/* * Copyright (c) 2008-2012 Stefan Krah. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "mpdecimal.h" #include <stdio.h> #include <assert.h> #include "bits.h" #include "numbertheory.h" #include "umodarith.h" #include "difradix2.h" /* Bignum: The actual transform routine (decimation in frequency). */ /* * Generate index pairs (x, bitreverse(x)) and carry out the permutation. * n must be a power of two. * Algorithm due to Brent/Lehmann, see Joerg Arndt, "Matters Computational", * Chapter 1.14.4. [http://www.jjj.de/fxt/] */ static inline void bitreverse_permute(mpd_uint_t a[], mpd_size_t n) { mpd_size_t x = 0; mpd_size_t r = 0; mpd_uint_t t; do { /* Invariant: r = bitreverse(x) */ if (r > x) { t = a[x]; a[x] = a[r]; a[r] = t; } /* Flip trailing consecutive 1 bits and the first zero bit * that absorbs a possible carry. */ x += 1; /* Mirror the operation on r: Flip n_trailing_zeros(x)+1 high bits of r. */ r ^= (n - (n >> (mpd_bsf(x)+1))); /* The loop invariant is preserved. */ } while (x < n); } /* Fast Number Theoretic Transform, decimation in frequency. */ void fnt_dif2(mpd_uint_t a[], mpd_size_t n, struct fnt_params *tparams) { mpd_uint_t *wtable = tparams->wtable; mpd_uint_t umod; #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_uint_t u0, u1, v0, v1; mpd_uint_t w, w0, w1, wstep; mpd_size_t m, mhalf; mpd_size_t j, r; assert(ispower2(n)); assert(n >= 4); SETMODULUS(tparams->modnum); /* m == n */ mhalf = n / 2; for (j = 0; j < mhalf; j += 2) { w0 = wtable[j]; w1 = wtable[j+1]; u0 = a[j]; v0 = a[j+mhalf]; u1 = a[j+1]; v1 = a[j+1+mhalf]; a[j] = addmod(u0, v0, umod); v0 = submod(u0, v0, umod); a[j+1] = addmod(u1, v1, umod); v1 = submod(u1, v1, umod); MULMOD2(&v0, w0, &v1, w1); a[j+mhalf] = v0; a[j+1+mhalf] = v1; } wstep = 2; for (m = n/2; m >= 2; m>>=1, wstep<<=1) { mhalf = m / 2; /* j == 0 */ for (r = 0; r < n; r += 2*m) { u0 = a[r]; v0 = a[r+mhalf]; u1 = a[m+r]; v1 = a[m+r+mhalf]; a[r] = addmod(u0, v0, umod); v0 = submod(u0, v0, umod); a[m+r] = addmod(u1, v1, umod); v1 = submod(u1, v1, umod); a[r+mhalf] = v0; a[m+r+mhalf] = v1; } for (j = 1; j < mhalf; j++) { w = wtable[j*wstep]; for (r = 0; r < n; r += 2*m) { u0 = a[r+j]; v0 = a[r+j+mhalf]; u1 = a[m+r+j]; v1 = a[m+r+j+mhalf]; a[r+j] = addmod(u0, v0, umod); v0 = submod(u0, v0, umod); a[m+r+j] = addmod(u1, v1, umod); v1 = submod(u1, v1, umod); MULMOD2C(&v0, &v1, w); a[r+j+mhalf] = v0; a[m+r+j+mhalf] = v1; } } } bitreverse_permute(a, n); }