"""Thread module emulating a subset of Java's threading model.""" import sys as _sys import _thread from time import time as _time, sleep as _sleep from traceback import format_exc as _format_exc from collections import deque from _weakrefset import WeakSet # Note regarding PEP 8 compliant names # This threading model was originally inspired by Java, and inherited # the convention of camelCase function and method names from that # language. Those originaly names are not in any imminent danger of # being deprecated (even for Py3k),so this module provides them as an # alias for the PEP 8 compliant names # Note that using the new PEP 8 compliant names facilitates substitution # with the multiprocessing module, which doesn't provide the old # Java inspired names. __all__ = ['active_count', 'Condition', 'current_thread', 'enumerate', 'Event', 'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Thread', 'Barrier', 'Timer', 'ThreadError', 'setprofile', 'settrace', 'local', 'stack_size'] # Rename some stuff so "from threading import *" is safe _start_new_thread = _thread.start_new_thread _allocate_lock = _thread.allocate_lock get_ident = _thread.get_ident ThreadError = _thread.error try: _CRLock = _thread.RLock except AttributeError: _CRLock = None TIMEOUT_MAX = _thread.TIMEOUT_MAX del _thread # Debug support (adapted from ihooks.py). _VERBOSE = False if __debug__: class _Verbose(object): def __init__(self, verbose=None): if verbose is None: verbose = _VERBOSE self._verbose = verbose def _note(self, format, *args): if self._verbose: format = format % args # Issue #4188: calling current_thread() can incur an infinite # recursion if it has to create a DummyThread on the fly. ident = get_ident() try: name = _active[ident].name except KeyError: name = "" % ident format = "%s: %s\n" % (name, format) _sys.stderr.write(format) else: # Disable this when using "python -O" class _Verbose(object): def __init__(self, verbose=None): pass def _note(self, *args): pass # Support for profile and trace hooks _profile_hook = None _trace_hook = None def setprofile(func): global _profile_hook _profile_hook = func def settrace(func): global _trace_hook _trace_hook = func # Synchronization classes Lock = _allocate_lock def RLock(verbose=None, *args, **kwargs): if verbose is None: verbose = _VERBOSE if (__debug__ and verbose) or _CRLock is None: return _PyRLock(verbose, *args, **kwargs) return _CRLock(*args, **kwargs) class _RLock(_Verbose): def __init__(self, verbose=None): _Verbose.__init__(self, verbose) self._block = _allocate_lock() self._owner = None self._count = 0 def __repr__(self): owner = self._owner try: owner = _active[owner].name except KeyError: pass return "<%s owner=%r count=%d>" % ( self.__class__.__name__, owner, self._count) def acquire(self, blocking=True, timeout=-1): me = get_ident() if self._owner == me: self._count = self._count + 1 if __debug__: self._note("%s.acquire(%s): recursive success", self, blocking) return 1 rc = self._block.acquire(blocking, timeout) if rc: self._owner = me self._count = 1 if __debug__: self._note("%s.acquire(%s): initial success", self, blocking) else: if __debug__: self._note("%s.acquire(%s): failure", self, blocking) return rc __enter__ = acquire def release(self): if self._owner != get_ident(): raise RuntimeError("cannot release un-acquired lock") self._count = count = self._count - 1 if not count: self._owner = None self._block.release() if __debug__: self._note("%s.release(): final release", self) else: if __debug__: self._note("%s.release(): non-final release", self) def __exit__(self, t, v, tb): self.release() # Internal methods used by condition variables def _acquire_restore(self, state): self._block.acquire() self._count, self._owner = state if __debug__: self._note("%s._acquire_restore()", self) def _release_save(self): if __debug__: self._note("%s._release_save()", self) if self._count == 0: raise RuntimeError("cannot release un-acquired lock") count = self._count self._count = 0 owner = self._owner self._owner = None self._block.release() return (count, owner) def _is_owned(self): return self._owner == get_ident() _PyRLock = _RLock class Condition(_Verbose): def __init__(self, lock=None, verbose=None): _Verbose.__init__(self, verbose) if lock is None: lock = RLock() self._lock = lock # Export the lock's acquire() and release() methods self.acquire = lock.acquire self.release = lock.release # If the lock defines _release_save() and/or _acquire_restore(), # these override the default implementations (which just call # release() and acquire() on the lock). Ditto for _is_owned(). try: self._release_save = lock._release_save except AttributeError: pass try: self._acquire_restore = lock._acquire_restore except AttributeError: pass try: self._is_owned = lock._is_owned except AttributeError: pass self._waiters = [] def __enter__(self): return self._lock.