init__() was not called" status = "initial" if self.__started: status = "started" if self.__stopped: status = "stopped" if self.__daemonic: status = status + " daemon" return "<%s(%s, %s)>" % (self.__class__.__name__, self.__name, status) def start(self): assert self.__initialized, "Thread.__init__() not called" assert not self.__started, "thread already started" if __debug__: self._note("%s.start(): starting thread", self) _active_limbo_lock.acquire() _limbo[self] = self _active_limbo_lock.release() _start_new_thread(self.__bootstrap, ()) self.__started = True _sleep(0.000001) # 1 usec, to let the thread run (Solaris hack) def run(self): if self.__target: self.__target(*self.__args, **self.__kwargs) def __bootstrap(self): try: self.__started = True _active_limbo_lock.acquire() _active[_get_ident()] = self del _limbo[self] _active_limbo_lock.release() if __debug__: self._note("%s.__bootstrap(): thread started", self) if _trace_hook: self._note("%s.__bootstrap(): registering trace hook", self) _sys.settrace(_trace_hook) if _profile_hook: self._note("%s.__bootstrap(): registering profile hook", self) _sys.setprofile(_profile_hook) try: self.run() except SystemExit: if __debug__: self._note("%s.__bootstrap(): raised SystemExit", self) except: if __debug__: self._note("%s.__bootstrap(): unhandled exception", self) # If sys.stderr is no more (most likely from interpreter # shutdown) use self.__stderr. Otherwise still use sys (as in # _sys) in case sys.stderr was redefined since the creation of # self. if _sys: _sys.stderr.write("Exception in thread %s:\n%s\n" % (self.getName(), _format_exc())) else: # Do the best job possible w/o a huge amt. of code to # approximate a traceback (code ideas from # Lib/traceback.py) exc_type, exc_value, exc_tb = self.__exc_info() try: print>>self.__stderr, ( "Exception in thread " + self.getName() + " (most likely raised during interpreter shutdown):") print>>self.__stderr, ( "Traceback (most recent call last):") while exc_tb: print>>self.__stderr, ( ' File "%s", line %s, in %s' % (exc_tb.tb_frame.f_code.co_filename, exc_tb.tb_lineno, exc_tb.tb_frame.f_code.co_name)) exc_tb = exc_tb.tb_next print>>self.__stderr, ("%s: %s" % (exc_type, exc_value)) # Make sure that exc_tb gets deleted since it is a memory # hog; deleting everything else is just for thoroughness finally: del exc_type, exc_value, exc_tb else: if __debug__: self._note("%s.__bootstrap(): normal return", self) finally: self.__stop() try: self.__delete() except: pass def __stop(self): self.__block.acquire() self.__stopped = True self.__block.notifyAll() self.__block.release() def __delete(self): "Remove current thread from the dict of currently running threads." # Notes about running with dummy_thread: # # Must take care to not raise an exception if dummy_thread is being # used (and thus this module is being used as an instance of # dummy_threading). dummy_thread.get_ident() always returns -1 since # there is only one thread if dummy_thread is being used. Thus # len(_active) is always <= 1 here, and any Thread instance created # overwrites the (if any) thread currently registered in _active. # # An instance of _MainThread is always created by 'threading'. This # gets overwritten the instant an instance of Thread is created; both # threads return -1 from dummy_thread.get_ident() and thus have the # same key in the dict. So when the _MainThread instance created by # 'threading' tries to clean itself up when atexit calls this method # it gets a KeyError if another Thread instance was created. # # This all means that KeyError from trying to delete something from # _active if dummy_threading is being used is a red herring. But # since it isn't if dummy_threading is *not* being used then don't # hide the exception. _active_limbo_lock.acquire() try: try: del _active[_get_ident()] except KeyError: if 'dummy_threading' not in _sys.modules: raise finally: _active_limbo_lock.release() def join(self, timeout=None): assert self.__initialized, "Thread.__init__() not called" assert self.__started, "cannot join thread before it is started" assert self is not currentThread(), "cannot join current thread" if __debug__: if not self.__stopped: self._note("%s.join(): waiting until thread stops", self) self.__block.acquire() if timeout is None: while not self.__stopped: self.__block.wait() if __debug__: self._note("%s.join(): thread stopped", self) else: deadline = _time() + timeout while not self.__stopped: delay = deadline - _time() if delay <= 0: if __debug__: self._note("%s.join(): timed out", self) break self.__block.wait(delay) else: if __debug__: self._note("%s.join(): thread stopped", self) self.__block.release() def getName(self): assert self.__initialized, "Thread.__init__() not called" return self.__name def setName(self, name): assert self.__initialized, "Thread.