/* * Copyright (c) 2008-2020 Stefan Krah. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "mpdecimal.h" #include #include "constants.h" #include "crt.h" #include "numbertheory.h" #include "umodarith.h" #include "typearith.h" /* Bignum: Chinese Remainder Theorem, extends the maximum transform length. */ /* Multiply P1P2 by v, store result in w. */ static inline void _crt_mulP1P2_3(mpd_uint_t w[3], mpd_uint_t v) { mpd_uint_t hi1, hi2, lo; _mpd_mul_words(&hi1, &lo, LH_P1P2, v); w[0] = lo; _mpd_mul_words(&hi2, &lo, UH_P1P2, v); lo = hi1 + lo; if (lo < hi1) hi2++; w[1] = lo; w[2] = hi2; } /* Add 3 words from v to w. The result is known to fit in w. */ static inline void _crt_add3(mpd_uint_t w[3], mpd_uint_t v[3]) { mpd_uint_t carry; mpd_uint_t s; s = w[0] + v[0]; carry = (s < w[0]); w[0] = s; s = w[1] + (v[1] + carry); carry = (s < w[1]); w[1] = s; w[2] = w[2] + (v[2] + carry); } /* Divide 3 words in u by v, store result in w, return remainder. */ static inline mpd_uint_t _crt_div3(mpd_uint_t *w, const mpd_uint_t *u, mpd_uint_t v) { mpd_uint_t r1 = u[2]; mpd_uint_t r2; if (r1 < v) { w[2] = 0; } else { _mpd_div_word(&w[2], &r1, u[2], v); /* GCOV_NOT_REACHED */ } _mpd_div_words(&w[1], &r2, r1, u[1], v); _mpd_div_words(&w[0], &r1, r2, u[0], v); return r1; } /* * Chinese Remainder Theorem: * Algorithm from Joerg Arndt, "Matters Computational", * Chapter 37.4.1 [http://www.jjj.de/fxt/] * * See also Knuth, TAOCP, Volume 2, 4.3.2, exercise 7. */ /* * CRT with carry: x1, x2, x3 contain numbers modulo p1, p2, p3. For each * triple of members of the arrays, find the unique z modulo p1*p2*p3, with * zmax = p1*p2*p3 - 1. * * In each iteration of the loop, split z into result[i] = z % MPD_RADIX * and carry = z / MPD_RADIX. Let N be the size of carry[] and cmax the * maximum carry. * * Limits for the 32-bit build: * * N = 2**96 * cmax = 7711435591312380274 * * Limits for the 64 bit build: * * N = 2**192 * cmax = 627710135393475385904124401220046371710 * * The following statements hold for both versions: * * 1) cmax + zmax < N, so the addition does not overflow. * * 2) (cmax + zmax) / MPD_RADIX == cmax. * * 3) If c <= cmax, then c_next = (c + zmax) / MPD_RADIX <= cmax. */ void crt3(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_size_t rsize) { mpd_uint_t p1 = mpd_moduli[P1]; mpd_uint_t umod; #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_uint_t a1, a2, a3; mpd_uint_t s; mpd_uint_t z[3], t[3]; mpd_uint_t carry[3] = {0,0,0}; mpd_uint_t hi, lo; mpd_size_t i; for (i = 0; i < rsize; i++) { a1 = x1[i]; a2 = x2[i]; a3 = x3[i]; SETMODULUS(P2); s = ext_submod(a2, a1, umod); s = MULMOD(s, INV_P1_MOD_P2); _mpd_mul_words(&hi, &lo, s, p1); lo = lo + a1; if (lo < a1) hi++; SETMODULUS(P3); s = dw_submod(a3, hi, lo, umod); s = MULMOD(s, INV_P1P2_MOD_P3); z[0] = lo; z[1] = hi; z[2] = 0; _crt_mulP1P2_3(t, s); _crt_add3(z, t); _crt_add3(carry, z); x1[i] = _crt_div3(carry, carry, MPD_RADIX); } assert(carry[0] == 0 && carry[1] == 0 && carry[2] == 0); }