__enter__() def __exit__(self, *args): return self._lock.__exit__(*args) def __repr__(self): return "" % (self._lock, len(self._waiters)) def _release_save(self): self._lock.release() # No state to save def _acquire_restore(self, x): self._lock.acquire() # Ignore saved state def _is_owned(self): # Return True if lock is owned by current_thread. # This method is called only if __lock doesn't have _is_owned(). if self._lock.acquire(0): self._lock.release() return False else: return True def wait(self, timeout=None): if not self._is_owned(): raise RuntimeError("cannot wait on un-acquired lock") waiter = _allocate_lock() waiter.acquire() self._waiters.append(waiter) saved_state = self._release_save() try: # restore state no matter what (e.g., KeyboardInterrupt) if timeout is None: waiter.acquire() gotit = True if __debug__: self._note("%s.wait(): got it", self) else: if timeout > 0: gotit = waiter.acquire(True, timeout) else: gotit = waiter.acquire(False) if not gotit: if __debug__: self._note("%s.wait(%s): timed out", self, timeout) try: self._waiters.remove(waiter) except ValueError: pass else: if __debug__: self._note("%s.wait(%s): got it", self, timeout) return gotit finally: self._acquire_restore(saved_state) def wait_for(self, predicate, timeout=None): endtime = None waittime = timeout result = predicate() while not result: if waittime is not None: if endtime is None: endtime = _time() + waittime else: waittime = endtime - _time() if waittime <= 0: if __debug__: self._note("%s.wait_for(%r, %r): Timed out.", self, predicate, timeout) break if __debug__: self._note("%s.wait_for(%r, %r): Waiting with timeout=%s.", self, predicate, timeout, waittime) self.wait(waittime) result = predicate() else: if __debug__: self._note("%s.wait_for(%r, %r): Success.", self, predicate, timeout) return result def notify(self, n=1): if not self._is_owned(): raise RuntimeError("cannot notify on un-acquired lock") __waiters = self._waiters waiters = __waiters[:n] if not waiters: if __debug__: self._note("%s.notify(): no waiters", self) return self._note("%s.notify(): notifying %d waiter%s", self, n, n!=1 and "s" or "") for waiter in waiters: waiter.release() try: __waiters.remove(waiter) except ValueError: pass def notify_all(self): self.notify(len(self._waiters)) notifyAll = notify_all class Semaphore(_Verbose): # After Tim Peters' semaphore class, but not quite the same (no maximum) def __init__(self, value=1, verbose=None): if value < 0: raise ValueError("semaphore initial value must be >= 0") _Verbose.__init__(self, verbose) self._cond = Condition(Lock()) self._value = value def acquire(self, blocking=True, timeout=None): if not blocking and timeout is not None: raise ValueError("can't specify timeout for non-blocking acquire") rc = False endtime = None self._cond.acquire() while self._value == 0: if not blocking: break if __debug__: self._note("%s.acquire(%s): blocked waiting, value=%s", self, blocking, self._value) if timeout is not None: if endtime is None: endtime = _time() + timeout else: timeout = endtime - _time() if timeout <= 0: break self._cond.wait(timeout) else: self._value = self._value - 1 if __debug__: self._note("%s.acquire: success, value=%s", self, self._value) rc = True self._cond.release() return rc __enter__ = acquire def release(self): self._cond.acquire() self._value = self._value + 1 if __debug__: self._note("%s.release: success, value=%s", self, self._value) self._cond.notify() self._cond.release() def __exit__(self, t, v, tb): self.release() class BoundedSemaphore(Semaphore): """Semaphore that checks that # releases is <= # acquires""" def __init__(self, value=1, verbose=None): Semaphore.__init__(self, value, verbose) self._initial_value = value def release(self): if self._value >= self._initial_value: raise ValueError("Semaphore released too many times") return Semaphore.release(self) class Event(_Verbose): # After Tim Peters' event class (without is_posted()) def __init__(self, verbose=None): _Verbose.__init__(self, verbose) self._cond = Condition(Lock()) self._flag = False def _reset_internal_locks(self): # private! called by Thread._reset_internal_locks by _after_fork() self._cond.