__init__() not called" self.__name = str(name) def isAlive(self): assert self.__initialized, "Thread.__init__() not called" return self.__started and not self.__stopped def isDaemon(self): assert self.__initialized, "Thread.__init__() not called" return self.__daemonic def setDaemon(self, daemonic): assert self.__initialized, "Thread.__init__() not called" assert not self.__started, "cannot set daemon status of active thread" self.__daemonic = daemonic # The timer class was contributed by Itamar Shtull-Trauring def Timer(*args, **kwargs): return _Timer(*args, **kwargs) class _Timer(Thread): """Call a function after a specified number of seconds: t = Timer(30.0, f, args=[], kwargs={}) t.start() t.cancel() # stop the timer's action if it's still waiting """ def __init__(self, interval, function, args=[], kwargs={}): Thread.__init__(self) self.interval = interval self.function = function self.args = args self.kwargs = kwargs self.finished = Event() def cancel(self): """Stop the timer if it hasn't finished yet""" self.finished.set() def run(self): self.finished.wait(self.interval) if not self.finished.isSet(): self.function(*self.args, **self.kwargs) self.finished.set() # Special thread class to represent the main thread # This is garbage collected through an exit handler class _MainThread(Thread): def __init__(self): Thread.__init__(self, name="MainThread") self._Thread__started = True _active_limbo_lock.acquire() _active[_get_ident()] = self _active_limbo_lock.release() import atexit atexit.register(self.__exitfunc) def _set_daemon(self): return False def __exitfunc(self): self._Thread__stop() t = _pickSomeNonDaemonThread() if t: if __debug__: self._note("%s: waiting for other threads", self) while t: t.join() t = _pickSomeNonDaemonThread() if __debug__: self._note("%s: exiting", self) self._Thread__delete() def _pickSomeNonDaemonThread(): for t in enumerate(): if not t.isDaemon() and t.isAlive(): return t return None # Dummy thread class to represent threads not started here. # These aren't garbage collected when they die, # nor can they be waited for. # Their purpose is to return *something* from currentThread(). # They are marked as daemon threads so we won't wait for them # when we exit (conform previous semantics). class _DummyThread(Thread): def __init__(self): Thread.__init__(self, name=_newname("Dummy-%d")) del self._Thread__block self._Thread__started = True _active_limbo_lock.acquire() _active[_get_ident()] = self _active_limbo_lock.release() def _set_daemon(self): return True def join(self, timeout=None): assert False, "cannot join a dummy thread" # Global API functions def currentThread(): try: return _active[_get_ident()] except KeyError: ##print "currentThread(): no current thread for", _get_ident() return _DummyThread() def activeCount(): _active_limbo_lock.acquire() count = len(_active) + len(_limbo) _active_limbo_lock.release() return count def enumerate(): _active_limbo_lock.acquire() active = _active.values() + _limbo.values() _active_limbo_lock.release() return active # Create the main thread object _MainThread() # get thread-local implementation, either from the thread # module, or from the python fallback try: from thread import _local as local except ImportError: from _threading_local import local # Self-test code def _test(): class BoundedQueue(_Verbose): def __init__(self, limit): _Verbose.__init__(self) self.mon = RLock() self.rc = Condition(self.mon) self.wc = Condition(self.mon) self.limit = limit self.queue = deque() def put(self, item): self.mon.acquire() while len(self.queue) >= self.limit: self._note("put(%s): queue full", item) self.wc.wait() self.queue.append(item) self._note("put(%s): appended, length now %d", item, len(self.queue)) self.rc.notify() self.mon.release() def get(self): self.mon.acquire() while not self.queue: self._note("get(): queue empty") self.rc.wait() item = self.queue.popleft() self._note("get(): got %s, %d left", item, len(self.queue)) self.wc.notify() self.mon.release() return item class ProducerThread(Thread): def __init__(self, queue, quota): Thread.__init__(self, name="Producer") self.queue = queue self.quota = quota def run(self): from random import random counter = 0 while counter < self.quota: counter = counter + 1 self.queue.put("%s.%d" % (self.getName(), counter)) _sleep(random() * 0.00001) class ConsumerThread(Thread): def __init__(self, queue, count): Thread.__init__(self, name="Consumer") self.queue = queue self.count = count def run(self): while self.count > 0: item = self.queue.get() print item self.count = self.count - 1 NP = 3 QL = 4 NI = 5 Q = BoundedQueue(QL) P = [] for i in range(NP): t = ProducerThread(Q, NI) t.setName("Producer-%d" % (i+1)) P.append(t) C = ConsumerThread(Q, NI*NP) for t in P: t.start() _sleep(0.000001) C.start() for t in P: t.join() C.join() if __name__ == '__main__': _test()