__init__() def is_set(self): return self._flag isSet = is_set def set(self): self._cond.acquire() try: self._flag = True self._cond.notify_all() finally: self._cond.release() def clear(self): self._cond.acquire() try: self._flag = False finally: self._cond.release() def wait(self, timeout=None): self._cond.acquire() try: signaled = self._flag if not signaled: signaled = self._cond.wait(timeout) return signaled finally: self._cond.release() # A barrier class. Inspired in part by the pthread_barrier_* api and # the CyclicBarrier class from Java. See # http://sourceware.org/pthreads-win32/manual/pthread_barrier_init.html and # http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ # CyclicBarrier.html # for information. # We maintain two main states, 'filling' and 'draining' enabling the barrier # to be cyclic. Threads are not allowed into it until it has fully drained # since the previous cycle. In addition, a 'resetting' state exists which is # similar to 'draining' except that threads leave with a BrokenBarrierError, # and a 'broken' state in which all threads get the exception. class Barrier(_Verbose): """ Barrier. Useful for synchronizing a fixed number of threads at known synchronization points. Threads block on 'wait()' and are simultaneously once they have all made that call. """ def __init__(self, parties, action=None, timeout=None, verbose=None): """ Create a barrier, initialised to 'parties' threads. 'action' is a callable which, when supplied, will be called by one of the threads after they have all entered the barrier and just prior to releasing them all. If a 'timeout' is provided, it is uses as the default for all subsequent 'wait()' calls. """ _Verbose.__init__(self, verbose) self._cond = Condition(Lock()) self._action = action self._timeout = timeout self._parties = parties self._state = 0 #0 filling, 1, draining, -1 resetting, -2 broken self._count = 0 def wait(self, timeout=None): """ Wait for the barrier. When the specified number of threads have started waiting, they are all simultaneously awoken. If an 'action' was provided for the barrier, one of the threads will have executed that callback prior to returning. Returns an individual index number from 0 to 'parties-1'. """ if timeout is None: timeout = self._timeout with self._cond: self._enter() # Block while the barrier drains. index = self._count self._count += 1 try: if index + 1 == self._parties: # We release the barrier self._release() else: # We wait until someone releases us self._wait(timeout) return index finally: self._count -= 1 # Wake up any threads waiting for barrier to drain. self._exit() # Block until the barrier is ready for us, or raise an exception # if it is broken. def _enter(self): while self._state in (-1, 1): # It is draining or resetting, wait until done self._cond.wait() #see if the barrier is in a broken state if self._state < 0: raise BrokenBarrierError assert self._state == 0 # Optionally run the 'action' and release the threads waiting # in the barrier. def _release(self): try: if self._action: self._action() # enter draining state self._state = 1 self._cond.notify_all() except: #an exception during the _action handler. Break and reraise self._break() raise # Wait in the barrier until we are relased. Raise an exception # if the barrier is reset or broken. def _wait(self, timeout): if not self._cond.wait_for(lambda : self._state != 0, timeout): #timed out. Break the barrier self._break() raise BrokenBarrierError if self._state < 0: raise BrokenBarrierError assert self._state == 1 # If we are the last thread to exit the barrier, signal any threads # waiting for the barrier to drain. def _exit(self): if self._count == 0: if self._state in (-1, 1): #resetting or draining self._state = 0 self._cond.notify_all() def reset(self): """ Reset the barrier to the initial state. Any threads currently waiting will get the BrokenBarrier exception raised. """ with self._cond: if self._count > 0: if self._state == 0: #reset the barrier, waking up threads self._state = -1 elif self._state == -2: #was broken, set it to reset state #which clears when the last thread exits self._state = -1 else: self._state = 0 self._cond.notify_all() def abort(self): """ Place the barrier into a 'broken' state. Useful in case of error. Any currently waiting threads and threads attempting to 'wait()' will have BrokenBarrierError raised. """ with self._cond: self._break() def _break(self): # An internal error was detected. The barrier is set to # a broken state all parties awakened. self._state = -2 self._cond.notify_all() @property def parties(self): """ Return the number of threads required to trip the barrier. """ return self._parties @property def n_waiting(self): """ Return the number of threads that are currently waiting at the barrier. """ # We don't need synchronization here since this is an ephemeral result # anyway. It returns the correct value in the steady state. if self._state == 0: return self._count return 0 @property def broken(self): """ Return True if the barrier is in a broken state """ return self._state == -2 #exception raised by the Barrier class class BrokenBarrierError(RuntimeError): pass # Helper to generate new thread names _counter = 0 def _newname(template="Thread-%d"): global _counter _counter = _counter + 1 return template % _counter # Active thread administration _active_limbo_lock = _allocate_lock() _active = {} # maps thread id to Thread object _limbo = {} # For debug and leak testing _dangling = WeakSet() # Main class for threads class Thread(_Verbose): __initialized = False # Need to store a reference to sys.exc_info for printing # out exceptions when a thread tries to use a global var. during interp. # shutdown and thus raises an exception about trying to perform some # operation on/with a NoneType __exc_info = _sys.exc_info # Keep sys.exc_clear too to clear the exception just before # allowing .join() to return. #XXX __exc_clear = _sys.exc_clear def __init__(self, group=None, target=None, name=None, args=(), kwargs=None, verbose=None, *, daemon=None): assert group is None, "group argument must be None for now" _Verbose.__init__(self, verbose) if kwargs is None: kwargs = {} self._target = target self._name = str(name or _newname()) self._args = args self._kwargs = kwargs if daemon is not None: self._daemonic = daemon else: self._daemonic = current_thread().daemon self._ident = None self._started = Event() self._stopped = False self._block = Condition(Lock()) self._initialized = True # sys.stderr is not stored in the class like # sys.exc_info since it can be changed between instances self._stderr = _sys.stderr _dangling.add(self) def _reset_internal_locks(self): # private! Called by _after_fork() to reset our internal locks as # they may be in an invalid state leading to a deadlock or crash. if hasattr(self, '_block'): # DummyThread deletes _block self._block.__init__() self._started._reset_internal_locks() def __repr__(self): assert self._initialized, "Thread.__init__() was not called" status = "initial" if self._started.is_set(): status = "started" if self._stopped: status = "stopped" if self._daemonic: status += " daemon" if self._ident is not None: status += " %s" % self._ident return "<%s(%s, %s)>" % (self.__class__.__name__, self._name, status) def start(self): if not self._initialized: raise RuntimeError("thread.__init__() not called") if self._started.is_set(): raise RuntimeError("threads can only be started once") if __debug__: self._note("%s.start(): starting thread", self) with _active_limbo_lock: _limbo[self] = self try: _start_new_thread(self._bootstrap, ()) except Exception: with _active_limbo_lock: del _limbo[self] raise self._started.wait() def run(self): try: if self._target: self._target(*self._args, **self._kwargs) finally: # Avoid a refcycle if the thread is running a function with # an argument that has a member that points to the thread. del self._target, self._args, self._kwargs def _bootstrap(self): # Wrapper around the real bootstrap code that ignores # exceptions during interpreter cleanup. Those typically # happen when a daemon thread wakes up at an unfortunate # moment, finds the world around it destroyed, and raises some # random exception *** while trying to report the exception in # _bootstrap_inner() below ***. Those random exceptions # don't help anybody, and they confuse users, so we suppress # them. We suppress them only when it appears that the world # indeed has already been destroyed, so that exceptions in # _bootstrap_inner() during normal business hours are properly # reported. Also, we only suppress them for daemonic threads; # if a non-daemonic encounters this, something else is wrong. try: self._bootstrap_inner() except: if self._daemonic and _sys is None: return raise def _set_ident(self): self._ident = get_ident() def _bootstrap_inner(self): try: self._set_ident() self._started.set() with _active_limbo_lock: _active[self._ident] = self del _limbo[self] if __debug__: self._note("%s._bootstrap(): thread started", self) if _trace_hook: self._note("%s._bootstrap(): registering trace hook", self) _sys.settrace(_trace_hook) if _profile_hook: self._note("%s._bootstrap(): registering profile hook", self) _sys.setprofile(_profile_hook) try: self.run() except SystemExit: if __debug__: self._note("%s._bootstrap(): raised SystemExit", self) except: if __debug__: self._note("%s._bootstrap(): unhandled exception", self) # If sys.stderr is no more (most likely from interpreter # shutdown) use self._stderr. Otherwise still use sys (as in # _sys) in case sys.stderr was redefined since the creation of # self. if _sys: _sys.stderr.write("Exception in thread %s:\n%s\n" % (self.name, _format_exc())) else: # Do the best job possible w/o a huge amt. of code to # approximate a traceback (code ideas from # Lib/traceback.py) exc_type, exc_value, exc_tb = self._exc_info() try: print(( "Exception in thread " + self.name + " (most likely raised during interpreter shutdown):"), file=self._stderr) print(( "Traceback (most recent call last):"), file=self._stderr) while exc_tb: print(( ' File "%s", line %s, in %s' % (exc_tb.tb_frame.f_code.co_filename, exc_tb.tb_lineno, exc_tb.tb_frame.f_code.co_name)), file=self._stderr) exc_tb = exc_tb.tb_next print(("%s: %s" % (exc_type, exc_value)), file=self._stderr) # Make sure that exc_tb gets deleted since it is a memory # hog; deleting everything else is just for thoroughness finally: del exc_type, exc_value, exc_tb else: if __debug__: self._note("%s._bootstrap(): normal return", self) finally: # Prevent a race in # test_threading.test_no_refcycle_through_target when # the exception keeps the target alive past when we # assert that it's dead. #XXX self.__exc_clear() pass finally: with _active_limbo_lock: self._stop() try: # We don't call self._delete() because it also # grabs _active_limbo_lock. del _active[get_ident()] except: pass def _stop(self): self._block.acquire() self._stopped = True self._block.notify_all() self._block.release() def _delete(self): "Remove current thread from the dict of currently running threads." # Notes about running with _dummy_thread: # # Must take care to not raise an exception if _dummy_thread is being # used (and thus this module is being used as an instance of # dummy_threading). _dummy_thread.get_ident() always returns -1 since # there is only one thread if _dummy_thread is being used. Thus # len(_active) is always <= 1 here, and any Thread instance created # overwrites the (if any) thread currently registered in _active. # # An instance of _MainThread is always created by 'threading'. This # gets overwritten the instant an instance of Thread is created; both # threads return -1 from _dummy_thread.get_ident() and thus have the # same key in the dict. So when the _MainThread instance created by # 'threading' tries to clean itself up when atexit calls this method # it gets a KeyError if another Thread instance was created. # # This all means that KeyError from trying to delete something from # _active if dummy_threading is being used is a red herring. But # since it isn't if dummy_threading is *not* being used then don't # hide the exception. try: with _active_limbo_lock: del _active[get_ident()] # There must not be any python code between the previous line # and after the lock is released. Otherwise a tracing function # could try to acquire the lock again in the same thread, (in # current_thread()), and would block. except KeyError: if 'dummy_threading' not in _sys.modules: raise def join(self, timeout=None): if not self._initialized: raise RuntimeError("Thread.__init__() not called") if not self._started.is_set(): raise RuntimeError("cannot join thread before it is started") if self is current_thread(): raise RuntimeError("cannot join current thread") if __debug__: if not self._stopped: self._note("%s.join(): waiting until thread stops", self) self._block.acquire() try: if timeout is None: while not self._stopped: self._block.wait() if __debug__: self._note("%s.join(): thread stopped", self) else: deadline = _time() + timeout while not self._stopped: delay = deadline - _time() if delay <= 0: if __debug__: self._note("%s.join(): timed out", self) break self._block.wait(delay) else: if __debug__: self._note("%s.join(): thread stopped", self) finally: self._block.release() @property def name(self): assert self._initialized, "Thread.__init__() not called" return self._name @name.setter def name(self, name): assert self._initialized, "Thread.__init__() not called" self._name = str(name) @property def ident(self): assert self._initialized, "Thread.__init__() not called" return self._ident def is_alive(self): assert self._initialized, "Thread.__init__() not called" return self._started.is_set() and not self._stopped isAlive = is_alive @property def daemon(self): assert self._initialized, "Thread.__init__() not called" return self._daemonic @daemon.setter def daemon(self, daemonic): if not self._initialized: raise RuntimeError("Thread.__init__() not called") if self._started.is_set(): raise RuntimeError("cannot set daemon status of active thread"); self._daemonic = daemonic def isDaemon(self): return self.daemon def setDaemon(self, daemonic): self.daemon = daemonic def getName(self): return self.name def setName(self, name): self.name = name # The timer class was contributed by Itamar Shtull-Trauring class Timer(Thread): """Call a function after a specified number of seconds: t = Timer(30.0, f, args=[], kwargs={}) t.start() t.cancel() # stop the timer's action if it's still waiting """ def __init__(self, interval, function, args=[], kwargs={}): Thread.__init__(self) self.interval = interval self.function = function self.args = args self.kwargs = kwargs self.finished = Event() def cancel(self): """Stop the timer if it hasn't finished yet""" self.finished.set() def run(self): self.finished.wait(self.interval) if not self.finished.is_set(): self.function(*self.args, **self.kwargs) self.finished.set() # Special thread class to represent the main thread # This is garbage collected through an exit handler class _MainThread(Thread): def __init__(self): Thread.__init__(self, name="MainThread", daemon=False) self._started.set() self._set_ident() with _active_limbo_lock: _active[self._ident] = self def _exitfunc(self): self._stop() t = _pickSomeNonDaemonThread() if t: if __debug__: self._note("%s: waiting for other threads", self) while t: t.join() t = _pickSomeNonDaemonThread() if __debug__: self._note("%s: exiting", self) self._delete() def _pickSomeNonDaemonThread(): for t in enumerate(): if not t.daemon and t.is_alive(): return t return None # Dummy thread class to represent threads not started here. # These aren't garbage collected when they die, nor can they be waited for. # If they invoke anything in threading.py that calls current_thread(), they # leave an entry in the _active dict forever after. # Their purpose is to return *something* from current_thread(). # They are marked as daemon threads so we won't wait for them # when we exit (conform previous semantics). class _DummyThread(Thread): def __init__(self): Thread.__init__(self, name=_newname("Dummy-%d"), daemon=True) # Thread._block consumes an OS-level locking primitive, which # can never be used by a _DummyThread. Since a _DummyThread # instance is immortal, that's bad, so release this resource. del self._block self._started.set() self._set_ident() with _active_limbo_lock: _active[self._ident] = self def join(self, timeout=None): assert False, "cannot join a dummy thread" # Global API functions def current_thread(): try: return _active[get_ident()] except KeyError: return _DummyThread() currentThread = current_thread def active_count(): with _active_limbo_lock: return len(_active) + len(_limbo) activeCount = active_count def _enumerate(): # Same as enumerate(), but without the lock. Internal use only. return list(_active.values()) + list(_limbo.values()) def enumerate(): with _active_limbo_lock: return list(_active.values()) + list(_limbo.values()) from _thread import stack_size # Create the main thread object, # and make it available for the interpreter # (Py_Main) as threading._shutdown. _shutdown = _MainThread()._exitfunc # get thread-local implementation, either from the thread # module, or from the python fallback try: from _thread import _local as local except ImportError: from _threading_local import local def _after_fork(): # This function is called by Python/ceval.c:PyEval_ReInitThreads which # is called from PyOS_AfterFork. Here we cleanup threading module state # that should not exist after a fork. # Reset _active_limbo_lock, in case we forked while the lock was held # by another (non-forked) thread. http://bugs.python.org/issue874900 global _active_limbo_lock _active_limbo_lock = _allocate_lock() # fork() only copied the current thread; clear references to others. new_active = {} current = current_thread() with _active_limbo_lock: for thread in _active.values(): # Any lock/condition variable may be currently locked or in an # invalid state, so we reinitialize them. thread._reset_internal_locks() if thread is current: # There is only one active thread. We reset the ident to # its new value since it can have changed. ident = get_ident() thread._ident = ident new_active[ident] = thread else: # All the others are already stopped. thread._stop() _limbo.clear() _active.clear() _active.update(new_active) assert len(_active) == 1